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Abstract
We present an approach to speaker recognition in the text-
independent domain of conversational telephone speech us-
ing a text-constrained system designed to employ select high-
frequency keywords in the speech stream. The system uses
speaker word models generated via Hidden Markov Models
(HMMs) — a departure from the traditional Gaussian Mixture
Model (GMM) approach dominant in text-independent work,
but commonly employed in text-dependent systems — with the
expectation that HMMs take greater advantage of sequentialin-
formation and support more detailed modeling which could be
used to aid recognition. Even with a keyword inventory that
covers a mere 10% of the word tokens and a system that does
not yet incorporate many standard speaker recognition normal-
ization schemes, this approach is already achieving equal error
rates of 1% on NIST’s 2001 Extended Data task.

1. Introduction
Speaker recognition systems in which the permissible utter-
ances are limited to a fixed inventory — so-called “text-
dependent” systems — generally achieve much higher accu-
racy than text-independent systems. By fixing the utterance,
much more detailed modeling is possible, with acoustic vari-
ation much more likely to arise from speaker differences than
from the variability due to the phonetic content of the utter-
ance. Despite this well-known performance advantage, there
are numerous applications where constraining the speakers’ ut-
terances is neither feasible nor desirable. Examples include
speaker indexing of audio archives, background verification
during commercial interactions, and forensic and securityap-
plications involving found speech. This paper addresses the
question: Is it possible to capitalize on the advantages of text-
dependent systems in such domains?

One possibility is to limit the words of interest to those
occurring with high frequency in the domain, so that they are
likely to be encountered in unconstrained speech. For this pa-
per, in which we consider NIST’s 2001 Extended Data task
as a testbed, the domain of interest is conversational speech.
Another desirable characteristic of the selected words is that
they have high speaker-discriminative power. For conversa-
tional speech, it has been suggested [1] that words which are
highly spontaneous, representing habitual speaking style, may
possess this characteristic. We therefore chose to focus attention
on common discourse markers (you know, like), filled pauses
(uh, um), and backchannels (uh-huh, right), as natural candi-
dates.

In current text-independent speaker recognition systems the
standard practice is to generate speaker models using Gaussian
Mixture Models (GMMs), with target models adapted from a
Universal Background Model, as described in [2]. These sys-

tems utilize a “bag of frames” approach in which input speech
frames are assumed to be essentially independent. Such sys-
tems simply model a “generic” speech frame, and so fail to
take advantage of sequential information and of more focused
modeling, which might be used to aid in recognition. A nat-
ural choice to capture greater sequential information and more
tightly focused speech states is to use Hidden Markov Models
(HMMs) for model generation. HMMs have been employed in
the context of text-independent speaker verification systems be-
fore (e.g. [3] [4] [5] [6]), but these systems are generally based
on simple monophone models or on broad phonetic classes
in order to ensure coverage of the full large-vocabulary, un-
constrained speech domain as well as adequate training of the
speaker models. In contrast, in the work reported here we build
word-specific models for a highly limited subset of the words.
This allows us to create much more focused models — in the
style of text-dependent, password-based systems — to assess
the benefits of more traditional “text-constrained” approaches.

This paper describes a first attempt to build such a “text-
constrained” system, where the speaker models consist of
whole-word models represented by adapted word-level HMMs
for a speech recognizer. We have attempted to keep as much
as possible the same general framework as in the standard text-
independent GMM systems, but now employing HMM-based
whole-word models. In particular, we use the same front-end
processing, train speaker-independent background modelsand
derive the target models via adaptation, etc., in order to provide
the cleanest comparison.

In the sections that follow, we first review the Extended
Data speaker recognition task and then describe the design and
implementation of our text-constrained system. We then present
a series of experiments detailing the development stages ofthe
current system, and indicating the value of the various enhance-
ments. Fusion of scores with those of other systems is examined
next. Comparisons of this system to other closely related ap-
proaches, such as a GMM-based “text-constrained” system [7]
for this domain, are then discussed, and next steps are outlined.

2. The NIST Extended Data task
Experiments for the proposed system were based on the Ex-
tended Data task of the 2001 NIST Speaker Recognition Eval-
uation [8], a text-independent single-speaker detection task us-
ing data obtained from the Switchboard-I corpus. The corpus
consists of recordings of approximately 2400 telephone conver-
sations among 543 speakers (302 male, 241 female).

In the evaluation, speaker models are trained using 1, 2,
4, 8, and 16 complete conversation sides and are subsequently
tested on a complete conversation side, where each conversa-
tion side is approximately 2.5 minutes in length. This marks
a change from previous evaluations in which training occurred



using only 2 minutes of speech and test segments averaged 30
seconds in length. The intention of the Extended Data task is
to permit (indeed, to encourage) the investigation of techniques
which examine phenomena existing on longer timescales (e.g.,
prosodic features, word usage, etc. [9]) and those involving
longer-term statistics, and as such rely on more training data.
In our case, the use of extended data increases the probability
that one of the words of interest will appear, as well as the fre-
quency of that appearance. This enables the speaker recognition
system to utilize a constrained word set without constraining the
speech.

For training and testing, a jack-knifing process is used
whereby the data is partitioned into 6 sections (or “splits”) of
approximately equal size and each partition is tested indepen-
dently; when one partition is being tested, data from the others
can be used for background modeling and for normalization. In
this paper, we present results for development stages of thesys-
tem on split 1, using splits 4, 5, and 6 for background modeling.
Results over all six splits using the above-mentioned jacknifing
are reported for the final system.

In addition, although the evaluation allows for a varying
number of training conversations, we focus here on models
trained using 8 conversation sides. This has become the stan-
dard testing ground for data-hungry techniques, as it provides
the most training data while still involving a reasonably-sized
speaker population. Performance is reported both in terms of
the usual Detection Error Tradeoff (DET) curve [10] as well as
the simple summary statistic, Equal Error Rate (EER).

3. System design and implementation
The general procedure for the speaker recognition task is to
compute a score for each test/target trial that represents alike-
lihood of the test segment having been uttered by the putative
target talker. This typically is captured through a log-likelihood
ratio for the test segmentX, LLR(X), given byLLR(X) = log p(XjS)� log p(XjUBM) (1)

whereS represents a speaker-specific target model andUBM
is a Universal Background Model. The proposed system gen-
erates scores based on the accumulated log-probabilities from
a collection of HMM-based word models. Whole-word mod-
els are trained for select keywords using data from the held-out
“splits” to serve as a universal background model. Target ver-
sions of these models are then created by adaptation to each
speaker using word instances extracted from the target talker’s
8-conversation-side training. The use of the log-likelihood ra-
tio for scoring and the UBM and target-adapted speaker models
is designed to parallel as much as possible the standard GMM
framework.

3.1. Feature extraction

The feature vectors for the HMMs in the baseline system con-
sisted of the first 12 mel-cepstral coefficients plus the zeroth-
order cepstrum, and their first differences. In order to iso-
late the sections of speech corresponding to words of interest,
time alignments were obtained from a forced alignment of the
truth transcripts to the speech stream, as generously provided
by SRI’s Decipher speech recognizer [11] through the prosodic
feature database supplied by SRI to the JHU Summer Workshop
WS’02 [9]. (note: We also report on the contrast using ASR out-
put rather than truth transcripts, below.) The frame sequences
corresponding to the words of interest, as identified through the

forced alignment times, were then extracted to be used for the
remaining processing.

3.2. Word selection

The words used for recognition in the baseline system came
from the set of common discourse markers, filled pauses, and
backchannels, and are as follows:factually, anyway, like, now,
okay, right, see, uh, uhhuh, um, well, yeah, yepg. These 13
words account for only about 6% of the total tokens in the cor-
pus. As previously mentioned, these words possess the qualities
that they are likely to occur with great frequency in the conver-
sation sides and that they may possess strong speaker-distinctive
attributes given their habitual, spontaneous nature. It should
be noted, however, that many of these words — especially dis-
course markers such aswell, like and see— also commonly
occur in other roles (e.g.,He did well, I’d like to see that) and
no attempt was made to select only those occurrences function-
ing as discourse markers. The hope was that the modeling and
scoring would be sufficiently robust to this mixed population,
as further discussed below.

3.3. Training and adaptation

Once frame sequences for the keywords have been extracted, a
speaker-independent UBM is trained for each of these words.
The prototype whole-word HMMs were simple left-to-right
state sequences with self-loops and no skips. Each state hasan
output distribution modeled as a mixture of four Gaussians with
diagonal covariance. The choice of four Gaussians was made
with the objective of keeping the number small enough to give
good speaker focus, but large enough to account for the natural
acoustic variation of the word, including variations due topo-
tentially different word usage, as noted above. The number of
states for each model was heuristically defined to be the smaller
of the number of phones in the standard pronunciation of the
word, multiplied by 3, and the median duration, as expressed
in frames, divided by 4. The somewhat ad-hoc nature of these
model design parameters certainly merits further analysis.

The speaker models were obtained via adaptation of the
background models using Maximum A Posteriori (MAP) adap-
tation of the model means. In the event that the training datafor
a speaker provided no instances of a given word for adaptation,
the unadapted UBM was simply used for the speaker model as
well, causing the two scores (speaker and UBM) to cancel and
effectively removing the influence of the word from the overall
test score. All keyword modeling and subsequent scoring was
performed using the HMM Toolkit, HTK [12].

Figure 1:System architecture.



3.4. Scoring

The detection process must generate a score for each test/target
trial. For each of the selected words appearing in the test seg-
ment, a target score was computed as the accumulated frame
scores over all test instances when the appropriate speaker-
adapted HMM was force-aligned to the extracted frame se-
quence. The UBM score was similarly obtained by perform-
ing forced alignment against the unadapted HMM. Scores were
then combined over all keywords to produce a composite score,
the difference between the composite target and composite
background score was computed, and the resulting value was
frame-normalized by dividing by the total number of frames in
the word instances. The basic system is indicated in figure 1.

4. Experiments
In this section, we describe a sequence of experiments per-
formed on the 2001 Extended Data testset. The experiments
proceed as a series of modifications to the baseline system with
a view to analyzing the influence of different components on
performance. Results are summarized in table 1, giving equal
error rates. As mentioned previously, development resultsare
reported over split 1 only, with the final system results being
given over all six splits.

System EER (%)
baseline 2.87

base + additional words 2.53
base + higher cepstra 1.88

base + CMS 1.35
combined (true trans) 1.01

combined (ASR output) 1.01

final (true trans) 1.06
final (ASR output) 1.25

Table 1:System performance. The first six entries give results
for split 1 alone and the last two entries are for all splits.

4.1. Experiment 1: baseline system

This initial experiment evaluates the baseline system as de-
scribed in section 3. The EER achieved by the system is 2.87%,
surprisingly good performance given the relative simplicity of
the system and the small percentage of data utilized.

4.2. Experiment 2: additional words

In this experiment we expand the keyword list to include a
number of common backchannel and discourse marker word
bigrams. Added to the list are:fyou know, yousee, ithink,
i mean, isee, iknowg. With these 6 additional bigrams the to-
tal coverage of tokens increases to 10% from 6%. Each of these
word pairs was treated as a single entity with a single HMM
“word” model for each. As a consequence of these additions,
the EER is reduced from 2.87% to 2.53%. The DET curves are
compared in figure 2.

A rough analysis of the discriminative capability of the in-
dividual words (and phrases) in the set can be made by look-
ing at the EER for each when tested in isolation, in conjunc-
tion with its frequency of occurrence, as shown in figure 3.
The two statistics should be viewed jointly, as the individual
EERs alone convolve speaker-characterizing power with word
frequency. For the majority of the words, the EERs produced lie
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Figure 2:Baseline versus additional words.

within a small performance range at around 7% even though the
word frequencies vary significantly. Only the last two entries
in both the single-word and word-pair groupings have perfor-
mance differing markedly, and this is likely due to the paucity
of data observations for these words, as indicated. It is of par-
ticular note that the word yielding the best performance,yeah,
alone produced an EER or 4.63% compared with 2.53% for the
entire set.

Figure 3:Individual word/phrase EERs and frequencies.



4.3. Experiment 3: higher-order cepstra

The inclusion of higher-order cepstral coefficients in the acous-
tic feature vector has been shown to improve performance in
numerous speaker recognition systems. These coefficients may
possess more speaker-sensitive information (e.g. regarding
pitch) so we next assessed their impact on the baseline system.
The input features were extended to include 19, rather than 12,
mel-cepstra, and their first differences. The result is a reduction
in EER of about 1% from the baseline to 1.88%, as shown in
figure 4.
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Figure 4:Baseline versus higher order cepstra.

4.4. Experiment 4: cepstral mean subtraction

The baseline system did not include any form of channel
normalization. In this experiment we process the features
by performing cepstral mean subtraction (CMS) on a per
conversation-side basis. CMS seeks to reduce undesirable vari-
ability introduced by the channel (e.g., the same speaker on
different handsets) and as a result we see a large reduction in
EER: from 2.87% to 1.35%. However, examination of the DET
curves displayed in figure 5 shows that the performance does
degrade in the very low false alarm region. This is likely due
to the very small number of test trials represented in this region
of the curve, as corroborated by later experiments involving all
splits.

4.5. Experiment 5: combined system

This experiment involves the combination of the previous mod-
ifications into a single system, incorporating the expandedkey-
word list, higher-order cepstra, and cepstral mean subtraction.
The resulting EER is 1.01%, indicating that the information
obtained through the various modifications is, to some extent,
complementary. The composite DET curve, along with the con-
tributing stages, is provided in figure 6. This overall perfor-
mance is especially impressive in light of the standard system
features that have not yet been employed (e.g. various normal-
ization schemes such as Z-norm, H-norm, or T-norm), the de-
sign choices that have not yet been optimized, and the small
percentage of each conversation (only about 10% of the word
tokens) that contributed to the system scoring.
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Figure 5:Baseline versus CMS.
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Figure 6:DET curves for all experiments.

4.6. Experiment 6: ASR transcription

In all of the experiments reported above, the word extraction
was based on a forced alignment of the speech stream using
the true (i.e., human-generated) transcription. While such an
analysis is useful for validating the technical approach, any
real-world implementation would necessarily rely on automatic
speech recognition (ASR) output rather than expert human tran-
scription. In this experiment we repeat the combined systemex-
periment above, with the modification that ASR output is used
to identify the keyword intervals both in training and in test.
This system employs recognition output made available by SRI
for the JHU 2002 Summer Workshop, using a somewhat simpli-
fied version of their Switchboard-trained recognizer [11],which
achieved a word error rate of approximately 30% on the Ex-
tended Data conversations. The speaker recognition EER that
results is equivalent to that obtained previously, although the



DET curves do differ somewhat (see figure 7), suggesting good
performance of such a system even in the case of fully automatic
transcription.
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Figure 7:ASR versus true transcription.

4.7. Experiment 7: Final system performance

For this experiment, evaluation of the final combined system
was expanded to cover all six splits of the corpus. This is
contrasted with analysis of only split 1 for the previous experi-
ments, which was considered sufficient for development. Figure
8 shows the DET curves for the system using both the ASR and
true transcriptions. The EER for ASR output is 1.25% and that
for the true transcriptions is 1.06% (each compared with 1.01%
for split 1 alone). Again we see little difference between ASR
and true transcription results. Also note the poor performance
in the low false alarm region is no longer evident, suggesting
the phenomenon was related to the smaller number of trials for
a single split.

5. Score Fusion
We next examine how our keyword system would combing with
markedly different knowledge sources. Table 2 shows the fu-
sion results for three other systems with our own. Here the fu-
sion consisted of a simple linear combination of scores. The

System EER alone EER w/ fusion
GMM 0.90 0.52

Full LM 9.71 0.81
Keyword LM 18.43 0.98

Table 2: Fusion performance. The second column gives sys-
tem EER percentage in isolation and the third gives percentages
when fused with the keyword system. Results are reported over
all splits.

GMM system is a version provided by SRI and appears to ben-
efit considerably from the fusion. The Full Language Model
(LM) system listed is the bigram modeling developed by Dod-
dington in his idiolect work [13]. What is referred to as the
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Figure 8:Final system (ASR and true transcription).

“Keyword LM” in the table is a simple model involving only
relative frequencies among the keywords. This seeks to cap-
ture speaker preference among these keywords. Both of these
systems fuse effectively. Indeed, the language information they
contain is considerably different from the acoustic information
of either the GMM or our proposed system; the LM systems
model word preferences, the keyword system the acoustics of
what a speaker sounds like when he says them. Such results
provide further motivation for the exploration of extendeddata
techniques.

6. Discussion
Our keyword system is still preliminary, with many system fea-
tures not yet incorporated and many design choices not yet op-
timized. But despite its provisional nature, the system already
gives evidence of the speaker-characterizing power of certain
common, highly habitual words and phrases.

A few variations were explored to address some of the
perceived shortcomings of the design. For example, we tried
weighting the contribution of individual word scores to thecom-
posite score by word rather than by frame, with essentially no
change in performance. We also experimented with using only
the topN best-matching word tokens (for various values ofN )
to try to address, among other issues, the problem of mismatch
due to different word contexts and uses (such as the use oflike
as a discourse marker vs. as a verb), but this generally degraded
performance, presumably because the system is already fairly
starved for data and the modeling supported enough freedom to
handle variations.

It is interesting to compare this system to the text-
constrained GMM system introduced by Sturim et al. [7]. The
latter system also uses a shortlist of keywords from which itex-
tracts acoustic frames and uses only those frames in building
and scoring more conventional GMM models. It is difficult to
compare directly the performance of the two systems, since they
employed largely different word sets with different frequencies
of occurrence, so results are somewhat conflated with coverage
statistics. However, the performance seems generally compara-
ble: in the 1% EER range for this testbed. More careful com-



parison, using the same wordlists, signal processing, and nor-
malizations, as well as an exploration of which types of words
are most valuable to each system would be illuminating.

Our approach also bears comparison to other HMM-based
systems such as [5] [6]. These systems use HMMs for speaker
scoring, but rather than whole-word models, the systems em-
ploy monophone models in order to cover all the words in the
large-vocabulary task and to allow adequate adaptation of the
speaker models. Such systems have the advantage of using
all the words in the test data, whereas whole-word models are
only feasible for a subset of sufficiently high-frequency words,
though they do support more finely focused modeling for this
subset.

Finally, it should be noted that this work was inspired in part
by work at the JHU 2002 Summer Workshop [14] which also
investigated the acoustic match of high-frequency discourse
markers, filled pauses, and backchannels. That work used pitch
trajectory information, via a smoothed version of F0, as thesole
feature and used dynamic time warping (DTW) for the scoring.

7. Future Work
There are a number of respects in which the current system
should be improved. These include:� augmenting the keyword list in a number of different

ways, such as using more words from these classes,
highest-frequency words in the domain regardless of
role, and/or words and phrases that are particularly char-
acteristic for each individual target speaker;� filtering the keyword occurrences to use only the
intended functions (discourse marker, filled pause,
backchannel) or building separate word models for the
separate functions (as in thelike example above);� exploring different choices for HMM topology and for
mixture model make-up.

These variations may potentially interact. For example, itmay
be that if we filter the words by usage, building separate models
for each, we can profitably build word models which are even
more tightly focused, e.g. employing fewer Gaussians in the
speaker’s mixture models.

Other system fusions are also planned. For example, we
would like to combine this keyword-limited system with a text-
independent HMM-based system such as described in [5] [6].
The keyword system allows for much more focused modeling
of a handful of words but the latter would augment that by con-
tributing at least some information from all the words.

8. Conclusions
With the availability of the Extended Data task, it has become
possible to explore the potential for exploiting the acoustics of
common habitual words in speaker recognition systems. In the
work reported here, we bring the power of text-dependent mod-
eling to work in a text-independent context, by focusing on fre-
quent, reflexive words and word pairs and modeling them via
whole-word HMM models. While this is a first, and still highly
preliminary, exploration of these techniques, the very lowerror
rates obtained indicate the promise of such an approach. We
look forward to enhancing the current system and to combining
it with systems capturing other sources of speaker-characteristic
knowledge.
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