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1. INTRODUCTION

It has been observed in various NIST evaluations (e.g.
WSJ-Nov93 & RM-Sep92) that ASR systems typically
have about 2-3 times higher word error rates on very fast
speakers [2, 3]. This observation naturally inspires the
following question: “why do ASR systems perform signif-
icantly worse on fast speech?”

We have considered two reasons for the higher error
rate of faster speakers. First, due to increased coarticula-
tion effects, the spectral features of fast speech are inher-
ently different from normal speech and these differences
are reflected in the extracted features (acoustic-phonetic
causes). Phonological causes are the second potential cul-
prit: the normal word models may be unsuitable for fast
speech because fast speakers often violate the phonemic
durational constraints of the word-models (durational er-
rors) or omit phones altogether (deletion errors). In the
following sections, we describe our investigation of these
two hypotheses using the TIMIT and WSJ corpora, and
suggest corrective measures which give us about 16% rel-
ative improvement for fast speech.

In our experiments, we use ICSI’s hybrid HMM/MLP
speech recognition system. Since similar rate of speech
(ROS) effects have been observed for mixture of Gaussian
systems [2, 3, 4], it is our hope that the conclusions of our
work are useful in those systems as well.

2. ANALYSIS
2.1. SPECTRAL FEATURES

If shorter phoneme durations increase coarticulation ef-
fects, the spectral characteristics must be different for
each sound, and the difference should be reflected in the
extracted features. Therefore, we hypothesize that we
can train a classifier to distinguish between fast and slow
phones based on the extracted features.

In order to eliminate any word model effects (due to
automatic labeling and alignment), we chose the hand-
labeled TIMIT database and calculated the ROS for 4620
training sentences. The ROS for a particular sentence was
calculated by dividing the number of non-silence tran-
scribed phones by the non-silence duration of the sen-
tence. For TIMIT training sentences, pros is 13.71
phones/sec, and oros is 1.95 phones/sec; the spread ap-
proximates a Gaussian distribution very well. For the fe-
male sentences pros = 13.43 and oros = 1.81; for male
sentences pros = 13.83 and oros = 1.99. We note that
this 3% relative difference in speaking rate between males
and females is significant at a p < 0.001 level!'

1Whether the information content per second is higher for
male speakers is debatable, however.

We chose 400 sentences from the SX & SI train-
ing set, 100 for each combination of {fastest, slowest} *
{male, female}. Then we calculated the PLP12 & en-
ergy features and their deltas (a total of 26 features) for
each 20 msec window of speech, overlapped every 10 msec.
We trained a two-layer neural network (26 input, 50 hid-
den, and 2 output units) for each phone on fast and slow
speakers’ extracted features. To eliminate gender vari-
abilities, we trained one classifier on female and one on
male speakers for each phone.

The mean classification accuracy for all phones on the
tests was 73% (which is significantly higher than random)
for a total of 120K frames of data. For some phones,
such as /uw/, /uh/, /en/, [oy/, and /aw/ (mostly diph-
thongs and glides) the classification score was between 85-
90%. This makes particular sense in the light of psycho-
acoustical studies that suggest diphthongs and glides are
most affected by ROS variations [1]. The most difficult
phones for speed discrimination were, unsurprisingly, the
silence phones, closures, stops, and some fricatives.

It is evident that features for fast and slow sounds
are different. The next question is whether this difference
is causing the higher word recognition error rate for fast
speakers. We tested this hypothesis by examining the
frame error of the MLP phonetic probability estimator.
We grouped the sentences in ROS bins each oros wide,
and calculated the average frame error for each bin. We
observed that the average frame error for sentences which
lie outside pros &+ oros is at least 2% higher, and for
sentences outside puros + 20ros, the average error is at
least 5% higher.

2.2. WORD MODELS

The next question is whether the higher error rate is also
due to a mismatch with the word models. Our hypothesis
is that the durational models in our recognizer do not
match the durations used by fast speakers.

For the training sentences of TIMIT, we aligned each
transcribed word with its corresponding word-model pho-
netic sequence, producing a deletion error score. Our
word models (as with many other systems) have a mini-
mum duration constraint, which require that each phone
be repeated for n states. We calculated a duration error
score which represents how often the transcribed phones
were shorter than the minimum duration in the word
model.

Similar to the analysis in 2.1, we divided the sentences
into ROS bins, each %G'ROS wide and calculated average
error for each bin. There was almost no correlation be-
tween ROS and deletion errors alone (p = -0.07). The
correlation between ROS and durational errors was sig-



nificantly higher at 0.84. Combining the deletion and du-
ration errors, the correlation increases to 0.93.

From these observations we conclude that the combi-
nation of unusually short sounds and deleted sounds are
measurable sources of error in our speech recognizer.

3. ANTIDOTES

3.1. ADAPTING THE MLP

Based on our observations in section 2.1, we decided to
adapt our MLP phonetic estimator to fast speech. We
chose the 5% fastest sentences (a total of 367) from the
WSJ0 training corpus (C = ROS Cutoff = g + 1.650 =
16.17 phones/sec). We adapted our 4000 hidden unit
MLP, which was already trained on all of WSJ0, by re-
training it on these fast sentences for three more epochs.
We tested this adapted net on the WSJ0-93 evalua-
tion set. We looked at the word recognition error rate of
sentences with ROS > C (53 sentences) and ROS < C
(162 sentences). The “fast” sentences improved by 14%
(significant at a p < 0.01), while the “slow” sentences
degraded by 10% relative to the baseline system.

3.2. CHANGING THE WORD MODELS

We have investigated methods of adjusting the durational
models of phones in order to compensate for ROS ef-
fects. Our current phone model, shown in Figure 1.a, re-
quires a minimal duration constraint. Our baseline WSJ0
recognizer® gives 16.1% word error for the WSJ0-93 eval-
uation set using these models.
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a Regular word model for “at" b. Scaled Probabilities
Figure 1: Examples of word models for “at”

In Figure 1.b, we show models where we scaled the
probabilities of each HMM state to favor leaving rather
than staying in the state. We found that for the sentences
with ROS > C of WSJ0-93 evaluation set, the exit prob-
ability z could be scaled as high as 0.9, with 15% relative
improvement (signif. at a p < 0.01). The overall recog-
nition suffered slightly due to increase in slow speaker
error. Assuming an ideal ROS detector the overall sys-
tem performance would improve to 15.0% error (signif.
at a p < 0.01). Such a detector could be approximated by
approaches discussed in [4], perhaps in combination with
local detectors as described earlier in section 2.1.

We have also introduced alternate pronunciations into
our word models which represent the phone reduction and
deletion effects. The results of running with this lexi-
con and the adapted net were insignificantly worse than
the base system. However, an error analysis of the re-
sults showed wide differences in error rate on a sentence-
by-sentence basis between the two systems; the deletion
lexicon removed up to 75% of the errors for some sen-
tences, while for some others, it did worse. We feel that
a phonological-rule based system for fast speech holds
promise, and we plan to explore this avenue further in
the future.

2Qur baseline WSJ0 recognizer is a gender-independent sys-
tem, with context-independent and one state per phone word
models, and utilizes a 5K bigram grammar.

3.3. MERGING THE TWO SOLUTIONS

We combined the above approaches by using the phonetic
probabilities from the adapted net and the ROS-tuned
lexicon (Figure 1.b) for decoding. The merged system
improves the error rate of the fast sentences (C > ROS)
by 16% relative to the baseline system (significant at a
p < 0.01).

4. CONCLUSIONS

We have conducted a number of exploratory experiments
to determine the likely sources of speech recognition er-
rors due to fast speech. We believe the spectral features
of fast and slow sounds are different, since we have been
able to train classifiers to discriminate the two classes
with a high degree ( > 85% for some vowels) of accu-
racy. This spectral difference does seem to cause higher
phonetic probability estimation error rates. Another ob-
servable association has been between inappropriate word
models for fast speech (due to exceptionally short phone
duration or deletion) and recognition error rate.

A merged system that incorporates the adapted MLP
and modified durational models improved the word recog-
nition error rate of fast speakers (i.e., speakers with
ROS > p+1.650) by 16% relative to the baseline system.
However, the error of the slower sentences was increased.
Assuming an ideal ROS detector (an approximation of
which is discussed in [4]), the overall error of our system
on WSJ-93 evaluation set would be 14.9%, which is a sig-
nificant improvement (at a p < 0.01) over the 16.1% of
our baseline system. More importantly, the ROS-tuned
system is potentially more robust to fast speakers, for
whom the system might fail seriously. For example, for
the fastest sentence in WSJ0-93 evaluation set, our base-
line system has a word error of 40%. The merged ROS
system, however, reduces this error to 20%, effectively
getting 1id of 50% of the word errors. Now we face the
challenge of implementing a reliable ROS detector and
integrating it into our system.
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