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We show that it is possible to factor a multi-layered classification network with a
large output layer into a number of smaller networks, where the product of the sizes
of the output layers equals the size of the original output layer. No assumptions of
statistical independence are required.

1 INTRODUCTION

Both on theoretical and practical grounds, it is generally preferable to reduce the number of
parameters for a trainable classifier system. In particular, it would be desirable to factor a large
Multi-Layer Perceptron (MLP) trained in classification mode (only one output with nonzero
output) into two or more smaller ones so that the number of connections can be reduced. In some
of these cases, the MLP has an extremely large number of output units, for instance representing a
correspondingly large number of pattern types or classes that the net will be trained to recognize.
For this case, incorporating a probabilistic interpretation permits a simple factorization of the
networks that greatly reduces the number of parameters. No statistical assumptions, such as
independence of any of the inputs or outputs, are required. We describe this method, and show
an efficient implementation of the resulting networks.

2 MLPs TO ESTIMATE FRAMEWISE PROBABILITIES

Earlier work has shown that the outputs of a Multi-Layer Perceptron (MLP) trained in classifica-
tion mode with a Least-Mean-Square or relative entropy criterion can be interpreted as posterior
probabilities of each class given the input (Bourlard and Wellekens, 1990). In other words, the
MLP can estimate the probability p(gx|z,) where g is a pattern class € Q@ = {¢1,...,¢x }, the
set of all classes for the task (e.g., phonemes for speech applications), and z,, is the input data
for pattern n. If there are K classes, then K outputs are required in the MLP. For classification
problems with many classes, the corresponding nets would have a large number of connections.

Let coarse categories 7; and s; be chosen to have a unique correspondence with each class g.
For instance, r; and s; could be the row and column of a matrix of classes ¢. Then,

plaklzn) = p(rj, selzn) (1)

If J is the number of r; categories and L is the number of s, categories, then K = J x L. If we
use the definition of conditional probability, without any simplifying assumptions the previous
expression can be broken down as follows:

p(rj,selen) = plselen) X p(rilse, zn) (2)



Thus, the desired probability is the product of one coarse category posterior probability and a
second conditional probability. The former can be realized with a standard MLP probability
estimator, using the same inputs, and with L output units. Viewing an MLP as an estimator of
the left side of a conditional given the right side as input, the second term of (2) can be estimated
by an MLP trained to generate the correct class r; given inputs of class s, (for instance using
one-of-I coding, that is with L inputs only one of which is on) and the input z,. The latter
network has J outputs.

This procedure reduces the training of a single network with J X L outputs to the training of two
smaller networks with J and L outputs respectively, and represents a generic way of splitting large
MLPs used in classification mode into two smaller ones. A similar analysis can easily show how
the network could be split into three or more smaller ones. If (J+ L) < (J* L), the connections to
the network outputs are reduced by this procedure. While reducing the number of parameters,
this procedure has the potential, however, of requiring much greater computation during the
recognition phase. Indeed, if one implements this method naively, the second network must be
computed L times for each pattern during recognition, since the output probabilities depend on an
assumption of the coarse class s; (and thus must be evaluated for each such possible hypothesized
class). However, this expense can largely be circumvented. Indeed, a simple restriction on the
network topology permits the pre-calculation of contributions from hypothesized coarse class
sy to the output; this computation can be done at the end of the training phase, prior to the
recognition of any patterns. By simply partitioning the net so that no hidden unit receives input
from both s, input units and data input (z,) units, we can pre-calculate the contribution to
each output unit (prior to any output nonlinearity) for the L possible choices of sy, and form a
(J x L)-table of these contributions. During recognition, the pre-sigmoid output values resulting
from data vectors can be computed by a single standard forward pass on the net for each pattern.
For each hypothetical pattern category, these contributions from the data inputs can be added
to the corresponding context contributions from the table. The major new computation (in
comparison with a simple MLP) then is simply the cost of some lookups, particularly for the s,
contributions.

We are currently applying this approach to speaker-independent continuous speech recognition,
where it is being used to estimate context-dependent phonetic classes, which could number in
the hundreds of thousands (Morgan et al, 1991).

3 DISCUSSION

3.1 The unrestricted split net

When splitting the original big net with J X L output units into two smaller networks with J and
L outputs respectively, the number of parameters is drastically reduced, which could affect the
quality of the conditional distributions’ estimation. However, parameter reduction is exactly the
aim of the proposed approach, both to reduce computation and to improve generalization. As it
was done for p(s¢|z,) (Bourlard and Wellekens, 1990; Morgan et al, 1991), it will be necessary
to find (e.g. by using cross-validation techniques (Morgan and Bourlard, 1990)) the number of
hidden units (and hence the number of parameters) leading to the best estimate of p(r;|ss, z,,).
The desired probabilities can in principle be estimated without any statistical assumptions (e.g.,
independence). Of course, this is only guaranteed if the training does not get stuck in a local
minimum and if there are enough parameters. However, the practical capability of such neural
networks to estimate conditional probabilities has already been shown several times (e.g. in the



above references), where z,, in p(s¢|z,) was a vector or a sequence of correlated vectors.

3.2 The topologically restricted net

As shown in the previous section, while reducing the number of parameters, the splitting of
the network into two smaller networks results in much greater computation in the contextual
network. To avoid this problem it is proposed to restrict the topology of the second network so
that no hidden unit shares input from both s; and z,, . Consequently, the s, input only changes
the output thresholds. However, a recent experiment with frame classification for continuous
speech (trained using 160,000 patterns from 500 sentences uttered by a speaker in the Resource
Management continuous speech recognition corpus) suggested that this did not affect the correct
estimation of p(r;|s¢, z,). In this example, the network with a split hidden layer predicted (for a
test set of 32,000 patterns from 100 sentences) the correct right context 63.6% of the time, while
a network with a unified hidden layer predicted the context 63.5% of the time, an equivalent
figure.
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