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four-cluster case is 7.5 hours for the rate-of-speech nets and 9 hours for the
k-means nets (an average of two hours per net). The total training time for
the two-cluster case is 18 hours for the rate-of-speech nets, and 11.5 for the
k-means nets (average of 7.5 hours per net).

5 Discussion

In this paper, we have proposed a Parallel Net architecture for reducing the
training time of the hybrid HMM/MLP system. Each of the experts in the
system are trained on one region of the speaker space, hence making each net
a quast-speaker-dependent probability estimator. In our initial pilot experi-
ments, we observed a strong gender effect. Also, there was strong evidence of
over-tuning to the same category data. These two observations motivated us
to restructure our experiments to reduce over-fitting, and to factor in gender
effects.

We retrained the experts using same-gender SI cross-validation to avoid over-
tuning. Also to further reduce over-fitting to the SD data, we cut the number
of parameters by a factor of four and used a smaller learning rate. We exper-
imented with different averaging schemes: weighted vs. equal, and average
of scaled-likelihoods vs. sum of posteriors divided by sum of priors. The
theory [see also Jacobs & Jordan, 1993] suggest that a non-uniform weighting
mechanism is desirable. However, in our experiments, the weighted average
was similar, if not worse, than an equal weighted average. This may only
mean that we did not develop the correct method for determining the best
weights in these examples; but in any event the evidence we have so far does
not support computed weights, and equal weights in any event seem to work
well enough to support a parallel approach. Also, we consistently got better
results from averaging scaled likelihoods (equation 2 vs. 1).

The average error rate of the Parallel Net architecture was better than both the
best SD system and the average error rate of all the female-SD systems, and
the four-cluster male systems. Furthermore, the performance of the Parallel
Nets was comparable to a single net trained on the aggregate training data.
Given the shorter training time and the potential for taking advantage of
parallel architectures, we believe that the Parallel Net architecture is the
preferable architecture.
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| Word Recog Percent Error — Male Set |

System Rate-of-Speech K-means
2CL | 4CL 2CL | 4 CL

PN, Eqn (2), eql wgts 8.1 7.0 8.8 8.0
PN, Eqn (2), gating, +smth || 7.7 8.1 8.6 8.1
PN, Eqn (1), eql wgt 11.0 11.1 13.5 | 11.5
Best Net 7.6 7.7 8.2 9.8
Avg of Nets 9.4 9.1 106 | 11.9

Table 2: Word Recognition Percent Error for each of the systems tested
on RM February 1991 SI male evaluation data. The “Best Net” column
represents the error rate of the best single net. The “Avg of Nets” is the
average of word recognition error of the nets.

4.2 Results

We used the male RM SI data for training, as mentioned above. Each of
the nets in the two-cluster experiments were 512 hidden units each, and in
the four-cluster experiments were 256 hidden units, making the number of
parameters to be the same across all systems. Each net was trained on a
partition of the training data with error back-propagation, started with a
learning rate of 0.008, and was cross-validated on male data from February
1989 RM SI evaluation data to determine the stopping point for the training.
The same data was also used for development purposes, for example setting
the word transition penalty.

In order to perform a fair comparison between the Parallel Net architecture
and monolithic net, we trained a 1000 hidden units net on all the male RM
ST data. We tested all the systems on the male speakers of the February
1991 RM SI evaluation data. The word recognition error rate of our standard
baseline system (which is trained on all genders of RM SI training data) was
8.9% for the males only. In comparison, the error rate of the monolithic
all-male system was 7.3%, which is significantly better at p < .05 level.

The results of the Parallel Net architecture, presented in Table 2, are similar
to that of the all-male monolithic net for the four-cluster cases, and the
difference in error rates are not significant (7.0% and 8.0% for the four-clusters
versus 7.3% for the male monolithic net). Weighted averaging gives worse
results compared to the equal weighted averaging approach if the weights
of the gating network are used directly. By introducing speaker continuity
constraint and averaging the weights over a sentence (+smth row), the results
of the weighting scheme improve and approach that of the equal weighting
one.

The total training time for the monolithic net on our special purpose hardware
[Morgan et al, 1992] is 18 hours. However, the total training time for the



section of the speaker space. We experimented with two splitting criteria:
rate-of-speech, and k-means clustering.

4.1 Splitting the Speakers

First, we used a priori knowledge about the domain and allocated the speak-
ers to groups based on their rate-of-speech, where (inverse) rate-of-speech is
measured as average number of seconds per word. In the second method, we
use the k-means clustering [e.g., Krishnaiah & Kanal, 1982] algorithm.

4.1.1 Dividing the Space Based on Rate-of-Speech

Two observations motivated us to experiment with this split of the data.
In the most recent ARPA WSJ evaluation, researchers reported significantly
higher error rates on two fast speakers in the evaluation test set. The second
motivation comes from our earlier results (section 3.2). We analyzed the
relationship between the rate-of-speech of the female test speakers & the SD
system’s training data and word error rate. In order to have sufficient training
data for each net, we chose to experiment with two and four clusters.

4.1.2 K-means Clustering

For the k-means clustering algorithm, we use a distance measure explained
below. Let X = {X1, Xs, ..., Xy, ..., XN} be the feature vector sequence cor-
responding to the speech of speaker S;, where each X,, is a vector, X, =
(a:nl, Tp2,y o Tnd, - a:nD) For each speaker Si, we calculate a mean vector
1w, = (1, - .,,u{cd, w1y, )t and a covariance vector o, = (091, ..., Ty, o, Thp
for each broad phonetic category j = {1...J}5. Define the dlstance between
speaker S; and speakers Sy as:

D(Sz, Sk) = Zmlnz log ol ; + ( ukd) (3)

kd

)t4

So, for calculating the distance between two speakers, we use the u’s and ¢’s
of one speaker, and the feature vectors of the other. Except for the distance
measure, we follow the standard k-means clustering algorithm.

We can replace the gating network by using this distance measure. In order
to determine the weights to use for each of the scaled likelihoods, we measure
the distance of the unknown test speaker to the cluster centers and use an
estimated probability (computed assuming a Gaussian distribution with a
diagonal covariance matrix), the normalized e~4:5197¢¢ a5 weight.

4 Covariance matrix assumed to be diagonal.
5The five broad phonetic categories are based on the phonetic classes in the TIMIT set;
they are fricatives, liquids, nasals, stops, and vowels.



speakers (from RM February 1989 SI evaluation set, as mentioned above).

For a fair comparison between the parallel architecture and a single-net sys-
tem, we trained one net on the aggregate training data of the five SD systems,
and cross-validated the training using female SI data (as explained above).
We chose a 1000 hidden unit net that has about an equivalent number of
parameters as the five female nets altogether. We bootstrapped this net from
a TIMIT net in order to reduce the total training time. The initial learning
rate was 0.008.

A net that was trained on the aggregate data of the SD nets, the female SI
net, has an error rate of 7.4%. All of our experimental nets performed worse
than this, but given a small data set of only 5 speakers, the results were
not considered conclusive. However, the average error rate for the Parallel
Nets using eqn (2) with an equal weight for each SD system is fairly close
to the female SI net, with the Parallel Net having 13.5% more relative word
error than female ST (8.4% versus 7.4%). This is not a statistically significant
difference at the p < .05 level for this test set, so that in some sense there
is no demonstrable difference in performance. The average performance of
the Parallel Net architecture is better than both the average error of the SD
systems’ (13.0%) and the best SD system (9.7%) (significantly so for the
average case).

Comparing the performance of our Female SI net with our baseline hybrid
HMM/MLP system, we observe that Female SI has about 40% more relative
error (7.4% versus 5.3%, which is significant at the p < .05 level) than the
gender-independent SI net. This is unsurprising, since the baseline SI net
is trained on over 30 speakers and is trained longer. The Female SI net,
in contrast, is only trained on five speakers and goes through half as many
epochs of training. The obvious remedy would be to train the Female SI
net on more female speakers. In other words, train more SD systems to get
a better representation of the sample space. Another possibility is to train
each SD net on two or more same-gender speakers that are in the same region
of the sample space, creating gquasi-SD nets and increasing the coverage of
the sample space that way. This conjecture was the basis for the main set of
experiments.

4 Experiments and Results

In order to get a better representation of the speaker space, we increased
the number of training speakers in the next experiment. We used the male
speakers’ data from the RM SI training set (November 1989), consisting of
49 male speakers, each uttering 40 sentences. Since there is little training
data for each speaker, training 49 SD nets was not feasible. Instead, we can
divide the speaker space based on some criterion and train one net on each



| Gender Effects on Percent Word Error |

Training Speaker Test Speaker
Male Female
Male 45.4 111.7

Female 106.4 38.1

Table 1: Gender Effects on Word Error. This table shows the average error
rate of SD Female (Male) nets when tested on SI Female (Male) data. Er-
ror rates of higher than 100% are due to counting insertions, deletions, and
substitutions as errors.

There was an interesting unexpected result: the SD system with the worst
recognition score on its own data generalized best to the speech of unknown
speakers. On the other hand, a system which was almost perfectly tuned
to speech from the same speaker generalized the worst. While not all the
systems obeyed this rule, it was a general trend. This suggested that we
should use SD nets that are not as fully tuned to the same speaker’s data.

3.2 Retraining the Experts

In the next group of pilot experiments we examined the effect of using speaker-
independent cross-validation to avoid overfitting to the speaker-dependent
training data. We also reduced the number of parameters in contrast to the
first experiment (again to combat over-fitting). We changed the size of the
hidden layer from 1000 hidden units to 256 hidden units for each net. In
order to reduce the training time, we bootstrapped each of the nets from
a 256 hidden units net that was previously trained on the hand-labeled SI
TIMIT database. Qur training data for each net was 600 SD sentences. Same-
gender SI data for cross-validation was chosen from the RM November 1989
SI training set: 460 sentences with 23 speakers for the female set, and 490
sentences with 49 speakers for the male set. We used a lower learning rate («
= 0.004) than for the pretrained nets. Each net went through only 1-2 epochs
of training before cross-validation performance indicated that training should
be stopped.

To estimate P(M;|z), we trained a gating network [Hampshire & Waibel,
1990]. We used a net with 10 hidden units, 234 input units, and n output
units (where n is the number of nets). It was trained with back-prop to
associate each feature vector with the label of the training speaker. In each
of the experiments below, we have run Viterbi decoding on the output of each
SD net and reported the results.

Based on the strong gender dependencies that we observed, we chose one gen-
der (the female set) for the following experiments. The female set comprises
five female SD systems (RM SD training data), and four female unknown test



(nets) should be trained on subsets of data with different statistical proper-
ties. In all the experiments reported here, we use a speaker-dependent split
in the training data.

3 Pilot Experiments

3.1 Using Pretrained Nets

In our first pilot experiment, we used twelve (five female and seven male
systems) pretrained speaker dependent (SD) estimators, each of which were
trained on data from one speaker of the RM SD November 1989. By pretrained
we mean that the nets were previously trained to maximize the accuracy of
SD recognition. Each net had 1000 hidden units, 61 outputs, 234 input units
( = 26 PLP and delta PLP features? x 9 frame window size), and trained
with phonetic labels which had gone through two iterations of forced viterbi
realignment. 500 of the SD sentences were used for training, and 100 were
held out for cross-validation. The nets were trained starting with a learning
rate of 0.008, and the training took 4-6 epochs. The word recognition error
rate of each system on the same speaker’s test data (RM January 1990 SD
evaluation — 25 sentences per speaker) ranges from 1.8% to 11.3%3, while
the error rate on the RM February 1989 SI evaluation test set (300 sentences,
10 speakers, 4 of which are female and 6 male) ranges from 64.6% to 82.0%.

We averaged (equal weighting) the scaled likelihoods of each of the SD sub-
systems using equation (2) and got 22.6% word recognition error, which is
better than the performance of both the best SD sub-system and the average
of all the SD sub-systems. However, this error rate is not comparable to that
of a monolithic ST system (a net trained on RM November 1989 SI data),
which has an error rate of about 5.1% for the same SI recognition task.

Upon analyzing the results, we came across striking gender effects, as shown
in Table 1. Sub-systems trained on male speech generalized better to male
speech than to female speech; vice versa for female nets. This provided moti-
vation for another experiment: if the test speaker’s gender is female (male),
we only allowed the probabilities generated by female (male) systems to take
part in calculating the average scale likelihood. Since this was a pilot experi-
ment, the gender of the test speakers were known to the system. It is possible,
however, to build a gender detector which reliably (approx. 98% accuracy)
detects the gender of the test speaker [Konig & Morgan, 1993]. Table 1 shows
the strength of this effect. Averaging in a gender-based way further decreases
the overall word recognition error to 16%.

2PLP stands for Perceptual Linear Predictive analysis [Hermansky, 1990]

31t should also be noted that these pretrained nets were trained approximately two years
ago so that the raw error numbers are probably somewhat higher than our current systems
would achieve.



highly-dimensioned joint probabilities, such as the scaled likelihood of the
data including a large acoustic context. Additionally, the MLP training is in-
herently discriminant, making effective use of parameters for limited training
data, and estimating relatively detailed densities without strong parametric
assumptions. Over the last few years, we have observed in a number of in-
stances that the direct substitution of such an estimator for a tied-mixture
module has resulted in significant improvements.

We are currently using a recognizer called YO (described in [Robinson et al.,
1993]), which uses a single density per phone with repeated states for a simple
durational model. The densities are trained with no explicit incorporation of
phonemic context (e.g., triphones). Our current results on DARPA Resource
Management (RM)! test sets show a performance that is comparable to that
of much more complex context-dependent systems; the recognition word error
on the February 1989 test set of the baseline hybrid HMM /MLP system, used
here for comparison, was equal to 5.1% (including insertions, deletions, and
substitutions).

In the current experiments, we train multiple networks on separate partitions
of the training set. If M; represents cluster 7, let P(M;) be the probability
that M; is a better match than My, Vk # 4. If all M;’s are mutually exclusive,
and cover all possible cases, "7, P(M;) = 1, we can calculate the likelihoods
(within a constant factor P(z)

) by
Soiey P(M;|z) P(qx|z, M;)
Plelas) = =S B0 Plgl ) M)

where ¢ is an HMM state, M; represent each of the n MLPs, and P(M;|z) is
the probability that A; is the “correct” estimator of the sound class, given the
data z. For instance, in the case of a male/female partition, this probability
would be the probability that the speaker is male or female (2 probabilities
that sum to 1). As an alternative, we calculate a weighted average of the

scaled likelihoods:

qk|:c ]U)
g P(M;|z 2

In some of our experiments, we have used a simplified form of the above
formula and inserted an equal weight averaging factor of 1/n instead of
P(M;|z). This amounts to the following two assumptions: that P(M;|z)
is independent of the data, and that all priors of M; are equal (i.e., male
prior equal to female prior).

Mixture of experts approaches are most effective when each expert has dif-
ferent statistical properties and biases. Therefore, each of our sub-systems

1This is a speaker-independent continuous speech recognition task that has a vocabulary
of roughly 1000 words and uses a word-pair grammar with a perplexity 60; it is described
in many places in the speech literature, including [Price et al, 1988].



on disjoint elements in the training set, and then combined in some manner,
communication is minimized. Additionally, there is some hope that the right
partitioning and weighting of the separate estimates could provide some im-
provement in performance; for instance, in the gender case, separating male
and female training data has some demonstrable advantages.

There is some evidence that data splitting should at least provide equivalent
performance. In one report at a recent SRS meeting, R. Schwartz of BB&N
described an experiment in which Hidden Markov Model (HMM) Gaussian
mixture parameters were separately estimated for individual speakers and
then averaged [Schwartz, 1993]. The resulting system was comparable in
performance to a more standard estimator that was trained on the pooled
data from all speakers. Of course, this experiment reported the estimation
of data likelihoods and the averaging of Gaussian parameters, and this does
not necessarily show that a posterior estimator like a Multi-layer Perceptron
(MLP) will permit a similar parallelization. However, it suggests that a test
is worthwhile. Recent results in applying the split net strategy in control
theory [Jacobs & Jordan, 1993] are another indication that such approach
may be advantageous.

Another related effort was that of the Meta-Pi network [Hampshire & Waibel,
1990]. In this approach, speaker-dependent estimators for voiced stop conso-
nant probabilities were weighted and summed with gating elements trained
with error back-propagation. For a source dependent speaker (i.e., one of the
six training speakers), the performance of the Meta-Pi architecture on a six
speaker three phone (/b,d,g/) task was comparable to a speaker dependent
system. For a source independent (i.e., unknown) speaker, however, the error
rate was almost tripled.

In the work described here, we also are using an MLP trained with back-
propagation; however, these estimators are trained to be discriminant for
the 61 phone set of TIMIT. We have focused our efforts on the speaker-
independent case. In other words, we would like our mixture of estimators to
perform at least as well as a monolithic estimator (which was trained on all
of the data) when tested on an unknown speaker (which was not present in
the training data).

2 Approach

In our experiments we use estimators that are based on the hybrid HMM /MLP
method as explained in [Bourlard & Morgan, 1994]. The main idea in this
method is to train an MLP (using a squared error or relative entropy crite-
rion) for phonemic classification; such a net can be used as an estimator of
posterior class probabilities, and when divided by class priors can estimate
scaled likelihoods. The MLP estimator has the potential advantage (over
standard Gaussian or Gaussian mixture estimators) of the ability to estimate
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Abstract

In this paper we explore the averaging of mixtures of mul-
tiple neural network probability estimators in speech recog-
nition. We experiment with different ways of dividing up the
speaker space. A division based on gender seems to be the
most important. The division based on a priori knowledge
(in our case, rate of speech) resulted in lower error rates than
the use of k-means clustering. The overall accuracy of the
Parallel Net architecture is about the same as the monolithic
probability estimator, but communication costs on parallel
machines can be expected to be significantly lower. Addition-
ally, the overall product of patterns times parameters is lower
with such a partitioning, resulting in reduced training time
even on serial machines.

1 Introduction

In previous work, we have examined the factorization of Multi-layer Percep-
trons (MLPs) that are viewed as probabilistic estimators. In two particular
cases, we partitioned out the influence of phonemic context [Bourlard & Mor-
gan, 1992], and of speaker gender [Konig & Morgan, 1993]. These partition-
ings permitted the evaluation of the posterior probabilities of a large number
of classes without the explicit computation of a huge output layer.

In our current work, we are interested in partitioning not only the network
estimators, but also the training data. This is of increasing relevance as we
move to larger and larger data sets. Cycling through these data requires more
than a linear increase in computation, as the estimators themselves should
(ideally) be expanded to a greater number of parameters in order to take
advantage of the increased coverage in the training materials.

Parallelism 1s a potential remedy for this increased computational burden,
but depending on the machine and the algorithm, communications costs can
overwhelm any advantage due to numerical parallelization. Training set par-
allelism is a potential cure for this difficulty. If multiple estimators are trained



