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ABSTRACT

The “Automatic Learning of Word Pronunciations” group
at the 1996 Summer Workshop on Innovative Techniques for
LVCSR focused on learning pronunciation variations as seen
in the Switchboard corpus. In particular, the group explored
methods of automatically learning word pronunciations that
utilized constrained phone recognition.

1. INTRODUCTION

One of the issues in continuous speech recognition is how to
model the bridge between acoustics and word sequences, that
is, pronunciation variations. The choice of modeling tech-
nique depends on many factors, including vocabulary size,
type of sub-word unit used to model acoustics, and mode of
speech. Many recognizers use dictionaries that map words
to one or more hand-written baseform pronunciations. Other
work has tried to capture pronunciation alternatives either
in a top-down fashion (e.g. using phonological rules applied
to baseforms), or learning bottom-up through mechanisms
such as decision trees.

At the start of the workshop, we investigated how our cur-
rent baseform pronunciation models matched hand-labeled
Switchboard data. We performed a dynamic program-
ming alignment of the baseform pronunciations to the hand-
transcribed phone sequence. The resulting alignment had a
correct phone rate of 78% with an accuracy of 64.8%. Tt is in-
teresting to note that there was a 12.5% phone deletion rate,
meaning that relative to our “standard” baseforms, speakers
were dropping 1 out of every 8 phones.

In order to model phenomena such as the phone deletion
described above, the work described here uses data-driven
learning techniques. Phonological baseforms were replaced
with models that better matched the acoustic data of the
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training set, with the hope that this would reduce word error
rates on the test set.

2. APPROACH

In recognition, we compute the following likelihood for the
acoustic score’ (distinct from the language model score):

P( Acoustic |[Words) = Z P(Features|Pron) P(Pron|Words)

Features
Pron

Computing P(Features|Pron) is straightforward; all that
is required is the substitution of the appropriate context-
dependent phone models; the probabilities are computed
from the HMM state output distributions. In building a
model to compute P(Pron|Words), the following desiderata
were considered:

e The choice of pronunciation models should be data-
driven—influenced by the acoustic models.

e The model for a word should be influenced by the sur-
rounding context of pronunciations and words.

o The model should be modulated by lexical stress and
syllabic constraints.

e The modeling should be as automatic as possible, re-
quiring little to no human intervention.

We used a triphone-based phone recognizer? in order to de-
termine to a first order which acoustic models matched a
10-hour subset of the acoustic training set. Using a dynamic
programming algorithm that computed the distance between
two phone strings, the phone recognition output was aligned
to the reference baseforms for each transcript in the 10-hour

set.

One product of this alignment was that every word in the
training set had associated with it a new phonetic represen-
tation, that (usually) was a close variant of the baseform.

1 We used a Viterbi approximation for this equation, replacing
the sum with a maximum.

2This recognizer enforced triphone-clustering constraints dur-
ing recognition.



In one experiment, we used these pronunciations as replace-
ments for the baseforms in the dictionary of the recognizer,
a process we termed static dictionary replacement. In or-
der to handle noise, a threshold ¢ was applied, so that any
pronunciation variant that was not seen at least ¢ times was
discarded; if no variants exceeded the threshold, then the
baseform was used. The new dictionary was then used to
rescore n-best lists of hypotheses generated by the original
recognizer by calculating for each hypothesis a new acoustic
score and combining it with the old language model score.

The other product of the dynamic programming alignment
between the baseforms and phone recognition was a map-
ping from each baseform phone to zero, one, or more ob-
served phones from the phone recognition. Given this map-
ping, one can build a statistical model that predicts each
observed phone given its baseform context. We trained de-
cision trees to give probabilistic output distributions over
observed phones, given the current baseform phone, and its
neighbor on either side. The set of features presented to the
decision tree included phonetic features, lexical stress, and
syllabic position of the baseform phones.

In an n-best rescoring paradigm, we force aligned each hy-
pothesis in the dev-test set to determine the best-matching
baseform pronunciations for the hypothesis. The decision
tree models were then applied to these baseforms to gen-
erate a dynamic pronunciation graph (where the pronunci-
ation of each word is dependent on the surrounding words
and their pronunciations), from which the m-best pronunci-
ations for each word in context were derived. In addition,
we sometimes incorporated n-phone-gram constraints on the
observed phone sequences, either by interpolation or a max-
imum entropy model, in order to smooth the tree pronunci-

ations.

3. EXPERIMENTAL RESULTS

In our first experiment, we created a new static dictionary,
replacing frequent words in our static dictionary with pro-
nunciation variants that occurred 7 or more times, deriving
pronunciation probabilities based on the frequency counts of
each word. Using this initial static dictionary, we rescored
the 20 best hypotheses, reducing the word error rate from
the baseline 46.4% to 45.5% on the 2116 sentence dev-test
set, statistically significant at the p < 0.05 level.

At this point, we noticed that the short pause (sp) model
in the baseline HTK-based system was actually modeling
longer term acoustic events (up to 400 ms. long), so we
removed the sp model from the lexicon, explicitly model-
ing pauses as longer-term silence models. Removing the sp
model improved the baseline slightly to 45.7% on a random
200 sentence subset® of the dev-test (chosen to speed up
evaluations). We considered the non-sp system to be the
new baseline system.

3Rescoring the first experiment on just the 200-sentence subset
kept the error rate at 45.5%.

Word Error Rate, Random 200 Sentences

| n=20 | n=75 | n=100
Baseline WS96 System 46.4% | 46.4% | 46.4%
Initial Static Dictionary || 45.5%
No “sp” phones 45.7% | 45.7% | 45.7%
DT1 Static Dictionary 45.2%
DT2 Dynamic Graphs 46.4% | 45.5% | 45.5%
DT2 Static Dictionary 45.3%
DT3 Dynamic Graphs 46.2% | 45.5%
with Maximum Entropy || 47.6%

Table 1: Summary of Experimental Results

Using the initial alignment of the baseforms to the phone
recognition, a first set of decision trees (DT1) were built.
We realigned the training data using dynamic graphs gen-
erated by these trees, producing a new phone sequence that
was then aligned against the baseform models. Experiment-
ing with static dictionary replacement again (with threshold
t=T) resulted in a further reduction of the error using 20-best
lists to 45.2% error (DT1 Static Dictionary). Reducing the
threshold ¢ to 3 did not change performance significantly.

Iterating, we built a second and third set of decision tree
models (DT2 and DT3) using the forced alignment from the
decision tree pronunciations of the previous iteration. The
static dictionaries from the DT2 alignment performed about
the same as the DT1 alignments (45.3%). The dynamic
pronunciation graphs constructed from each iteration were
also used to rescore the 20-best lists; they performed slightly
worse than the static replacement dictionaries and the mod-
ified baseline. Looking at larger n-best lists (n=75 or 100)
improved performance, although not to the level of the static
dictionary replacements. We also introduced n-phone-gram
constraints with a maximum entropy model, but this raised
the error rates above the baseline (47.6%), indicating that
we need to look at this model more closely.

Due to space constraints, we are only able to present some of
the work accomplished at the workshop. Our group looked at
retraining acoustic models using the initial static dictionary,
and also analyzed some of the models discussed above. In
this analysis, we noted that mismatches between the phone
recognition system and the baseline pronunciation dictionary
are strong indicators of places where hand labeling also dif-
fers from the dictionary. Also, stress and syllabic position
were often the best predictors of pronunciation variation.

4. SUMMARY

In our experiments, we found that replacing the frequent
words in the static dictionary improved recognition by
around 1% absolute from the initial baseline. Using deci-
sion trees to produce pronunciation graphs directly did not
significantly change the error rate over the no-sp-phone base-
line. None of these models were used to retrain the acoustic
models; our current thinking is that retraining would also
lead to improved performance.



