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Abstract. We describe the development of our speech recognition system for
the National Institute of Standards and Technology (NIST) Spring 2005 Meeting
Rich Transcription (RT-05S) evaluation, highlighting improvements made since
last year [1]. The system is based on the SRI-ICSI-UW RT-04F conversational
telephone speech (CTS) recognition system, with meeting-adapted models and
various audio preprocessing steps. This year’s system features better delay-sum
processing of distant microphone channels and energy-based crosstalk suppres-
sion for close-talking microphones. Acoustic modeling is improved by virtue of
various enhancements to the background (CTS) models, including added train-
ing data, decision-tree based state tying, and the inclusion of discriminatively
trained phone posterior features estimated by multilayer perceptrons. In partic-
ular, we make use of adaptation of both acoustic models and MLP features to
the meeting domain. For distant microphone recognition we obtained consider-
able gains by combining and cross-adapting narrow-band (telephone) acoustic
models with broadband (broadcast news) models. Language models (LMs) were
improved with the inclusion of new meeting and web data. In spite of a lack of
training data, we created effective LMs for the CHIL lecture domain. Results are
reported on RT-04S and RT-05S meeting data. Measured on RT-04S conference
data, we achieved an overall improvement of 17% relative in both MDM and IHM
conditions compared to last year’s evaluation system. Results on lecture data are
comparable to the best reported results for that task.

1 Introduction

Meeting recognition continues to be a challenging task for speech technology for sev-
eral reasons. Unrestricted speech, recognition from distant microphones, varying noise
conditions, and multiple and overlapping speakers pose problems not found in other
widely used benchmark tests. Furthermore, meetings pose the interesting problem of
designingportablerecognition systems, in two regards. First, because of the relative
novelty of the task, and limited size of in-domain training corpora, it is advantageous to
try to leverage methods and data that have been developed for other genres of speech,



such as conversational telephone speech (CTS) and broadcast news (BN), for which
one can draw on a longer development history and an order of magnitude more data.
The second motivation for portability is that the meeting domain itself is varied, with
different collection sites, acoustic conditions, and conversational styles and topics.

As for last year’s meeting evaluation (RT-04S), our development strategy for RT-
05S was to start with an existing CTS system6 and adapt it to the meeting domain.
This allowed us to leverage research between the corresponding CTS evaluations, from
the Fall of 2003 (RT-03F) to the Fall of 2004 (RT-04F), and was crucial to developing
a meeting system in the short period available. Acoustic models were adapted to the
available conference room data (some of it new for this year), and language models
were rebuilt for the conference and lecture room domains (no special acoustic models
were created for the lecture domain). A new aspect in our acoustic modeling this year
was the use of discriminatively trained Tandem/HATS features, and the fact that features
were adapted to the new task, in addition to the more standard model adaptation. The
acoustic preprocessing for meetings was also improved significantly, for both distant
and individual microphone conditions.

The evaluation task and data are described in Section 2. Section 3 gives the system
description, focusing on new developments relative to the 2004 system [1]. Results and
discussion appear in Section 4, followed by conclusions and future work in Section 5.

2 Task and Data

2.1 Test data

Evaluation data The RT-05S conference room evaluation data (eval05 ) consisted
of two meetings from each of the recording sites AMI (Augmented Multi-party Inter-
action project), CMU (Carnegie Mellon University Interactive Systems Laboratory),
ICSI, NIST, and VT (Virginia Tech). Systems were required to recognize a specific 12-
minute segment from each meeting; however, data from the entire meeting was allowed
for processing.7 Separate evaluations were conducted in three conditions:

MDM Multiple distant microphones (primary)
IHM Individual headset microphones (required contrast)
SDM Single distant microphone (optional)

The lecture room data consisted of 120 minutes of seminars recorded by the Computers
In the Human Interaction Loop (CHIL) consortium. In addition to the above conditions,
lecture data provided the following recording conditions:

MSLA Multiple source-localization arrays (optional)
MM3A Multiple Mark III microphone arrays (optional). The MM3A condition has not

yet been delivered for the evaluation set, and could be evaluated only on develop-
ment data, using a single array.

6 As explained later, we also made use of acoustic models developed for BN.
7 We did not find significant gains from adapting on entire meetings, and, except in the acoustic

preprocessing, used only the designated meeting excerpts.



It should be noted that microphones varied substantially by type and setup, even
within each condition. For example, some of the AMI IHM data was recorded with
head-mounted lapel microphones, and MDM recording devices ranged from low- and
high-quality individual table-top microphones to AMI’s circular microphone arrays.
Meeting participants included both native and nonnative speakers of English (unlike in
CTS evaluations).

Development dataThe RT-04S evaluation data, consisting of eight 11-minute excerpts
of meetings from CMU, ICSI, LDC (LinguisticData Consortium), and NIST was desig-
nated as development data for RT-05S, and used by us as an unbiased test set (eval04 ).
For most of the development we relied on the RT-04S development set, consisting of an-
other 8 meetings from the same sources, and a newly provided set of 10 AMI meetings.
Out of these we formed 10-meeting set that was balanced by meeting source (desig-
nateddev04a ) and that served for optimization and system tuning. An additional 5
meetings (2 ICSI, 2 CMU, 1 LDC) were available from the RT-02 devtest set (used
by us only for some LM tuning and speech/nonspeech model training). Note that the
eval05 “VT” meetings had no corresponding development data and thus served as a
“blind” test. Excerpts from 5 CHIL lectures were available for development testing in
the lecture room domain.

2.2 Training data

Training data was available from AMI (35 meetings, 16 hours of speech after segmen-
tation), CMU (17 meetings, 11 hours), ICSI (73 meetings, 74 hours), and NIST (15
meetings, 14 hours). The CMU data was of limited use in that only lapel and no distant
microphone recordings were available.

Background training data for the (pre-adaptation) acoustic models consisted of the
publicly available CTS and BN corpora. These included about 2300 hours of telephone
speech from the Switchboard, CallHome English, and Fisher collections, and about 900
hours of BN data from the Hub-4 and TDT corpora.

3 System Description

3.1 Signal processing and segmentation

Distant microphone processingAll distant microphone channels (in both training and
test) were first individually noise-filtered using a Wiener filter with typical engineering
modifications, identically to last year [2, 1].

Subsequently, for the MDM and MSLA conditions, a delay-and-sum beamforming
technique was applied to combine all available distant microphone channels into a sin-
gle enhanced signal, described in more detail in [3]. A time delay of arrival (TDOA)
was computed between each input channel and a reference channel every 250 ms, using
the GCC-PHAT algorithm [4] on 500 ms segments. The reference channel was chosen
as the most centrally located microphone in the room, as specified by the SDM condi-
tion. For each step of 250 ms, a 500 ms segment was extracted for each channel and
delayed according to the computed TDOA. Finally, the different channels were summed
together, multiplied by a triangular window to avoid discontinuities between steps.



Speech regions were then identified using a speech/nonspeech two-class HMM
decoder. Resulting segments were combined and padded with silence to satisfy cer-
tain duration constraints that had been empirically optimized for recognitionaccu-
racy. The algorithm and models were unchanged from last year [1], except that special
speech/nonspeech models were trained exclusively from and for AMI meetings.

Finally, the segments were clustered into acoustically homogeneous partitions,
which serve as pseudo-speaker units for normalization and adaptation. Last year we
fixed the number of clusters at 4; this year the cluster number was chosen automat-
ically, but such that each cluster contained at least 20 segments. We tried using the
output of the ICSI-SRI diarization system [3] for segment clustering, so far without
improvement in recognitionaccuracy. This could be because even within one speaker
there is important acoustic variation (e.g., due to head movement) that is detected by
the current clustering algorithm.

Close-talking microphone processing The IHM input channels were segmented
(without Wiener filtering) into speech andnonspeech regions using the same basic algo-
rithm as for the distant microphone signals, using speech/nonspeech models trained on
the close-talking training data (again, except for separate AMI processing, models are
unchanged from 2004). No speaker clustering was performed, since it was assumed that
each IHM channel corresponds to exactly one speaker. However, this year we added a
crosstalk detector, with the goal of avoiding insertion of recognized speech from back-
ground speakers.8

The system generates start and end times forforegroundspeech segments by per-
forming zero-level thresholding of a “crosstalk-compensated” energy-like signal de-
rived from channel energy signals (but taking both positive and negative values).
For each target channeli = 1; 2; : : :; N in the set of IHM channels, this crosstalk-
compensated signalECC;i is given by

ECC;i(n) = Eo�set;i(n) �
1

N � 1

X

k 6=i

Eo�set;k(n) : (1)

HereEo�set;k is computed asEk(n) �minl Ek(l), that is, the signal energy minus the
minimum signal energy over the channel. This minimum energy is used as an estimate
of the noise floor.

The subtraction of the average of the nontarget energy signals is done with the
expectation that regions in which crosstalk appears on the target channel (and most
likely on other channels) will have values below the threshold in the resulting signal, as
the crosstalk will appear as a region with significant energy in the averaged signal. The
energy signals represent an average over a window of 25 ms with a step size of 10 ms.
The presumed foreground segments thus detected are then intersected with the output
of the speech/nonspeech decoder.

3.2 Acoustic modeling and adaptation

Decoding architecture To motivate the choice of acoustic models, we first describe
the SRI-ICSI-UW RT-04F CTS system, on which the meeting system is based (see

8 We discarded the post-recognition crosstalk detector used last year that had proven ineffective.



Fig. 1. SRI CTS recognition system. Rectangles represent decoding steps. Parallelograms repre-
sent decoding output (lattices or 1-best hypotheses). Solid arrows denote passing of hypotheses
for adaptation or output. Dashed lines denote generation or use of word lattices for decoding.
Crossed ovals denote confusion network system combination.

Figure 1). An “upper” (in the figure) tier of decoding steps is based on MFCC features;
a parallel “lower” tier of decoding steps uses PLP features. The outputs from these
two tiers are combined twice using word confusion networks (denoted by crossed ovals
in the figure). Except for the initial decodings, the acoustic models are adapted to the
output of a previous step from the respective other tier using MLLR (cross-adaptation).
Lattices are generated initially to speed up subsequent decoding steps. The lattices are
regenerated once later to improve their accuracy, after adapting to the outputs of the first
combination step. The lattice generation steps use non-crossword (nonCW) triphone
models, and decoding from lattices uses crossword (CW) models. Each decoding step
generates either lattices or N-best lists, both of which are rescored with a 4-gram LM;
N-best output is also rescored with duration models for words and pauses [5].

The final output is the result of a three-way system combination of MFCC-nonCW,
MFCC-CW, and PLP-CW decoding branches. The entire system runs in under 20 times
real time (20xRT).9 For quick turnaround development it is useful to use a “fast” subset
of the full system consisting of just two decoding steps (the light-shaded boxes in the
figure); this fast system runs in 3xRT and exercises all the key elements of the full
system except for confusion network combination.

Baseline models and test-time adaptationThe MFCC recognition models were de-
rived from gender-dependent CTS models in the RT-04F system, which had been trained
with the minimum phone error (MPE) criterion [6] on about 1400 hours of data. (All
available native Fisher speakers were used, but to save training time, statistics were
collected from only every other utterance). The MFCC models used 12 cepstral coef-
ficients, energy, first-, second-, and third-order differences features, and2 � 5 voicing

9 Runtimes given assume operation with Gaussian shortlists. Since RT-05S did not impose a
runtime limit we ran the system without shortlists, in about 25xRT.



features over a 5-frame window [7]. Cepstral features were computed with vocal tract
length normalization (VTLN) and zero-mean and unit variance per speaker/cluster. The
62-component raw feature vector was reduced to 39 dimensions using heteroscedastic
linear discriminant analysis (HLDA) [8]. After HLDA, a 25-dimensional Tandem/HATs
feature vector estimated by multilayer perceptrons (MLPs) [9, 10] was appended. Both
within-word and cross-word triphone models were trained, for lattice generation and
decoding from lattices, respectively. Baseline PLP CTS models (cross-word triphone
only) were trained in analogous fashion, but did not include voicing or MLP features.
All models this year were trained using decision-tree-based state tying, rather than SRI’s
traditional bottom-up genonic model clustering; this change had resulted in improved
CTS performance.

In testing, all models underwent unsupervised adaptation to the test speaker or clus-
ter, using maximum likelihood linear regression (MLLR) with multiple, phonetically
defined regression classes. After the evaluation we experimented with regression classes
that were generated in a data-driven manner by decision trees. The first MFCC and
PLP adaptation passes used a phone-loop reference model; later passes adapted to prior
recognition output. In addition, all but the first decoding used constrained MLLR in
feature space, which was also employed in training (speaker adaptive training) [11].

Following work by the CMU-ISL team in RT-04S [12], we also experimented with
PLP baseline models trained on BN data. Unlike the CTS versions, these models use the
full signal bandwidth and are gender independent. Otherwise, the BN model used sim-
ilar training, normalization, and adaptation techniques: VTLN, HLDA, feature-space
CMLLR, and model-space MLLR.

Acoustic model task adaptation All baseline models were adapted to the IHM and
distant microphone conditions using the respective channels in the training data. Based
on experiments with last year’s system, we chose not to use the CMU data for model
adaptation. Also, we found (in 2004) that there was no advantage to delay-summing
the training data for MDM recognition, compared to pooling all the individual distant
microphone signals into one training set. This meant that, conveniently, a single adapted
model set could be used for all distant microphone test conditions. Last year we found
only a very minor benefit from adapting acoustic models to individual meeting sources;
this year the same pooled adaptation data was used for all meetings. The weight for
adaptation data statistics was empirically optimized, and set at 20.

Last year’s baseline models had been trained with maximum mutual information
(MMI) estimation, and accordingly a version of MAP adaptation that adapted numerator
and denominator statistics separately was employed [1]. This year’s baseline models
were created using MPE training [6], and we found it best to apply the MMI-MAP
procedure in adaptation [13]. However, due to lack of time, we applied MMI-MAP
only to the IHM models, and used the standard, less-involved ML-MAP procedure on
the distant microphone models.

MLP feature adaptation The MLPs estimating Tandem/HATS features had been
trained on a large subset of the CTS training data [10] to perform frame-level phone
discrimination. In addition to MAP-adapting the models based on these features, we
explored adapting the features themselves to better match the meeting domain. This



was accomplished by applying three additional backpropagation iterations to the CTS-
trained MLPs, using the meeting data as training material. The KLT transform mapping
the phone log posteriors was kept unchanged from the CTS system, so as to keep the
features compatible with existing models. Because of time constraints and data avail-
ability, we were able to carry out this procedure only once, using CMU, ICSI, and NIST
close-talking microphone data. However, as described in the next section, the adapted
features gave improved results on all meeting sources, and for both IHM and distant
microphone conditions; we therefore used the same adapted MLPs in all versions of
our system.

3.3 Language models

Three LMs were used in decoding: a multiword bigram for lattice generation, a mul-
tiword trigram for decoding from lattices, and a word 4-gram for lattice and N-best
rescoring. The same set of language models is used for all conference meeting sources
(we had found no advantage in tuning LMs to the meeting source). A second set of LMs
is used for the lecture task.

For the conference room domain, the LMs were linearly interpolated mixtures of
component LMs trained from the following sources: (a) Switchboard CTS transcripts,
(b) Fisher CTS transcripts, (c) Hub-4 and TDT4 BN transcripts, (d) AMI, CMU, ICSI,
and NIST meeting transcripts, and (e) world-wide-web data collected to match differ-
ent topics and styles [14], namely RT-04S meeting sources, AMI meetings, and 525M
words of Fisher-likeconversational web data collected and published by UW for the RT-
04F evaluation. We obtained best recognition results with mixture weights that had been
tuned to minimize perplexity on heldout CMU, ICSI, LDC, and NIST (but not AMI)
transcripts. The LM vocabulary consisted of 54,524 words, comprising all words in
our CTS system (including all Hub-5 and all non-singleton Fisher words), all words in
the ICSI, CMU, and NIST training transcripts, and all non-singleton words in the AMI
training transcripts. The out-of-vocabulary rate was 0.40% oneval04 transcripts, and
0.19% on the 2005 AMI development transcripts.

For the lecture room domain, additional LM mixture components were built from
(f) 0.1M words of TED oral transcripts and (g) 28M words of speech conference pro-
ceedings (suggested by [15]). Also, the Fisher-relevant web data was replaced by web
data related to conference proceedings. The lecture LM mixture was then optimized
on CHIL development transcripts (LM tuning and testing used a jackknifing scheme to
avoid tuning on the data being tested on). No CHIL transcripts were used for N-gram
training. The lecture LM vocabulary was an extension of the conference LM vocabu-
lary, with 3791 additional frequent words found in the proceedings data. The out-of-
vocabulary rate on the CHIL development data was 0.18%.

4 Results and Discussion

Here we present results measuring the effects of the system features and improvements
described in the previous section. We will first present mostly conference meeting re-
sults, since those were the focus of our development. Lecture recognition results are
summarized at the end.



Table 1.Comparison of SDM and new and old MDM delay-sum methods, using RT-04S models
and a fast decoding system. WERs oneval04 with and without CMU meetings (which had only
one distant microphone channel) are given.

Method eval04
Input Delay-sumSegmentation onw/CMU w/o CMU

SDM none SDM 51.3 48.9
MDM old SDM 47.4 42.9
MDM new delay-summed 45.5 40.1
MDM new SDM 45.5 40.3

Table 2.IHM performance without and with crosstalk filtering, and with reference segmentation.
Results oneval04 obtained with RT-04S models, fast system;eval05 with RT-05S models,
full system. WERs are broken down by meeting source, and foreval05 by error type (substitu-
tions, deletions, insertions).

Crosstalk eval04 eval05
filter All CMU ICSI LDC NIST All AMI CMU ICSI NIST VT Sub Del Ins

No 35.4 39.7 27.4 44.7 27.1 29.3 22.1 23.3 20.5 45.8 35.8 11.010.38.0
Yes 34.3 39.3 25.2 43.0 27.3 25.9 23.3 23.3 24.5 34.5 23.6 11.011.53.4

Reference32.1 36.9 23.9 40.3 24.3 19.5 19.2 19.9 16.8 21.4 20.6 11.2 6.7 1.6

4.1 MDM delay-sum processing

For RT-04S, we applied the delay-sum beamformingafter the segmentation step, with
one TDOA estimate per waveform segment. This year, delay-summing was performed
beforesegmentation, as described above. Table 1 compares SDM and MDM results
with both methods. We observe that the new delay-sum method reduces word error rate
(WER) for meetings with multiple distant microphones by 6.5% relative over the old
method, and by 18.0% relative over the single-microphone condition. We also tested the
new delay-sum algorithm, but retaining the old segmentation computed from SDM in-
put, and found almost the same improvement as with segmentation based on the delay-
summed signal (last row in Table 1. This shows that the improvement stems mostly
from better recognition on the enhanced signal.

4.2 IHM crosstalk filtering

Table 2 shows IHM recognition results, without and with the new crosstalk suppression
algorithm, as well as for an ideal segmentation derived from the NIST STM reference
files. On both test sets, our crosstalk processing eliminates about one third of the word
error difference between automatic and reference segmentation. However, broken down
by meeting source the error patterns on the two test sets differ somewhat. Oneval04
(as well as on our development data) the crosstalk filter never increased WER signifi-
cantly.10 Oneval05 , however, WER sometime increases, because of occasional dele-
tions of foreground speech by the filter. This is especially a problem on theeval05
ICSI meetings, for reasons yet to be investigated. It should be noted that one of the
eval05 NIST meetings is anomalous, in that a talker participates via a speakerphone,

10 Here and elsewhere, we score on alleval04 personal microphone channels, including one
ICSI lapel microphone channel that was removed from official scoring.



Table 3. IHM WERs (in bold) and perplexities (initalics) with various LM mixtures on devel-
opment data.

eval04 2005 devtest
Language model All CMU ICSI LDC NIST AMI CHIL

RT-04F (CTS) 28.7 95 32.111124.578 34.1 85 21.510939.811337.6320
RT-04S 28.7 97 33.111722.062 35.7 97 21.1 99 38.310731.5212
RT-05S, no web28.910333.412122.066 36.010121.511038.410027.6155
RT-05S, w/web 27.9 92 32.511121.459 34.9 93 20.2 90 37.3 94 26.9148

but without an associated IHM channel. Also, three channels do not contain any speech.
Both these factors lead to very high insertion rates that our algorithm cannot yet effec-
tively suppress.

4.3 Language modeling

To evaluate the effectiveness of the various LM mixture components, we ran IHM
recognition tests oneval04 , AMI devtest data, and CHIL devtest data. Results are
summarized in Table 3. More detailed results are reported in [16]. We note that the ad-
dition of AMI meeting transcripts, additional Fisher data, and new web data reduced
WER by about 1.2% absolute on conference meetings relative to last year’s meeting
LM. Naturally, given the difference in topic and speaking styles, the adaptation to the
lecture domain has a more dramatic effect, as the WER is reduced by 4.6%. Web data is
quite important for conference meetings, lowering the WER by 1.3%-1.5%, but less so
for lectures, where its effect is only a 0.7% absolute reduction. A possible explanation
for this difference is that lecture-relevant material on the web is already available in the
conference proceedings used in lecture LM training. Furthermore, we observe that the
CTS LM mixture performs the best on the CMU and LDC meetings in terms of WER,
and on the LDC meetings in terms of perplexity. This could be due to the sparseness of
training data for these two sources, or to intra- and inter-source variability.

4.4 Acoustic modeling

We tested a range of acoustic models to determine the contribution of baseline model
improvements, Gaussian adaptation, MLP features (original and adapted), and CTS/BN
model combination (for distant microphone recognition). Results are summarized in
Table 4.11 Below we point out the most important contrasts.

Lines (a) and (b) give results with CTS models underlying the RT-04S and RT-05S
meeting models, respectively. We observe between 7% and 16% relative WER reduc-
tion as a result of added CTS data and improved modeling techniques.12 Gaussian adap-
tation (e) and feature adaptation (c) each give about the same amount of improvement
for IHM. Feature adaptation gives only a small gain for MDM because the MLPs were
adapted on close-talking data only. Line (f) shows that Gaussian and feature adaptation

11 The original MDM submission had 30.0% WER, due to a VTLN bug that actually helped on
eval05 . Post-evaluation we found the BN model had not been adapted to female speakers;
however, fixing this only reduced the WER to 30.1%.

12 For comparison, the combined effect of all CTS model improvements was about 28% relative
error reduction on in-domain (Fisher) data.



Table 4.WERs using various sets of acoustic models and evaluation data for the conference test
conditions. All results were obtained using the full recognition system and conference meeting
LMs. Columns 2 and 3 indicate whether the Gaussian models and/or the MLP features were
adapted to the meeting domain. “None” in column 3 indicates that MLP features were not used
at all, whereas “no” means that CTS-trained MLPs were used.Highlighted results correspond to
the final evaluation system.

Baseline Gaussians MLP MDM IHM
Line models adapted adaptedeval04 eval05 eval04 eval05

a RT-03F CTS no no 48.3 40.2 33.2 30.8
b RT-04F CTS no no 41.4 34.5 28.9 28.6
c RT-04F CTS no yes 41.1 34.2 28.4 27.0
d RT-04F CTS ML-MAP none n/a n/a 29.4 28.6
e RT-04F CTS ML-MAP no n/a n/a 28.6 26.9
f RT-04F CTS ML-MAP yes 40.3 32.2 28.3 26.2
g RT-04F CTS+BN ML-MAP yes 37.1 30.2 28.0 26.3
h RT-04F CTS MMI-MAP yes n/a n/a 27.9 25.9
i RT-04F CTS+BN ML-MAP+DT yes 36.8 29.8 n/a n/a
j RT-04F CTS MMI-MAP+DT yes n/a n/a 28.1 25.6

are partly additive. The combined WER reduction is about 7-8% relative oneval05
and 2-3% oneval04 . MMI-MAP (h) gives an extra 1% relative IHM error reduction.

The combination of CTS-based MFCC models with BN-based PLP models (g) re-
sults in a large, 6-7% relative error reduction for MDM. Preliminary experiments had
shown no gain for IHM, and the post-evaluation results given here show that there is no
consistent gain over CTS-based PLP models. The reason might be that while CTS mod-
els are a better match to meeting speech in terms of speaking style, BN data contains
more samples of distant microphones and noisy speech.

After the evaluation, we tested MLLR with decision-tree-generated regression
classes (i, j), which resulted in another 1% relative improvement for most conditions,
with the exception ofeval04 IHM data.

A comparison of adapted models without MLP features (d) and with adapted MLP
features (f) shows an improvement of 8.4% relative oneval05 . That is comparable to
the 10% relative gain found in the CTS domain [10], and indicates good portability of
the Tandem/HATS method.

Comparing the two evaluation sets, we notice thateval05 is slightly easier (2%
absolute) for IHM, and considerably easier (almost 10% absolute) for MDM. The ab-
solute WER differences between line (a) and lines (g)/(h) are almost the same for the
two test sets (about 10% for MDM and 5% for IHM). However, almost all the win
on eval04 seems to come from improvements in the baseline system, whereas for
eval05 the adaptation techniques contribute a larger gain. The reasons for this dis-
crepancy still remain to be investigated.

4.5 Result summary

Table 5 summarizes results on last year’s and this year’s evaluation sets, including on
lecture room data. The lecture recognition system differed from the conference meet-
ing system only in the LM (as described earlier), and in the configuration of the signal



Table 5.Evaluation system result summary.

Conference Meetings Lecture Meetings
eval04 eval05 CHIL devtest eval05

SystemMDM SDM IHM MDM SDM IHM MDM MSLA MM3A IHM MDM MSLA SDM IHM

RT-04S 44.9 51.3 33.6
RT-05S 37.1 43.0 27.9 30.2 40.9 25.9 51.6 51.0 49.7 26.9 52.0 44.8 51.9 28.0

preprocessing. For MDM processing, we found that one of the CHIL tabletop micro-
phones had much better signal-to-noise ratio than the others, and was best used alone,
instead of in beamforming. Also, the speaker clustering for distant microphones proved
detrimental and was omitted, no doubt because the lectures are dominated by a single
speaker. For comparison with other lecture recognition work we include results on the
development data, which corresponds to the CHIL January 2005 evaluation set.

Based oneval04 results, the overall reduction in word error compared to last
year’s system is 17.4% relative for MDM, and 16.9% for the IHM condition. Error
rates are broadly comparable oneval04 andeval05 , in spite of the latter containing
different meeting sources, including one source that had not been seen in training or
development (VT).

Word error rates on CHIL seminar lectures are comparable to conference meetings
for the IHM condition. Distant microphone recognition shows 10% or more absolute
higher WERs, which is not unexpected given the challenging acoustic conditions and
the lack of in-domain training data. Results are in line with error rates reported by CHIL
research sites [15].

5 Conclusions and Future Work

We have made considerable progress in the automatic transcription of conference meet-
ings, as measured on NIST evaluation data. Substantial improvements came from
meeting-specific preprocessing methods, as well as successful porting of CTS and BN
models, MLP features, and decoding techniques, for an overall word error reduction
of about 17% relative. We were also pleased that the system generalized well to previ-
ously unseen meeting sources and to the lecture domain, the latter with only minimal
language model porting effort.

Major challenges remain, for example, in the recognition of distant speakers and
overlapping speech. The single most important problem in IHM recognition remains
the separation of foreground from background speech, especially when not all meeting
participants are recorded individually. We also hope to benefit from tighter integration
with our diarization system in the future.
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