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Abstract

We are experimenting with an approach to connectionist speech recog-
nition that models the dynamics within a speech segment using temporal
position as an explicit variable. Currently, the most common model for
human speech production that is used in speech recognition is the Hid-
den Markov Model (HMM). However, HMMs suffer from well known
limitations; most notably, the assumption that the observations gener-
ated in a given state are independent and identically distributed (i.i.d.).
As an alternative, we are developing a time index model that explicitly
conditions the emission probability of a state on the time index, where
time index is defined as the number of frames since entering a state till
the current frame. Thus, the proposed model does not require the i.i.d.
assumption. Our pilot results suggest that the time-index approach can
greatly reduce error if we have good information about the phoneme
boundary location.

1 INTRODUCTION

We briefly review the main approaches to acoustic modeling in con-
tinuous speech recognition and prepare the ground for our time-index
model.

1.1 What is wrong with traditional HMMs?

First, we point out some limitations of traditional HMMs. A Hidden
Markov Model (HMM) generates a random sequence of observation
vectors
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The assumption that speech observation vectors are identically dis-
tributed might be reasonable for a short enough segment of 20-30 ms in
certain situations, for example in the middle of a relatively steady-state
vowel. However, when the state represents parts of sounds that are
changing significantly, which is more like the rule than the exception
for natural speech, associated observation vectors have statistics that are
dependent on position in the segment. Furthermore, the independence
assumption is inaccurate for all segments of speech, as there is strong
correlation between nearby observation vectors.

1.2 Segment-Based Approaches

An alternative approach to the HMM’s is the segment-based approach.
In segment-based models the basic unit is a sequence of acoustic vectors7�8
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emitted in a given speech unit (a “segment”), as opposed to a single
acoustic vector as used for HMMs. The production of the acoustic
vectors in a segment may be described as a three step procedure[1]:

1. Generate a fixed length segment : according to the distribution)+*<;
1 � ; 2 ��	�	
	�� ;�= , > ��/ , where > � is a particular speech unit. The

distribution models the trajectory of the sound in the feature vector
space. ? �@��;

1 � ; 2 �
	�	�	�� ;�=A� is called the hidden sequence of
acoustic vectors.

2. Select the length of the segment according to
)B*<C , > ��/ , where

C
is

the random variable that denotes the length of the segment.

3. Down-sample ? using a time-warping transformation  ED and
output the observed sequence of acoustic vectors

� ��F�
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linear depending on the specific segmental model.

Stochastic segment models are not inherently subject to the constraints
of the i.i.d. assumptions discussed earlier. An early stochastic segment
model was developed by Ostendorf and Roukos [2]. A later model was
introduced by Ghitza and Sondhi [3]. However, there are some practical
difficulties:

1. The stochastic segment models explicitly assume a particu-
lar parametric form for the hidden observation distribution)+*<;

1 � ; 2 ��	�	
	�� ; = , > � / , e.g., multivariate Gaussian. This can lead
to many free parameters that must be estimated reliably from the
data, e.g., large covariance matrixes. As a result, independence
assumptions are often made, leading to less powerful models.

2. All the models assume a given segmentation, e.g., the knowledge
of the boundaries between the basic speech units, that is known to
be a difficult task. One solution is to do an exhaustive search of all
the reasonable segmentations.

3. Warping the data to a fixed length segment may delete or obscure
relevant information.

1.3 Preview

In the following section we introduce a time-index based model. In Sec-
tion 3 we describe our implementation and experiments. We conclude
by describing our thoughts for future work.

2 THE TIME-INDEX MODEL

We start by describing Deng’s trended HMM, followed by our time-
index model description.

2.1 Deng’s Trended HMM

Deng described a model that explicitly conditioned the emission prob-
ability of a state on the time index, i.e., on the number of frames since
entering a state till the current frame.. for example, if the Markov chain
has two states and we assume a specific realization that alternates every
two time steps between the states, the time index for a given state will be	�	�	 1,2,0,0,1,2, 	�	
	 as described in Figure 1 (note that the figure does not
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Figure 1: Time-index

show all the “machinery” of the HMM). Deng has coined his model the
“trended HMM” [4]. In this model, a sequence of observation vectors
generated in a given state is a combination of a stationary process and
a deterministic function of time, as illustrated in the following equation
for the multivariate normal distribution:
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Where � � is the time index as defined above,
��	 "��G"�
 *</ is a deterministic

function of the time index and has parameters that may differ from state
to state. In this simplified example

��	 "���"�
 *6/ shifts the mean vector of
distribution as a function of the time index, while the stationary part
is the variance-covariance matrix

�
. In principle this model explicitly

conditions the emission probability on the time index, and a sequence
of observations emitted from a given state are no longer assumed i.i.d.
However, we don’t know the optimal form of

� 	 "��G"�
 *</ for each unit of
speech; For example, one would expect a different time index depen-
dence in vowels from stops. Overall, the idea of changing the emission
probability as a function of time index seemed to be innovative and
potentially useful. We have incorporated this idea in a connectionist
context.

2.2 An Introduction to the Time-Index Model

We are proposing a time index model that differs from an HMM in
that the observations emitted in a given phone are no longer i.i.d.; and
that differs from the Deng’s model and others by its use of posterior
probabilities as estimated with a connectionist network. In the time-
index model, the realizations of the state process are no longer sequences
of values taken from the phone set, but are rather chosen from a set of
pairs consisting of a phone and a time index. The time index is defined
as the number of frames since entering a state till the current frame.
For this model, the probability of generating a sequence of observations� � ��� 2 � �
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We can see that the
�! > in the HMM equation 1 are replaced by a phone

and time index pair, as the state process is defined differently.

2.3 An Example

Figure 2 shows the topology of a basic unit of speech. Only the last
state in the model has a self loop. For states with indices smaller than
the minimum duration for that phone, only a transition to the next state
(corresponding to a time-index increment of one) is permitted. For all
other states, transitions are permitted either to the next state or to the exit
state. This model differs from a traditional HMM (assuming a similar
representation for duration) primarily in that the emission probability
for each state (i.e. for each time associated with a phone or subphone
unit type) is not constrained to be equal. Specifically, the emission
probability of a state in the Markov chain is

)+*6� , * 4 ����� � � � � �(/�/ , where� � is the time index. Note phones are used here as the basic speech
unit. Similar equations could be used for multi-state HMMs that are
also commonly used, in which the basic speech unit is smaller than a
phone. While certainly one could define a standard HMM with the kind
of model shown in Figure 2, and with a separate emission probability
for each state, the basic problem is how to share parameters between the
estimates for the separate densities. One solution would be to assume
a parametric form for the trajectory, as was done by Deng. In our case,
we have chosen to use a multilayer perceptron (MLP) approach, which
in our previous work at ICSI, has proved useful for such estimates [5].

3 The Time Index Model - Implementation and Experiments

3.1 An Implementation of the Time Index Model

In our model we define the emission probability of a state as)B*<� , 4 ����� � � � � �%/ . While such a quantity can always be defined, the
important question is how to estimate it. We can use the following
decomposition according to Bayes’ law:)+*6� , 4 ����� � � � � �(/)+*6��/ � )+* 4 ����� � � , � � � ��/�)+* � � , ��/)+* � � � 4 ����� � � / (4)

Where � � is the value of the time index,
�

is the acoustic vector, and

4 ����� � � is a specific phone. Alternatively, we can decompose as follows:)+*6� , 4 ����� � � � � �(/)+*6��/ � )+* � � , 4 ����� � � � ��/�)+* 4 ����� � � , ��/)+* � � � 4 ����� � ��/ (5)

Each of the the terms conditioned on
�

can be estimated by an MLP
with an acoustic vector (or a local neighborhood of acoustic vectors)
as input, as well as any additional conditioning terms as input (for in-
stance, an additional input representing time index � � in order to estimate)B* 4 ����� � � , � � � ��/ ). The targets correspond to a discrete binary coding of
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the class identity that is to the left of the condition bar (e.g., 4 ����� � � for
estimating

)+* 4 ����� � � , � � � ��/ , or � � for estimating
)B* � � , ��/ ). We have cur-

rently chosen to represent the � � inputs with a continuous-valued input as
a smoother representation that requires fewer parameters. The first form
of the equations given above requires the estimation of

)B* 4 ����� � � , � � � ��/ ,and this can be done with the MLP shown in Figure 3.)B* � � � 4 ����� � ��/ can be estimated by counting the relative frequencies
in the training set. The most difficult probability to estimate is

)+* � � , ��/
since this implicitly requires an estimate of the phone boundaries. Given
the inertia of the articulators and the effects of co-articulation, these
boundaries between adjacent phones are blurred. As a result, a reli-
able estimation of this probability is a still an open challenge. In the
experiments reported below we have used pre-segmented data, so we
could test the other parts of our model independently of the task of
boundary detection. However, practical use of the time-index model
will require good estimates of the probabilities of boundary positions.
Some possible solutions are discussed later in this report (section 4).

3.2 Experiments

We used the Resource Management (RM) speaker independent task [6]
and the TIMIT database for our initial experiments. In our RM experi-
ments our trainingdata consisted of 3990 read continuous sentences, and
the 300 sentence Feb89 test set for development and cross-validation for
the network training. The time index net (as shown in Figure 3) had 1000
hidden units, 61 outputs (the size of phone set). There were 235 inputs
to the net, including 234 that consisted of 9 frames of 26 features each
(PLP12 + log gain + delta features for each of these 13) [7], and a final
time index input. With the exception of this final input feature, this net
was the same as the hybrid HMM/MLP system as described in [5]. For
the preliminary tests, we assumed knowledge of the boundaries between
the phones as produced by an automatic alignment (Viterbi) procedure
on the known word string [8]. These initial time-index results serve as
a lower bound on error, as we can expect little improvement over the

boundary detection found by the Viterbi procedure with a known word
sequence. Note that this side information about the word sequence is
used only to generate boundaries, and that no explicit phonetic infor-
mation is preserved. Without the time-index input, the standard MLP
system had 4.8% word error on this task (including insertions, deletions,
and substitutions), while the incorporationof the knowledge of phoneme
boundaries in the time-index network reduced the error to 1.1%.

We chose the TIMIT corpus for our second set of experiments be-
cause it is phonetically balanced, and in addition there are time-aligned
phonetic transcriptions of all the sentences in the database. Our goals
were to verify the potential of the model on a different test set and also
to answer a potential criticism that the reduction of error is due to re-
stricting the recognizer to utterances with the same number of phones as
in the answers (it is done implicitly by suppling the known boundaries).

The experiments were done on a 200 sentence development set, that
was selected from the official training set and were not used for the
training. The size of the nets and the features were the same as in
the RM task experiments. We used 3300 sentences for training and
396 sentences for cross-validation (the 200 sentence development set
is a subset of the cross-validation set). No language model was used
in these experiments. All our results are on the full 61 TIMIT phone
set. Our standard system had 36.4% phone errors on this task, while
the incorporation of the knowledge of phoneme boundaries in the time-
index network reduced the error to 25.0%. When we restricted our
standard system to sentences that have the same number of phones as in
the known answers, the error rate was still 36.4%, but with a different
mix of insertions, deletions, and substitutions.

These results suggest that the time-index approach can greatly re-
duce error if we have good information about the phoneme boundary
location. This was a necessary result for the time-index approach to
be ultimately useful; but it is certainly not sufficient. We are still left
with the difficult and currently unsolved problem of either specifically
locating boundaries, or getting reliable estimates of the probabilities of
an acoustic observation corresponding to a particular temporal region of
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a segment.
In the following section we discuss possible ways to address this

problem.

4 Discussion and Future Work

4.1 Segmentation - How to Find Transitions?

If we could explicitly and reliably find the boundaries between phonetic
segments, the preliminary result from the previous section would seem
to indicate that we can greatly reduce errors. However, this problem does
not have an easy solution, see for example [9]. We consider two possible
styles of approach: first, try to learn smooth probability densities for the
boundaries, as per the equations from the previous section; and second,
use the time-index model as a second pass, where a previous pass will
generate possible alternate segmentations to be considered using the
new model.

To estimate probabilities such as
)+* � � , 4 ����� � � � ��/ or

)B* � � , ��/ , we
must train an MLP classifier to discriminate between different temporal
regions of each segment, for instance between frames that are boundary
and non-boundary frames. A critical issue here is the features used for
this discrimination, both in terms of the signal analysis chosen and the
frame rate and window size used. In one comparative study of sig-
nal representations [10] , Bark auditory cepstral coefficients (BASC)
achieved the lowest deletion error rate (the percentage of the transcrip-
tion boundaries not found by a boundary detector) when used with a
frame rate of 5 ms and window size of 28.5 ms.

Using an unconstrained temporal estimation probabilityestimator has
several inherent problems:

� Due to the inertia of the articulators, the boundaries between phones
are blurred and ambiguous in continuous speech.

� Getting accurate targets for training an MLP through automatic
procedures is difficult. Other sites that have been successful at
nearly eliminating boundary deletions have done so at the expense
of many insertions; this suggests that the temporal probability es-
timates may risk being too inaccurate to be useful in our model.
However, global constraints may be used to eliminate at least some
of the spurious boundaries.

However, if we can overcome these problems, the potential payoff is high
(as noted in our preliminary experiment), and computational consider-
ations may make such a method preferable over the N-best approaches
described below. Furthermore, an explicit single-pass approach may
find some correct segmentations that a two-pass N-best approach with
finite N may eliminate.

An alternative approach to explicit segmentation is the N-best
paradigm. Considering all possible segmentations is computationally
infeasible. However, as many researchers have noted [11], recognizers
that are already fairly good can yield a list of the most likely segmenta-
tions, such that all other segmentations are highly improbable. If only
these reasonable segmentations are considered, a recognition score can
be obtained for each one using the time-index model and the boundary
information from the segmentation. For a more detailed discussion of
the two-pass approach see [12].

4.2 Summary

This report describes an early stage in our research on time index mod-
els as potential representations of speech production that can be used
for speech recognition. Our initial results on pre-segmented data are
encouraging, showing that strong knowledge of the phonetic boundaries
can improve the recognition accuracy. However, we still face the prob-
lem of either explicitly or implicitly finding the boundaries between the
phones. We have discussed two possible solutions: estimating temporal
probabilities (which implicitly requires learning where the boundaries
are), and using the boundaries obtained from a first pass with a simpler
recognizer using an N-best search.
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