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1 Introduction

In its most general sense, the goal of speaker recognition is to identify a
person by his or her voice. The ability to accurately and effectively do this
has become of increased importance in this modern age. The use of voice-
driven and voice-related applications is on the rise. In addition, concerns
regarding security of information (both personal and intelligence) have never
been greater.

The difficulty of the speaker recognition task is often understated. Pop-
ular conception often reduces the problem to finding a “voiceprint” for an
individual. Some even go as far as to consider speaker recognition a solved
problem. Sadly, this is not the case. Many challenges still exist in the area
of speaker recognition, and these challenges are receiving attention in the
research community. A variety of solutions have been proposed to address
these challenges and this research project looks to contribute by proposing
and investigating one such solution.

1.1 Text-Dependent versus Text-Independent Domains

Because speaker recognition is used in a variety of applications, there are
different domains of interest for the technology. One major division is be-
tween the text-dependent and text-independent domains. In text-dependent
(sometimes referred to as “text-constrained”) speaker recognition, the lex-
ical content of the speaker’s utterance is presumed to be precisely known
beforehand. Examples of this include entry-control and user authentication
systems using a fixed or a prompted phrase. On the other hand, for text-
independent domains, the speech of a speaker is largely unconstrained—and
often cannot feasibly be constrained—and the lexical content of utterances
is highly variable. Some example applications are speaker indexing of au-
dio archives, background verification during commercial interactions, and
forensic and security applications involving found speech. Because speaker
cooperation is not necessary, systems designed for to the text-independent
domain are often considered more flexible.

It has been widely observed that a gap in performance exists between
systems in the text-dependent and text-independent domains. More specif-
ically, for a given speaker, text-dependent systems achieve much higher ac-
curacy than their text-independent counterparts. A primary reason for this
is that text-dependent systems can explicitly model phonetic content, so the
remaining sources of acoustic variability are more likely due to speaker dif-
ferences. As a result, more detailed modeling of the speaker is possible. In
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addressing this performance gap, an interesting question arises: Is it possible
to capitalize on the advantages of text-dependent systems while allowing for
the flexibility associated with systems used in the text-independent domain?

1.2 Bridging the Gap: The Use of Keywords

One possible solution is modeling select keywords expected to appear in the
speech stream. These keywords can then be identified, extracted, and used
to perform speaker recognition. It is true that this method ignores a large
percentage of the available speech data when doing the speaker recognition
(although all of the data must still be processed to do identification and
extraction), but the expectation is that the ability to finely model these select
words will produce high performance and make the trade-off worthwhile.
Indeed, the use of a small amount of the total data is advantageous with
regard to processing requirements.

In order to help ensure that using the keywords leads to good perfor-
mance, it is important to select these words with great care. One criterion
that the words should satisfy is that they occur with high frequency. This
is to ensure that they appear with high probability in the speech stream
and in a large enough amount that the speaker models can be adequately
trained. Another equally important criterion is that the words have good
inherent speaker-discriminative qualities. In general, determining a compre-
hensive list of such words beforehand is difficult, but there do exist certain
collections of words believed to possess such characteristics. The discourse
markers, backchannels, and filled pauses of conversational speech, for exam-
ple, are hypothesized to have strong speaker-distinctive attributes because
they are produced in a habitual and spontaneous manner [1].

For current text-independent speaker recognition systems, the standard
practice is to generate speaker models using Gaussian Mixture Models (GMMs)
that represent the distribution of a speaker’s speech feature vectors as a mix-
ture of many Gaussians, and by doing so pool the frames of speech into a
single “generic-speech” model. For such a system, a Universal Background
Model (UBM) is used to model generic non-target speech and this model is
adapted to create a target model specific to a given speaker. Sturim et al. in
[2] apply the text-dependent approach using GMMs and this UBM/Target
paradigm to the domain of conversational telephone speech. In their exper-
iments, they look at the performance of different word lists for the same
prescribed recognition task. The two lists when compared to the baseline
GMM system (i.e, the system using all of the speech) both performed com-
petitively with this baseline system and both contained a significant number
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of words from the discourse marker, backchannel, and filled pause categories.

Though the technique used in [2] yielded good results, there are other
possibilities within the framework of text-dependent speaker recognition in a
text-independent domain. One potential sub-optimality of the above system
is the use of the GMM approach to speaker modeling. This “bag of frames”
approach assumes the speech frames to be essentially independent. Such a
method simply models a “generic” speech frame, and as a result, fails to
take advantage of sequential information in the speech stream and, with
it, more focused modeling which could aid in the speaker recognition. A
natural alternative that captures sequential information and that produces
more tightly focused speech states is to use Hidden Markov Models (HMMs)
for speaker modeling. Indeed, HMMs have been employed in the context
of text-independent speaker recognition systems before [3] [4] [5] [6], but
these systems are generally based on simple monophone models or on broad
phonetic classes. This is done to ensure full coverage of the large-vocabulary,
text-independent domains for sufficient speaker modeling. The proposed
system is then novel in that it limits coverage to a small set of frequently
occurring, habitualized forms that can be very tightly modeled, to the extent
that, in terms of performance, this reduced coverage is offset.

1.3 Project Scope and Overview

This project sought to look at the use of keyword Hidden Markov Models
to perform speaker recognition in the text-independent domain of conver-
sational telephone speech. The keywords chosen were selected from the
categories of discourse markers, backchannels, and filled pauses, with the
expectation that these words generally occur with high frequency and are
speaker-distinctive. The structure for evaluation takes as its basis the NIST
Extended Data Task, a text-independent single-speaker detection task using
the Switchboard-1 and Switchboard-2 corpora.

This approach to speaker recognition is analyzed through the design and
implementation of a keyword HMM system. The system is presented through
a series of experiments detailing the stages of its development and, in the
process, indicating the value of the different enhancements made. In addi-
tion, the system performance is analyzed in conjunction with other speaker
recognition systems through score combination: a baseline GMM system; a
Language Model system; a monophone HMM system; and a Sequential Non-
Parametric (SNP) system (all to be described in 3.4). This is done to see,
among other things, the degree of orthogonality of the information provided
by this system relative to the others. Finally, a contrastive system using
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monophone HMMs, similar to [5] and [6], is presented and analyzed.

1.4 Outline of Chapters

This report presents the project as follows: Chapter 2 describes the steps
taken in building the system and how its performance was evaluated. Specif-
ically, the extraction of the speech features from the waveforms, the extrac-
tion of the words from the feature stream, the model training, and the recog-
nition trial scoring are detailed. Chapter 3 explains the specific tasks along
with their corresponding corpora, the experiments performed using the sys-
tem, and the results obtained. Chapter 4 provides some final conclusions
from the study and offers possible extensions and future work.
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2 Method

2.1 Speaker Recognition as Binary Detection

The topic of speaker recognition is divided into many tasks, and two of the
primary tasks are speaker identification and speaker verification. In speaker
identification the goal is to identify a speech utterance or segment as having
been produced by one of N speakers, each of whom has been previously en-
rolled through one or more training sessions. In the distinct, though related,
task of speaker verification, the objective is to determine whether an utter-
ance has been generated by a putative target speaker. A system can, then,
either accept the assertion that the speech belongs to the target speaker or
reject it, declaring the utterance was generated by an impostor. It is this
latter task of verification that was investigated in this project. Indeed, it
is possible to perform speaker identification using techniques derived from
speaker verification, making verification more appealing in terms of its abil-
ity to be generalized.

Since speaker verification essentially yields YES/NO decisions upon the
evaluation of a received signal, it falls into the category of binary detec-
tion. Indeed, speaker verification, in many cases, is referred to as speaker
detection. The typical approach to binary detection problems employs the
use of a Log-Likelihood Ratio (LLR) in conjunction with thresholding to
make the ACCEPT/REJECT decision. For a given speech segment X com-
posed of speech feature vectors {~x0, ~x1, . . . , ~xN−1} the Log-Likelihood Ratio,
LLR(X), is given by:

LLR(X) = log p(X|S) − log p(X|S̄) (1)

where S represents the model under the hypothesis that the segment was
produced by the speaker and S̄ represents the model under the opposing
hypothesis that it was not produced by the speaker. Should this ratio score
exceed some threshold Θ, the speaker is accepted; otherwise the speaker is
rejected.

As mentioned previously, for current text-independent verification sys-
tems the standard practice is to generate speaker models using speaker-
adapted Gaussian Mixture Models (GMMs), a technique popularized by
Reynolds et al. in [15] and [16]. The GMM models the class-conditional
probability density function of a speech frame as a mixture of K class-
conditional Gaussian distributions:

p(~x|c) =

K−1∑

k=0

πk,c N (~x; ~µk,c,Σk,c) (2)
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The class c is taken to be S or S̄ as in equation (1) above. To facilitate
computation of the probability of the segment, p(X|c), an independence
assumption is made regarding the speech frames and individual frame prob-
abilities are multiplied. As any random permutation of the sequence of fea-
tures yields the same probability, the term “bag-of-frames” is often applied
to the approach, as mentioned in 1.2.

To model S̄, a Universal Background Model (UBM) GMM is trained by
using speech data from a large collection of impostor speakers. For a given
system, the UBM is typically fixed and care is taken to ensure that target
speakers are excluded from its training data. To model S, the model pa-
rameters (generally the Gaussian means) are adapted to the target speaker’s
training data using Maximum A Posteriori (MAP) adaptation. The benefits
of this approach are that it better permits the distinctive differences in the
speaker model to be emphasized as those parameters will tend to change the
most, and it allows for fuller speaker models as there is typically much more
background data than speaker training data. Additionally, the approach
deals well with the case of unobserved data; if there is no speaker adapta-
tion data for a particular event, the UBM is simply copied as the speaker
model and any log-likelihood scores produced perfectly cancel, removing the
influence of the event.

The same general method can be applied using keyword HMMs. Each
keyword HMM is trained from frame sequences representing that keyword
and so models p(X|W ) where W is a word or word sequence (keyword
phrase). Since the frame sequences are produced by different speakers,
one could obtain p(X|W,S)—a speaker-specific model—and p(X|W, S̄)—a
generic background model—as in equation 1.It is possible,then, to compute
LLR(X) from the accumulated log-probabilities output by word- or phrase-
level HMM speech recognizers. The keyword-specific UBM is trained by
using the instances of each keyword found in the background speakers’ data
and the speaker-specific model is generated using MAP adaptation of the
background keyword HMMs.

2.2 Feature Extraction

In both speech and speaker recognition it is desirable to use a parameteriza-
tion of the speech waveform that is robust and that captures as much of the
information necessary to perform recognition while discarding the remain-
der, such as noise. Though the objectives of the two forms of recognition
are quite different—speaker recognition is ultimately concerned with speech
“quality” (as it relates to its producer) rather than content, and speech
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recognition the opposite—the signal parameterization is typically the same.
For the system in this project, speech feature vectors composed of Mel fre-
quency cepstral coefficients (MFCCs) were used. The cepstra were obtained
by processing a Hamming windowed version of the waveform with duration
25 ms and which was advanced by 10 ms steps. In the initial experiments,
the features consisted of c0 through c12 (with c0 serving as an energy pa-
rameter) and their first differences (deltas). Later experiments extended the
vector to include c13 to c19 along with their corresponding delta coefficients.

Though the standard cepstra are intended to be robust, they demonstrate
a susceptibility to the effects of the speech channel. One effective technique
to address this problem (and which was applied as an enhancement to the
keyword HMM system) is cepstral mean subtraction (CMS). CMS seeks to
remove any long-term average from the signal, such as that which would
be contributed by a channel response. For CMS to be most effective the
average should be computed over speech segments only (silence adversely
biases the average) and this was the approach used in the system. The
feature extraction and cepstral mean subtraction were performed using the
HMM Toolkit, HTK [7].

2.3 Word Extraction

2.3.1 Word selection

The words used for recognition in the original baseline system were selected
from among the common discourse markers, backchannels, and filled pauses
and are shown in table 1. Again, the motivation for using these words is their
two desirable qualities of i) occurring with high frequency in conversational
speech, which ensures a sufficient number of examples for model training and
testing; and ii) potentially possessing strong speaker-distinctive attributes as
a result of their habitual, spontaneous nature.

Discourse Markers Backchannels Filled Pauses

actually, anyway, like, yeah, yep, okay, um, uh
see, well, now uhhuh, right

Table 1: Original word list decomposed by category.

In later experiments the keyword list was extended to include some bi-
grams from the discourse marker and backchannel categories. Table 2 gives
these words. It should be noted that, for the corpora used in the experiments,
the original 13 words account for approximately 6% of the total number of
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tokens. With the additional 6 word bigrams, the coverage is increased to
about 10%.

Discourse Markers Backchannels

you know, you see, i see, i know
i think, i mean

Table 2: Additional word list decomposed by category.

2.3.2 Forced Alignment Word Identification

In order to train models for the keyword HMMs, it was necessary to first
locate the keywords within the speech stream. One approach taken to do
this was using timing information obtained from the forced alignment to hu-
man transcripts by an Automatic Speech Recognition (ASR) system. The
alignment attempts to find the most likely assignment of the frames in the
acoustic signal to the words in the transcript according to probabilistic mod-
els generated from speech recognizer’s training data.

The ASR system used was a stripped-down version of the SRI Hub-5
recognizer described in [8] with improvements using the 2001 and 2002 NIST
evaluations. The front-end consisted of 13 MFCCs with first and second delta
features and employed vocal-tract length normalization (VTLN) along with
speaker-level cepstral normalization. Acoustic models were trained on the
Switchboard-1 corpus, and the dictionary was derived from the CMU 0.4
dictionary augmented by the addition of multi-words. The language model
used was a bigram language model based on a 34k-word vocabulary trained
using a mixture of the Switchboard-1, CallHome English, and Broadcast
News corpora.

2.3.3 ASR Word Identification

In practice, full human transcriptions are generally not available for the data
of interest. Therefore, an alternative approach using ASR word hypotheses
and their corresponding start and end times was taken as well. For recog-
nition, the same ASR system was used. For Switchboard-1 the recognizer
achieved a word error rate (WER) of about 30% and for Switchboard-2
about 38% [9]. The recognizer was intentionally made to be much simpler
than the state-of-the-art in order to minimize the effects of having used
speaker recognition training and test data (for the case of Switchboard-1) in
its own training.
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It should be noted that in both word identification scenarios, no attempt
was made to filter words according to their syntactic/semantic roles. Many
of the keywords, particularly the discourse markers such as well, like, and
see, occur in other roles (e.g., She did well, I’d like him to see that) in
which their acoustic qualities are probably different. Ultimately, this was an
expedient design decision to simplify processing, but there was also a hope
that the modeling and the scoring procedures would be robust enough to
accommodate this mixed population.

2.4 Model Training

2.4.1 Background Model Training

In keeping with the dominant paradigm in speaker detection, the keyword
system used universal background models to model S̄ in equation (1). For
a given keyword, a UBM was obtained by training an HMM using all of the
instances of the word found in the background speaker data. Note that these
HMMs were whole-word models, not models built up from shared phonetic
components, as is sometimes alternatively done. The training of the HMM
occurred in two stages.

In the first stage, the HMM was initialized through an iterative technique
involving Viterbi segmentation and parameter updates. With this technique,
state means and variances are computed by averaging all the vectors asso-
ciated with each state. The state transition matrix is estimated by time
counts of state occupation. For the Gaussian mixtures of a given state, each
feature vector of the state is associated with its highest likelihood Gaussian
and the mixture weights are computed according to the ratio of vectors per
Gaussian. To start the process, a uniform segmentation of the word to the
HMM states is presumed and parameters are initially estimated. For ini-
tial estimation of the Gaussians, a modified K-means clustering algorithm is
used. In the second stage, Baum-Welch re-estimation of the HMM param-
eters is performed using the same training data. HTK was utilized for all
model training.

Prior to training it was necessary to determine a prototype structure for
each keyword HMM. The general HMM topology for all keywords was that
of left-to-right sequences with self-loops and no skips. The distribution of
each HMM state was modeled as a mixture of four Gaussians with diagonal
covariance matrices. It was expected that, with four Gaussians, the models
would be small enough to have good focus while large enough to account for
sufficient acoustic variation; for example, as could be attributed to different
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word usage, as mentioned in 2.3.3 above. The number of states for each
HMM was determined heuristically: it was defined to be the smaller of i)
the number of phones in the standard pronunciation of the word times three;
and ii) the median duration of the word, as expressed in frames, divided by
four.

2.4.2 Target Model Training

Each keyword HMM was then adapted to a given target speaker by means
of MAP adaptation of the model means. The resulting mean for a state j

and mixture component m is given by:

µ̂jm =
Njm

Njm + τ
µ̄jm +

τ

Njm + τ
µjm (3)

where τ is a weighting of the a priori knowledge to the adaptation speech,
N is the occupation likelihood of the adaptation data, µjm is the speaker
independent mean and µ̄jm is the mean of the observed adaptation data.

In the event that the training data for a target speaker provided no
instances of the keyword for adaptation, the unadapted UBM was used for
the speaker model as well. This effectively causes the two log-likelihoods
(speaker-specific and UBM) to cancel and removes the influence of the word
from the overall test score.

2.5 Scoring Test Trials

2.5.1 Recognition Scores

For a given test trial (i.e., a conversation side) , the recognition system must
output a single log-likelihood ratio score. For the keyword HMM system
this was done in the following manner. The keywords in the test segment
were first located using either forced alignment or ASR transcripts as de-
scribed in 2.3.2 and 2.3.3, respectively. Viterbi alignment and scoring of the
target speaker HMM was then performed on the relevant feature sequences
(i.e., those corresponding to that particular keyword). The log-probability
obtained from the scoring was taken to be a target score. A corresponding
UBM score was obtained by similar scoring on the UBM HMM. A token-level
log-likelihood ratio score was then computed by subtracting the UBM score
from the target score. These scores were then combined over all tokens and
all keywords to produce a composite score. The basic system is indicated in
figure 1.
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Figure 1: System Architecture.

2.5.2 Duration Normalization

As word durations influence log-probability scores, it was necessary to per-
form some kind of normalization based on duration. Different methods of
normalization were examined and as a result different scoring methods were
obtained:

Frame normalization
For a frame-normalized score, the composite UBM score (i.e., the sum of all
of the individual UBM scores), was subtracted from the composite target
speaker score and the result was divided by the total number of frames in
all of the keyword instances.

N-best frame normalization
N-best scoring consisted of frame normalization on the N tokens with the
highest target log-likelihood ratio scores. The motivation was that the closest
matches to the speaker may be the most important in making the detection
decision.

Word normalization
For a word-normalized score, frame normalization was performed at the to-
ken level and the individual token scores were then averaged.
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3 Results

3.1 Task Descriptions

As previously mentioned, the general speaker detection task involves deter-
mining whether a given utterance has been generated by a putative target
speaker. The specific task used to evaluate the keyword HMM system was
based on the Extended Data Tasks of the 2001 and 2003 NIST Speaker
Recognition Evaluation (SRE)[10][11], each being a text-independent, single-
speaker detection task. For the tasks, speaker models are trained using up to
16 (1, 2, 4, 8, and 16 for 2001; 4, 8, and 16 for 2003) telephone conversation
sides containing approximately 2.5 minutes of speech. These models are then
used in testing against conversation sides for determining target matches.
This procedure marks a departure from earlier NIST tasks in which only 2
minutes of speech were used for model training and test segments averaged 30
seconds in duration. This was done to enable the investigation of techniques
that examine phenomena occurring on longer timescales (e.g., prosody, idi-
olect [12], etc.[13]) and those involving longer-term statistics, and which, as
a result, rely on more training data. Generating keywords in quantities large
enough for robust modeling is an example of such a phenomenon; it is only
within such a framework that one can perform speaker recognition using a
constrained word set while not constraining the speech.

For training and testing an N -way cross-validation procedure is used in
which the data is partitioned into N sections (or “splits”) of approximately
equal size and testing proceeds on each partition independently. That is,
when a given partition is being tested, data from the other partitions can
be used for background model training and any desired normalizations (e.g.,
T-norm [14], H-norm [16] [15], etc.). To analyze performance, the Detection
Error Tradeoff (DET) curve [17], which plots false alarm probability versus
missed detection probability for a range of thresholds, Θ, is used. In addition,
two summary statistics are reported and examined: the Equal Error Rate
(EER), which represents the point at which false alarm and missed detection
probabilities are equal; and the minimum of the Detection Cost Function
(DCF). The DCF is given by

CDET = CMiss × PMiss|Target × PTarget

+ CFalseAlarm × PFalseAlarm|NonTarget × (1 − PTarget) (4)

NIST specifies the costs as CMiss = 10 and CFalseAlarm = 1, and the
probability of target as PTarget = 0.01. It should be noted that for the
experiments presented here, the speaker models were trained only using the
8-conversation side specification. This was to provide the best balance be-
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tween availability of speaker training data (i.e., number of conversations) and
the size of the speaker population, the issue here being that the larger 16-
conversation condition involves significantly fewer speakers and consequently
higher statistical variance.

3.1.1 The Switchboard-1 Corpus

The 2001 Extended Data Task utilized as its data set the Switchboard-1
Corpus for conversational telephone speech. This corpus consists of about
2400 two-sided telephone conversations among 543 speakers (302 male, 241
female) from all areas of the United States. The data is divided into 6
splits. The system development experiments presented here report results
for testing on split 1 using splits 4, 5, and 6 for background model training
data. Results over all six splits are reported for the final system using the
cross-validation procedure described in 3.1 with the additional specification
that testing on splits 1, 2, and 3 involved background models using 4, 5, and
6, and vice versa.

3.1.2 The Switchboard-2 Corpus

The 2003 Extended Data Task utilized phases II and III of the Switchboard-
2 Corpus. Phase II consists of about 4500 5-minute telephone conversations
involving 679 speakers recruited from Midwestern college campuses. The
collection for phase III focused on the American South and involved 640
participants (292 male, 348 female). The data set consists of approximately
2600 telephone conversations. The combined data set is divided into 10
splits. For cross-validation, a similar approach is taken; for testing on splits
1-5, splits 6-10 are used for background model data and the situation is then
reversed. This task is considered to be harder both because the demographics
of the speakers are narrower as well as because participants were encouraged
to use a greater diversity of telephone handsets. Results for this task are
presented primarily to provide a contrastive data set to that on which the
system was developed.

3.2 System Development Experiments

3.2.1 Experiment 1: Duration Normalizations

The first experiment sought to analyze the performance of the different du-
ration normalizations described in 2.5.2. The best performing method would
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Figure 2: DET Curves for different duration normalizations

be the one used for subsequent experiments and would establish a baseline
to be compared with enhanced versions of the system. Figure 2 shows the
DET curves for frame-normalized, word-normalized, and N-best normalized
(for N = 2, 4, and 8) scores. The corresponding equal error rates and mini-
mum detection cost function values are given in table 3. From the figure one
observes that the word- and frame-normalized scores give nearly equivalent
performance. The summary statistics in the table confirm this further as the
EERs and minDCFs are the same (2.87% for EER and 0.011 for minDCF).
The N-best normalization lags significantly behind these two. N-best nor-
malization does, interestingly, reveal the importance of having a sufficient
amount of data not only for model training, but for test trial scoring. Sim-
ply increasing the number of tokens from two to four gives a nearly 40%
relative improvement in EER and a 23% relative improvement in minDCF.
A second doubling in the number of tokens gives a 33% relative improve-
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ment in EER and a 40% relative improvement in minDCF, indicating that
the scoring component of the system is very much under-supplied with data.
Ultimately, the frame-normalization scoring method was chosen and those
results used as the baseline. That being said, this baseline yielded surpris-
ingly good performance given the relative simplicity of the system and the
small percentage of the total data that was utilized.

Normalization method EER(%) Min. DCF

frame 2.87% 0.011

word 2.87% 0.011

2-best 17.23% 0.075

4-best 10.36% 0.058

8-best 6.96% 0.034

Table 3: EER and Min. DCF performance for different duration normaliza-
tions.

System EER (%) Min. DCF

baseline 2.87 0.011

baseline + additional words 2.53 0.0071

baseline + higher cepstra 1.88 0.0064

baseline + CMS 1.35 0.0089

combined (true transcription) 1.01 0.0045

combined (ASR output) 1.01 0.0038

final (true transcription) 1.06 0.0054

final (ASR output) 1.25 0.006

Table 4: System performance for experiments 2 through 7. The first six
entries give results for split 1 of Switchboard-1 alone and the last two entries
are for all 6 splits.

3.2.2 Experiment 2: Additional Words

In the initial baseline experiment, the word list consisted of only individual
keywords (see table 1 of 2.3.1), 13 in total, from the backchannel, filled pause,
and discourse marker categories. There do, however, exist backchannels and
discourse markers that consist of multiple words, so the list was expanded to
include 6 keyword bigrams (see table 2 of 2.3.1) as well. Each of these word
pairs was treated as a single entity and was modeled using a single HMM
“word” model. With these additions, the EER gets about a 12% relative
reduction and the minDCF a 35% relative reduction. Looking at the DET
plots (figure 3) the difference in the EERs of the two curves is minor, but
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Figure 3: Baseline versus additional words.

there is a noticeable drop in low false alarms (the region where the minDCF
lies) with the additional words. Table 4 gives the summary statistics for this
and all subsequent enhancement experiments.

A complementary way of looking at the results for this system is to dis-
play the EER for each word (or phrase) when tested in isolation, along with
its frequency of occurrence, as in figure 4. This gives a rough idea of the dis-
criminative capability of each keyword. It is important to look at both EER
and frequency, as the individual EERs alone convolve speaker-characterizing
ability with the word frequency. For the majority of the words, the EERs
obtained lie within a small performance range around 7%, even though the
word frequencies vary significantly. The exceptions are the last two entries
of both the single-word and word-pair groupings. This is most likely because
of the very small number of data observations for these keywords, as indi-
cated in the figure; in other words, the data sufficiency requirement is not
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being satisfied. It is particularly interesting that the word yielding the best
performance, yeah, gives an EER of 4.63% on its own, as compared to the
EER of 2.53% for the entire set.

Figure 4: Individual word/phrase EERs and frequencies.

3.2.3 Experiment 3: Higher-order Cepstra

Including higher-order cepstral coefficients in the speech feature vector has
been shown to give improved performance for numerous speaker recognition
systems. It is possible that these coefficients carry more speaker-sensitive
information (information regarding pitch, for example), and so it was of in-
terest to apply this enhancement to the baseline system. The input cepstral
features were extended to include cepstra up to c19, rather than up to c12,
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along with their first differences. The result is an impressive absolute re-
duction in EER of about 1% (34% relative) and in minDCF of 0.0046 (42%
relative). The DET curves are displayed in figure 5.
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Figure 5: Baseline versus higher order cepstra.

3.2.4 Experiment 4: Cepstral Mean Subtraction

As discussed in 2.2, the standard Mel-frequency cepstral coefficients are sus-
ceptible to channel effects and CMS is commonly performed to compensate
for this. For the task of speaker recognition on conversational telephone
speech, channel effects are potentially of great concern because undesirable
variability may be introduced by speakers using different handsets. Process-
ing the features using CMS, then, was considered a critical enhancement
to the baseline and the performance results for this are shown in the DET
curves of figure 6 and in table 4. The minDCF reduction is 19% relative. The
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EER reduction is 53% relative—quite large. However, the curves in figure 6
show that performance degrades in the very low false alarm region. It was
hypothesized that this was due in part to the very small number of test trials
represented in this region of the curve and this hypothesis was supported by
later experiments involving all 6 splits of Switchboard-1. Another possible
contributing factor is that CMS may actually be removing useful channel
information for the cases of speakers who consistently use the same handset.
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Figure 6: Baseline versus CMS.

3.2.5 Experiment 5: Combined System

Having seen the improved performance obtained from each enhancement, a
natural next step was to incorporate all of them into a single system. The re-
sulting EER is 1.01%, representing a 65% performance gain over the baseline
system. The improvement in minDCF is equally significant: the value is re-
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duced by 59%. These results indicate that the information obtained through
the different enhancements is, to some extent, complementary. The compos-
ite DET curve along with the the contributing stages is displayed in figure
7. The combined system performance is particularly impressive given that
certain common score normalizations (Z-norm [18], H-norm [16], or T-norm
[14]) were not employed and such a small percentage of each conversation
contributed to the system scoring.
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Figure 7: DET curves for all enhancement experiments.

3.2.6 Experiment 6: ASR Transcription

In all of the previous experiments, the word identification was based on true
(i.e., human-generated) transcription and the word extraction was based on
a forced-alignment of the speech stream to these transcripts as described in
2.3.2. While this procedure is useful for system development and validation
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of the technical approach, any real-world implementation would necessarily
rely on ASR output rather than expert human transcription. This experi-
ment looks to compare the performance of the combined system using true
transcription and ASR output. The ASR output was generated using the
Switchboard-1 recognizer described in 2.3.2 and 2.3.3. As shown in table
4, the EER and minDCF for the ASR transcription system and the human
transcription one are comparable. The corresponding curves are shown in
figure 8. These results indicate good performance for fully automatic tran-
scription and help to validate this approach for real-world systems.
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Figure 8: ASR versus true transcription.

3.2.7 Experiment 7: Final System Performance

In this experiment, evaluation of the final combined systems is extended
to cover all six splits of Switchboard-1. This is contrasted with the analy-

23



sis of only split 1 for all previous experiments. Using the additional trials
for the other splits serves to increase the confidence in the summary statis-
tics that are computed (EER and minDCF) and improves the resolution of
the DET curves, as can be seen in figure 9. This figure shows the DET
curves for both the ASR and true transcriptions. The EERs are 1.25% and
1.06%, respectively (each compared with 1.01% for split 1 alone), indicat-
ing a somewhat greater performance degradation for the ASR transcription
system. The minDCFs increase for both systems as well, though their re-
sulting values are similar (0.006 for ASR and 0.0054 for true transcription).
Based on these values and the DET curves for the two systems, it appears
that their performance when compared to one another remains comparable.
Also, looking at the DET curves reveals that the poor performance of the
systems in the low false alarm region is no longer evident. This suggests that
the phenomenon was at least partly related to the smaller number of trials
for a single split.

Having applied all the enhancements to the system, it would be of inter-
est to compare this system to the text-constrained GMM system introduced
by Sturim . et al in [2] and referred to in 1.2. This latter system also uses
a shortlist of keywords from which it extracts acoustic frames and uses only
those frames in building and scoring more conventional GMM models. A
direct comparison is difficult since they employed different word sets with
different frequencies of occurrence, so results are somewhat conflated with
coverage statistics. However, the performance seems generally comparable:
in the 1% EER range for 2001 Extended Data Task. More careful compar-
ison, having access to the GMM system’s scores, using the same wordlists,
signal processing, and normalizations, as well as an exploration of which
types of words are most valuable to each system, would be illuminating.

3.2.8 Experiment 8: Switchboard-2 performance

In the previous experiment the goal was to see how the keyword HMM
system’s performance generalized to the rest of the Switchboard-1 data set.
Also of interest, though, is how the system’s performance would generalize
to a corpus that was not used for system development. This experiment
consists of a run of the system on the Switchboard-2 corpus described in
3.1.2. This corpus is regarded as more challenging for speaker recognition,
in part because of the greater homogeneity of the speaker population. In light
of this, a direct cross-corpus comparison of the system performances is not
appropriate. A more suitable comparison is how the system’s performance
on each corpus compares to that of some additional reference system. Here
the reference system was a standard cepstral GMM system, made available
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Figure 9: Final system (ASR and true transcription).

by SRI [19]. The Switchboard-1 GMM system used for H-Norm followed by
T-Norm. The Switchboard-2 GMM system used feature mapping [20] (in
lieu of H-Norm) and T-Norm. Both systems use a mixture of 2048 Gaussian
components.

The results for the two corpora are shown in table 5. Results for Switch-
board-1 are derived from testing on all 6 splits. Those from Switchboard-2
are derived from testing on all 10 splits of that corpus. The first thing to note
is that the keyword system lags behind the GMM system for both data sets.
An alternate method of comparing results is to look at the relative change
of each system’s performance across the two corpora. For the GMM system,
the EER is approximately multiplied by 2.6 when moving from Switchboard-
1 to Switchboard-2 and the minDCF is multiplied by 1.8. For the keyword
system, the EER is scaled by 2.5, and the minDCF triples. The performance
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degradation for the keyword system, then, is similar that of the GMM for
the EER metric, but significantly greater for the minDCF one.

Corpus System EER (%) Min. DCF

Keyword 1.25 0.006
SWB-1

GMM 0.90 0.005

Keyword 3.11 0.018
SWB-2

GMM 2.36 0.009

Table 5: System performance for keyword HMM and GMM systems for
Switchboard-1 and Switchboard-2.

3.3 Monophone HMM System

As mentioned in 1.2, the use of HMMs for speaker recognition is in itself not
an innovation for the keyword system. There are, for example, HMM systems
that are based on monophone models and broad phonetic classes. These
systems serve as an interesting contrast to the keyword HMM system as
they represent a trade-off between token coverage—using phones or phonetic
classes, full coverage can be achieved—and “sharpness” of modeling—word-
conditioned modeling means much more of the acoustic variation is speaker-
discriminative.

To analyze the trade-off a monophone HMM system was implemented
and tested on split 1 of Switchboard-1. The implementation, in fact, repre-
sented only a few changes to the keywords system. Rather than choose 19
keywords to be identified and extracted for training and testing, 43 phones
were used. The HMM topology also differed in that all of the phone models
consisted of three states (rather than the variable number of states for key-
words), with 128 Gaussians per state. A final difference was in the model
training. The state models were trained by successive splitting and Baum-
Welch re-estimation, starting with a single Gaussian per state. The param-
eters for this Gaussian were obtained from a flat start using global values
computed over a small subset of the background training data.

The results are given in table 6 and figure 10. The EER obtained for the
monophone system is 1.16% as compared to 1.01% for the keyword system.
The minDCF is 0.0046 as compared to 0.0038. These results suggest that
the performance of the two systems is rather similar (particularly when vari-
ance of the statistics is taken into consideration). The monophone system,
however, uses about ten times the data of the keyword system. This illus-
trates well the benefits of sacrificing token coverage for improved modeling,
as is done with the keyword approach.
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Figure 10: Keyword HMM versus Monophone HMM system.

3.4 System Combination Experiments

Through the results of the previous experiments, the keyword HMM system
has demonstrated good performance in isolation. Many speaker recognition
systems, however, consist of a combination of individual subsystems to take
advantage of the different information provided by each of these different
sources. The combination often takes place at the score level and a variety
of combination techniques is used (multi-layer perceptron, support vector
machine, maximum entropy, etc.). It is quite natural, then, to look at how
the keyword system combines with other known systems.

For this experiment, each of four systems was combined with the keyword
HMM system. The combination was performed on each trial at the score
level using LNKnet software from MIT Lincoln Laboratory [21]. A Multi-
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System EER (%) Min. DCF

Keyword 1.01 0.0038

Monophone 1.16 0.0046

Table 6: System performance for Keyword and Monophone HMM systems.
Results are for split 1 of Switchboard-1.

Layer Perceptron (MLP) was used to find combination weights through an
optimization procedure that minimized the minDCF. The MLP consisted of
only an input and output layer (i.e., no hidden layers) and the experiment
was performed on splits 1 to 3 of Switchboard-1. The use of additional splits
was in anticipation of the high performance (and as a result small number
of errors) of the combined systems; by increasing the number of trials—
and with it, the number of errors of both types (false alarm and missed
detection)—the noise in the statistics is reduced. Since the test data (i.e.,
the detection trial scores) was used in the training of the weights, these
results approximate an upper bound on score combination performance for
the systems. The results for the various combinations are given in table 7.

The GMM system is the Switchboard-1 GMM described in 3.2.8 and
provided by SRI. The Language Model (LM) system listed is the bigram
modeling developed by Doddington in his idiolect work [12]. The system
detects speakers based on the distributions (both target speaker and back-
ground) of high-frequency bigrams of the training data set, where the bi-
grams are obtained from ASR transcripts. The monophone HMM system is
that described above in 3.3. The system labeled “SNP” is a Sequential Non-
Parametric system described by Gillick et al. in [22]. This system produces
speaker hypotheses based on the Euclidean distance of frame sequences. The
system uses ASR output to compare phone unigrams in the test and tar-
get conversations, using dynamic time warping to align frame sequences of
different lengths.

From the results, it is clear that all systems benefit from the score fu-
sion. This indicates that the information provided by the keyword system
in each case complements that of the other systems, even though three of
the four systems are also based on acoustic features. The least improved
system appears to be the monophone HMM system, which is not surprising
owing to its similarity in design to the keyword HMM system. Next are the
LM and SNP systems which show similar combined performances, though
the systems are extremely different; the SNP system is a purely cepstral ap-
proach with no probabilistic modeling while the LM system is a text-based
approach modeling bigram occurrences. It is particularly of interest that
the LM system, whose stand-alone performance is clearly the worst, can in
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combination yield a comparable performance. This illustrates the degree of
orthogonality to the keyword HMM system provided by this system. Most
improved is the GMM system, indicating the potential benefit of incorpo-
rating the keyword HMM system into state-of-the-art systems, whose basis
is typically a GMM.

Stand-alone Performance Combined Performance
System

EER(%) minDCF EER(%) minDCF

Keyword HMM 1.08 0.005 - -

GMM 0.97 0.005 0.43 0.002

LM 9.81 0.056 0.65 0.003

Monophone HMM 1.56 0.007 0.86 0.004

SNP 1.67 0.009 0.70 0.003

Table 7: Score fusion performance. The second and third columns give sys-
tem EER percentage and minDCF, respectively, in isolation and the fourth
and fifth give the corresponding values when fused with the keyword system.
Results are reported for splits 1 to 3 of Switchboard-1.

3.5 Mixture Variation Experiment

In creating the keyword HMM system, certain design choices, particularly
those relating to the HMM structure, were made either heuristically or in an
ad-hoc way. This was done because of a lack of a more principled approach to
addressing such design issues. Having made those choices and developed an
initial system, though, it was then possible to analyze the effect of some
of these choices by varying them. This experiment looked at the effect
of changing one aspect of the HMM structure—the number of Gaussian
mixtures per state—on the system performance. The system was run on all
splits of Switchboard-1 with models consisting of 1, 2, 4, 8, and 16 Gaussians
per state. The 4-Gaussian topology of the baseline system was determined
by trying to balance the level of focus of the modeling—which would call for
fewer Gaussians—with the robustness to accommodate significant acoustic
variation—which would call for more Gaussians.

As with other experiments, a table of the summary statistics and DET
plots are provided (table 8 and figure 11, respectively). It should be noted
that, for these results, the keyword actually is not included, as the back-
ground model for this keyword failed to train in the 16-Gaussian case owing
to insufficient data.This lack of data is not surprising given the low frequency
of occurrence shown in figure 4.

From both the table and the DET plots, a trend is quite clear: The

29



system performance improves significantly for each increase in the number
of Gaussians per state. Of particular note is that, with 16 Gaussians, the
performance in terms of both EER and minDCF essentially matches that
of the GMM system given in table 5 of 3.2.8. . A natural question is
whether the keyword system can surpass the GMM system in performance
with yet another increase in the number of Gaussians. A revision of the
word list involving the exclusion of some low frequency words would be
necessary before this could be investigated. Regardless, it is clear that four
Gaussians per state does not handle all of the acoustic variation. Part of
this may be because of the variation that the different semantic/syntactic
roles contributes, as mentioned in 2.3.3.
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Figure 11: System performance for varying number of Gaussians per HMM
state. The results are given for all 6 splits of Switchboard-1.
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# Gaussians EER (%) Min. DCF

1 2.53 0.016

2 1.44 0.009

4 1.25 0.006

8 0.98 0.005

16 0.92 0.004

Table 8: Keyword system performance for varying number of Gaussians per
HMM state. Results are given for all six splits of Switchboard-1. Note that
the keyword “actually” was not included due to insufficient data for training.

4 Conclusions and Future Work

In motivating this project, the question was asked: Is it possible to capitalize
on the advantages of text-dependent systems while allowing for the flexibil-
ity associated with systems used in the text-independent domain? Based
on the results presented here, the answer is unquestionably yes. By model-
ing select keywords chosen from the backchannel, filled pause, and discourse
marker categories using Hidden Markov Models, a well-performing speaker
recognition system for the text-independent task of conversational telephone
speech was implemented. In its most preliminary form the system achieved
an equal error rate performance of 2.87% for split 1 of Switchboard-1 for
the NIST Extended Data Task. The project also demonstrated the rela-
tive importance of the addition of the following to this system: additional
word bigrams, higher order cepstra, and cepstral mean subtraction. CMS
proved to be the best addition with respect to EER. Its negative affect on
performance in the low false alarm region of the DET curve influenced the
minDCF, but it was shown that this was partly due to the number of tri-
als; when extended to all six splits the phenomenon was no longer evident.
Degradation when switching from human-generated to automatic transcrip-
tion was shown to be small, and the final EER for the system was 1.25% on
the six splits of Switchboard-1, and under 1% with an increased number of
Gaussians.

In addition, a cross-corpus comparison suggested that the good perfor-
mance observed on the development data set could generalize to other data
sets. Combination experiments showed that the system could fuse effectively
with other systems, providing complementary information. The contrastive
monophone HMM system experiment validated this project’s approach by
showing that data coverage can be sacrificed for more focused modeling to
yield benefits. Finally, variation of the number of Guassians per HMM state
indicated that modeling could be improved and that certain ad-hoc and
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expedient design choices have resulted in sub-optimal performance.

Given some of these conclusions—in particular the last one—there are a
number of possibilities regarding future work for this system. Some are as
follows:

1. Continuing the exploration of the different choices for HMM topology,
both mixture model makeup as well as the number of states

2. Refining the keyword list in a number of different ways, such as using
more words from these classes, highest-frequency words in the domain
regardless of role, and/or words and phrases that are particularly char-
acteristic for each individual target speaker

3. Filtering the keyword occurrences to use only the intended functions
(discourse marker, filled pause, backchannel) or building separate word
models for the separate functions (as in the like example of 2.3.3);

4. Performing additional fusion experiments with different systems such
as the increasingly popular support vector machine systems described
in [23], [24], and [25].

These variations may potentially interact. For example, it may be that by
filtering the words by usage, building separate models for each, the models
can be more tightly focused and will then require fewer Gaussians in the
HMM states.

This project has demonstrated the potential of word-conditional acoustic
modeling for speaker recognition in text-independent domains. It is hoped
that the use of approaches such as this will gain favor in the speaker recog-
nition research community and lead to well-performing systems that com-
plement those in existence today. In addition, by applying an approach
traditional to the text-dependent domain in a text-independent setting, the
project marks a step towards narrowing the gap between these two domains.
With the availability of large amounts of data such as the Switchboard cor-
pora and with the establishment of the Extended Data Task, the potential
to explore this does seem great and with the results obtained in the investi-
gation described here, the future does seem promising.
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