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ABSTRACT

In [6], we develop statistical model of speech recognition
where emphasis is placed on the perceptually-relevant and
information-rich portion of the speech signal. In that model,
speech is viewed as a sequence of elementary decisions or
Auditory Events (avents) that are made in response to loci
of significant spectral change. These decision points are in-
terleaved with periods during which insufficient information
has been accumulated to make the next decision. We have
called this a Stochastic Perceptual Avent Model, or SPAM.
In the work reported here, we have extended our initial ex-
perimental implementation [7] to include other probabilistic
dependencies specified in the original theory, particularly the
dependence on the time from the current frame back to the
previous hypothesized avent.

1. INTRODUCTION

Artificial speech recognition systems often model speech as a
sequence of short-time stationary acoustic segments. Acous-
tic feature vectors within a segment are usually assumed to
have been generated by an i.i.d. random process. This allows
the segment to correspond to successive outputs of a Hidden
Markov Model (HMM) state. In such systems, modeling
power is usually focused on matching each locally stationary
segment with a particular HMM state.

Regions of spectral transition, as noted by many researchers,
notably Furui [3], can be important for phonetic discrimi-
nation. Decision points made in response to such acoustic
evidence might be more invariant under different speaking
styles and acoustics, and therefore we would like to build
a structure for focusing modeling power on these decisions.
We would also like to avoid the i.i.d. assumptions described
above.

In [6], we introduced such a structure. Perceptual decisions
made in response to significant spectral changes are called
Auditory Events, or avents. Time points corresponding to
avents are assumed to be interleaved with periods during
which we have insufficient evidence for a new decision, and
as such are presumed to have less importance for discrimi-

nation. The training stage of a Stochastic Perceptual Avent
Model (SPAM) based recognition system is designed to fo-
cus modeling power on the identification of the transition
decisions. Therefore, similar to certain segment-based mod-
els, a SPAM system is less handicapped by assumptions of
intra-phonetic independence.

In [7], we reported on a simplified SPAM implementation.
In the work reported here, we have extended that system
to include the time and avent dependencies specified in the
original theory.

In Section 2, we review the essentials of our earlier SPAM
experiments. In Section 3, we describe our new SPAM imple-
mentation that includes durational dependence. In Section 4,
we evaluate the word-error performance on an isolated digits
database. In Section 5, we describe a SPAM implementation
that includes both the durational and previous avent depen-
dence. And finally, in Section 6, we describe possible future
work.

2. SPAM CLASSIC

As discussed in [7], under the SPAM recognition model,
speech is considered a sequence of avent points interleaved
with non-decision regions that typically correspond to acous-
tic segments containing less spectral change. In our current
implementation, avents, which correspond to states in HMM-
like models, are approximated by left-context-dependent on-
sets, so that every transition between phonetic segments can
correspond to an avent. Therefore, with a p phoneme lexi-
con, there could be at most p? possible speech units, though
the actual number is always less because of the topological
constraints of the word models.

The stationary segments within a speech signal are spec-
trally quite diverse, but pre-processing approaches such as
delta computation or RASTA [4] will significantly reduce
this diversity. Because we aim to focus modeling power on
the decisions corresponding to phonetic transitions, we wish
to suppress the detailed disparities between different non-
transition segments. Therefore, we use one broad category,
called a non-transitional state, to represent speech frames



falling within these segments.

Recognition under the general SPAM model is based on a
computation of global posteriors based on the following local
acoustic probabilities:
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where gy refers to avent g; occurring at time index n, ¢; 1 #
0 refers to avent type 2, go refers to the non-transitional state,
A(n) is the number of states between the current state n and
the previous avent, n — A(n) corresponds to the time index
for the previous avent (i.e., the closest time index in the past
where k # 0), and Xﬁi’; is a sub-sequence of acoustic vectors
local to the current vector X, extending d frames into the
past and ¢ frames into the future.

In [7, 8], we reported on the initial SPAM implementation us-
ing a telephone quality database of digits and control words
from Bellcore that we call “digits+”. Only 46 diphones and
therefore avents (including the non-transitional state) actu-
ally occur in this database. Using a hybrid HMM/ANN
approach [2], probabilities for an HMM-like decoding are
estimated by training ANNs with acoustic feature vectors
and target labels. As discussed in [7, 8], two networks are
separately trained based on the factorization given in Equa-
tion 2, one for classifying avent states and one to distinguish
between avents and non-avents (i.e., non-transitional states).

In this first implementation, the local probabilities in Equa-
tion 1 used the dependence only on the acoustics, i.e.,
P(qﬁ|X§i’§'. We nevertheless found that in the presence
of noise, a statistically significant improvement in word er-
ror rate could be achieved over a purely phone-based system
when using a combined SPAM-phone based system with a
comparable number of free parameters. These numbers are
recalled in Section 4, along with newer results.

3. SPAM MODEL WITH
DURATIONAL DEPENDENCE

The original SPAM theory [6] suggested that Equation 1
could be simplified in various ways. In particular, if we as-
sume that the probability of an avent is independent of the
previous avent, Equation 1 simplifies to:

P(gnlA(n), X315).

Our second SPAM implementation therefore extends the ba-
sic SPAM model with durational dependence.

A multi-layer perceptron (MLP) architecture using one hid-
den layer, as described in [8], is our method for comput-
ing the local frame-based probabilities based on an acoustic
frame. This architecture was extended with additional input
units to encode the durational information. The initial (or

boot) weights for this system were either obtained from the
first SPAM implementation, with additional weights set to
random values, or were entirely set to random initial values.

The durational dependence as specified in Equation 1 is a
continuous variable that has various possible encodings in a
neural network. We have often found it useful to represent
the dependence of variables like time a with discrete encoding
at the input of the MLP. We began with a very coarse quan-
tization of the time variable — we quantized the duration
between the current frame and the previous avent to one of
three values, short, medium, and long. The MLP is therefore
extended with 3 input units, where each unit corresponds to
one of the three time ranges.

The quantized durations represent intervals measured from
the training set’s avent labels. Specifically, we divide the
training set’s inter-avent duration distribution into thirds
(e.g., we associate the unit short with durations less than
the 33rd percentile).

During network training, the additional durational MLP in-
put units for each frame are set depending on the duration
to the previous avent. During recognition, however, we do
not actually know the duration to the previous avent with-
out having a phonetic alignment of the correct utterance.
Therefore, we hypothesize each duration for each frame and
compute the corresponding probability vector. For each time
frame of speech, we adjust the durational input units of both
the avent classifying network and the avent/non-avent net-
work setting them in turn to short, medium, or long, combine
the resulting output probabilities based on Equation 2, and
produce probability vectors of the form:

n e £=0,1,...,46 .
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A € {short, medium, long}

Although the training procedure did not use negative train-
ing examples (i.e., each speech frame was trained only pos-
itively with the correct duration but not negatively with
the incorrect duration), we rely on the interpolative prop-
erties of the MLLP and the nonlocal constraints of the HMM
to deal with incorrect duration/spectral combinations pre-
sented during recognition. For another approach to handling
such a mismatch, see [1].

Our new HMM-like model uses the durational dependent
probability vectors produced by the ANN. It incorporates
three groups of non-transitional states and three avent states,
each corresponding to a different durational dependence.
The short (resp. medium, long) non-transitional states utilize
the short (resp. medium, long) local probabilities and lead to
the short (resp. medium, long) avent state. Figure 1 shows
an example of this model. We decided on this topology after
experiments with several alternatives, including one with a
forced minimum duration and one with self loops.
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Figure 1: The HMM-like SPAM model that includes a de-
pendence on the duration from the current state to the pre-
vious avent. This figure corresponds to one non-transitional
state and one avent from the original SPAM model. In this
example figure, there are three avent states corresponding to
short, medium, and long and seven non-transitional states,
three corresponding to short, three to medium, and one to
long. A short (resp. medium) duration corresponds to any-
thing below 4 (resp. 7) speech frames. Greater than 7 non-
transitional frames is possible, as indicated by the self loop,
but greater lengths become decreasingly likely.

4. RESULTS AND DISCUSSION

Rows 1
through 3 show error rates for the experiments described in
[7]. Row 1 corresponds to a SPAM recognizer incorporating
two 100 hidden-unit (HU) networks as described in Section 2,
row 2 to a single 200 HU phone-based recognizer, and row
3 to a system that combines the scaled word-likelihoods of
the two preceding systems. A 400 HU phone-based recog-

Figure 1 shows the experimental SPAM results.

nizer was shown to perform worse than the combined sys-
tem in row 3. Each system has roughly the same number of
parameters and uses the same input features (jrasta-plp-8,
associated delta features, and delta jrasta model gain, with
a context window of 9 frames and a frame step size of 12.5
msec).

Rows 4 and 5 show the new error rates. As in [7], all new
results are trained and tested using the digits+ database.
We tested each system using data from 200 speakers totaling
2600 examples from 4 jackknifed cuts. In other words, scores
shown are the average of 4 tests in which 150 speakers were
used for training and 50 were used for testing. We tested
both using clean data and data with additive noise. The
clean data was always used for training.

In all cases, the ANNs were trained on a subset of the in-
put space used during testing. That is, we trained with only
positive examples of the durational and previous avent ANN
input units, but tested with hypothesized inputs never ac-
tually “seen” during training. To minimize over-fitting, for
all testing cuts we employed an early epoch stopping crite-
rion. In addition, all avent/non-avent networks were trained
starting from random initial values rather than booting from
an earlier system’s weight matrix.

clean | 10dB SNR
1. SPAM classic 3.2% 10.6%
2. phone based 1.8% 10.9%
3. combined 142 1.6% 8.1%
4. SPAM + time dep. | 2.2% 10.4%
5. combined 442 1.2% 8.1%

” and

Table 1: Error rates for isolated digits plus “oh”, “no
“yes”, recorded over a public-switched telephone network.
The noisy case includes artificially added car noise resulting

in a 10dB SNR.

As can be seen, the addition of durational dependence to
the SPAM model reduces the error rate in the clean case
while maintaining that rate in the noisy case. The clean case
error reduction is significant at p < 0.05, assuming a normal
approximation to a binomial distribution for the errors. The
reduction in the error rate for the combined system, while not
as statistically significant, is certainly in the right direction.

5. SPAM MODEL WITH
DURATIONAL AND PREVIOUS
AVENT DEPENDENCE

We are currently beginning to evaluate a SPAM implementa-
tion that uses local probabilities with all of the dependencies
described in the original theory [6] and given in Equation 1.

Because of the limited size of the digits+ database, avents
are clustered into broad classes rather than used themselves.
Two avent classification methods based either on phonemic
or phonetic-like information are being evaluated. We have
been attempting to equalize the number of avents in each
class to reduce the chance of inappropriately learning the
relative class size distribution.

Recall that in the current SPAM methodology [8], avents
correspond to left-context-dependent onsets.  Our first
classification method therefore uses phonetic attributes of
the constituent phonemes, namely, the continuant/non-
continuant property. This attribute should, in theory, sepa-
rate phonemes into groups with significantly different spec-
tral characteristics. Avents are therefore grouped into one
of four classes depending on the attributes of the con-
stituent phonemes. With digits+, however, this classi-
fication produces somewhat imbalanced classes. In par-
ticular, the continuant-continuant (CC) class is twice the
size of the continuant/non-continuant (CN) and the non-
continuant/continuant (NC) classes. In addition, the non-
continuant/non-continuant (NN) class contains only one el-
ement. To create more balanced classes, the NN and CN
classes are merged and the CC class is divided using the



vowel/consonant phonemic attribute, presumably one that
also corresponds to significant spectral difference.

A second method of avent clustering used phonetic-like in-
formation obtained from the training set. Specifically, we
ran a K-means procedure directly on the acoustic vectors
of each speech frame in the training set. This produces a
K-clustering of the avent data. FEach of the 46 avents are
then mapped to the one K cluster that contains the ma-
jority of the instances of that avent. As usual with the K-
means procedure, the optimal K is unknown, and different
values must be evaluated. We optionally extend the result-
ing K-means classes with a separate class indicating that the
previous avent is the beginning of an utterance.

We note that this second method resulted in avent broad
classes that appeared to be quite “pure”; that is, a high per-
centage of the examples corresponding to each avent were
mapped to a single cluster, even though there was no con-
straint enforcing this.

The ANN for this SPAM implementation has input units
for both durational and avent category information. During
training, the additional input units are set to values com-
puted from the training labels. During recognition, we once
again hypothesize the unknown information. In this case,
however, the resulting number of probability values for each
avent of each speech frame is 3¢ where ¢ is the total number
of avent classes.

The corresponding HMM-like model uses both the durational
and previous class dependent probability vectors. Each non-
avent/avent cluster as shown in figure 1 is duplicated c times,
each replica using a different probability vector and is there-
fore dependent on a different previous class.

6. CONCLUSIONS AND
SPECULATIONS

In this paper, we have described and reported error results
for a SPAM implementation that includes durational depen-
dence. We have shown that the addition of durational infor-
mation to local probabilities can reduce the word error rate.
We have also described the structure for future experiments
with dependence on previous avent broad class.

Preliminary experiments with the full structure have not yet
provided any improvements from incorporating the depen-
dence on the previous avent. While we still have a number
of modifications left to try (see below), we currently sus-
pect that we need to change the database in order to profit
from longer term dependencies on earlier (avent) states. Dig-
its+ might be inappropriate for these more complex SPAM
models — a larger database, such as the Numbers task dis-
tributed by OGI, or PhoneBook, distributed by LDC, may
hold more promise. The number of quantized durations
should be varied to experiment with resolution/complexity
tradeoffs. The number of non-transitional states should also

be varied — a single state type might represent too large and
too diverse a feature space. Soft targets [1] would relax avent
region boundaries — rather than one speech frame per avent,
which our current system uses, an avent should be able to
occur at any of several multiple frames and have decreasing
likelihood at the edges (see [1] for an approach to determine
such a probabilistic target). Negative training examples, in
which the recognition phase uses input space regions within
the training set, might also help performance. The stopping
criterion and learning rate scheduler for the ANN training
phase should use word recognition rather than frame-based
errors on the cross-validation set.

SPAM might be ideally suited to domains with consider-
able speech rate variation. During very fast and very slow
speech, more stationary regions (e.g., vowel nuclei) might
be significantly compressed or expanded relative to median-
rate speech [5]. Transitional regions (e.g., bursts), however,
undergo relatively little transformation. The SPAM model,
which if required can completely ignore or indefinitely extend
states associated with the more stationary regions, might be
well suited handling to such rate variations.
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