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1. INTRODUCTION

It is known that in human speech recognition, the perce-
ptually-dominant and information-rich portions of the sp-
eech signal, which may also be the parts with a better
chance to withstand adverse acoustical conditions, are the
(phonetic) transitions (see, e.g., [3] for some experimental
evidence).

A first step in this direction was to use highpass or band-
pass filtering of critical band trajectories (RASTA pro-
cessing) to emphasize transitions [5]. While this is some-
times helpful in reducing errors due to (channel) mis-
matches between training and testing conditions, the re-
sulting observation sequence is a representation that has
emphasized the regions of strong change and de-emphasi-
zed temporal regions without significant spectral change.
This is a mismatch to the underlying speech model in
standard HMMs, which has been designed to represent
piecewise stationary signals. In general, modeling tran-
sitions or any non-stationary properties of speech sig-
nal require major modifications of standard HMMs [4].
Therefore, it is likely that transition-based systems will re-
quire a fundamentally different kind of underlying statis-
tical model. We have been developing a statistical model
(SPAM) and a statistical training algorithm (REMAP)

that may be more appropriate to this perspective.

2. SPAM: STOCHASTIC PERCEPTUAL
AUDITORY-EVENT-BASED MODELS

Speech can be viewed as a sequence of Auditory Events
(Avents), which are elementary decisions made in response
to significant changes in spectral amplitudes (as in [3]).
Avents are presumed to occur about once per phone bound-
ary. The statistical model uses these Avents as funda-
mental building blocks for words and utterances, sep-
arated by states corresponding to the more stationary
regions. In order to focus the statistical power on the
rapidly-changing portions of the time series, all of the
non-Avent states are tied to the same class. Markov-like
recognition models use Avents as time-asynchronous ob-
servations. Discriminant models are trained to distinguish
among all classes (including the non-Avent class).

In this case, SPAMs are defined from a set of Avents Q =
{¢°,q¢",...,¢"}, in which all ¢*’s, for k # 0, represent
Avents and ¢° represents the non-Avent or non-perceiving
state. This set is currently initialized to correspond to left
context-dependent phonetic onsets.

As discussed in [6], one can do SPAM recognition based

on the following local acoustic probabilities:
£k \ vnte Ve=0,1,..., K .
P(anlgn-a(n), An), X;20), { VE=1,2,... K } (1)

in which ngg ={Tn—c,...,Tn,...,Tnta} and n — A(n)
corresponds to the previous time index for which an Avent
had been perceived and becomes one of the stochastic
variable of the model. During training, these local proba-
bilities are estimated by an artificial neural network (ANN),
via an iterative Viterbi-like segmentation to provide the
net with targets or via REMAP (as explained in Section
3). According to our SPAM constraints, these local prob-
abilities are used for training and decoding in particu-
lar left-to-right HMMs constituted by sequences of Avent
states (with no loop allowed) separated by (looped) tied
non-Avent states.

Preliminary experiments on isolated telephone digits (plus
yes and no) are reported in [6]. In these experiments,
in which we simplify (1) to the simple Avent posterior
P(q£|X§i’2), it is shown that the reduced SPAM has about
double the error rate of our best phone-based system.
However, in another experiment in which we artificially
reduced the SNR to 10 dB by adding car noise, the error
rates of the two systems were comparable. Combination
of both approaches (using a weighted sum of word scores)
led to similar performance for the clean case but to a
30% relative reduction in errors for the noisy case (reduc-
tion from 10.9% error to 7.7% on 2600 examples from 200
speakers, using 4 jackknifed testing cuts, where training
was always with clean data).

3. REMAP

Our work with transition-based models motivated us to
develop training algorithms that are more appropriate to
these models. In particular transition-based models re-
quire a smooth estimate of transition probabilities and
also tend to use posterior probabilities (unlike the scaled
likelihoods in our standard system). To this end, we have
developed the REMAP (RECURSIVE ESTIMATION AND
MAXIMIZATION OF A POSTERIORI PROBABILITIES) learn-
ing algorithm.

Estimating transitions accurately is difficult. In our pre-
vious hybrid systems, the targets used for ANN train-
ing are typically given by the best segmentation result-
ing from a Viterbi alignment. This procedure thus yields
rigid transition targets, which may not be optimal in the
case of training (and testing!) of posterior probabilities
for SPAMs. Additionally, other work we are doing in



transition-based systems requires phone posteriors con-
ditioned on the previous state, and this too requires the
identification of transitions (at least implicitly). A better
goal might be to learn smooth probabilities for phonetic
transitions conditioned on the acoustics.

Additionally, our training algorithm should be based on
learning posteriors that are local (in time) such that we
directly optimize the parameter set © according to the
MaXmMUM A POSTERIORI (MAP) criterion, i.e., maximiz-
ing P(M|X,0) if M is the correct HMM associated with
acoustic data X. In theory such an optimization would
minimize the utterance error rate. REMAP successively
estimates new (local) posterior probabilities to be used
as targets for ANN training, guaranteeing an iterative in-
crease of the global posteriors. Estimation of the new
network targets requires “forward” and “backward” re-
currences that are reminiscent of the EXPECTATION MAX-
IMIZATION (EM) algorithm.

3.1. PROBLEM FORMULATION

We wish to find the optimal parameter set © maximizing

I
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in which M; represents the Markov model associated with
each training utterance X;, with e =1,... 1.

EM-like MAP training of transition-based HMM/ANN
hybrids requires a solution to the following problem: given
a trained ANN at iteration t providing a parameter set ©°
and, consequently, estimates of P(g%|zn,qk_1,0"), how
can we determine new ANN targets that:

1. Will be smooth estimates of conditional transition
probabilities, V possible (k, ) state transition pairs
in M and Vn € [1,n].

2. When training the ANN for iteration ¢+ 1, will lead
to new estimates of @' and P(gé|zn,¢k_,, 01
that are guaranteed to incrementally increase (2)?

In [2], we prove that a re-estimate of ANN targets that
guarantee convergence to a local maximum of (2) is given
by:
*; £ koo ‘ k :
P (QH|$H;Qn—1) :P(QH|Xaqn—1;®taﬂj) (3)

which means that the new ANN target associated with
z, and a specific transition ¢¥ — ¢* has to be calculated
as the probability of that specific transition CONDITIONED
ON THE WHOLE TRAINING SENTENCE X and the associated
model M.

In [2], we further prove that alternating ANN target es-
timation (the “estimation” step) and ANN training (the
”maximization” step) is guaranteed to incrementally in-
crease (2) over t; we also provide efficient forward and
backward-like recurrences to compute (3).

3.2. DISCUSSION AND RESULTS

Of course, a wide range of discriminant approaches (e.g.,
MMI, GPD - see [2] for a discussion of these) to speech
recognition have been studied by researchers. A signif-
icant difficulty that has remained in applying these ap-
proaches to continuous speech recognition has been the
requirement to run computationally intensive algorithms

on all of the rival sentences. Since this is not generally fea-
sible, compromises must always be made in practice. For
instance, estimates for all rival sentences can be derived
from a list of the “N-best” utterance hypotheses, or by
using an ergodic model containing all possible phonemes.
This is not required with the present algorithm.

Although much work is still required to optimize the prac-
tical heuristics for this method, preliminary results show
a 27% relative reduction in error on telephone isolated
digits (reduction from 3.4% error to 2.5% error for a case
with similar car noise in both training and test).

4. CONCLUSIONS

We now have some theory and some initial results. We are
currently working on including the dependence on time to
previous Avent in the SPAM process, and are beginning
to apply REMAP to continuous speech. We also have
vet to explore the possible symbiosis between these ap-
proaches, although this has been implicit in our thinking
over the last year. In this regard, we are exploring the
use of acoustic transition probabilities from REMAP for
training of SPAMs, instead of hard targets for phonetic
onsets.
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