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ABSTRACT

We have developed a statistical model of speech that incorporates certain temporal
properties of human speech perception. The primary goal of this work is to avoid a number
of current constraining assumptions for statistical speech recognition systems, particularly
the model of speech as a sequence of stationary segments consisting of uncorrelated acoustic
vectors. A focus on perceptual models may in principle allow for statistical modeling of
speech components that are more relevant for discrimination between candidate utterances
during speech recognition. In particular, we hope to develop systems that have some of
the robust properties of human audition for speech collected under adverse conditions. The
outline of this new research direction is given here, along with some preliminary theoretical
work.

I. INTRODUCTION

Automatic speech recognition systems traditionally rely on an underlying model of
speech as a sequence of stationary segments. For Hidden Markov Models (HMMs), practi-
cal considerations generally require the assumption that adjacent feature vectors are statis-
tically independent, as well as being identically distributed within a segment corresponding
to a Markov state. As a result, modeling power is sometimes focused on regions that
are relatively unimportant for discrimination. These factors compromise the performance
of recognition systems under conditions that are easily handled by human listeners, such
as acoustic ambiguity and background noise. These observations have motivated us to
develop a statistical model that incorporates some simple temporal properties of human
speech perception that we believe to be crucial to human capabilities.

Statistical recognition models are potentially more discriminant than production-based
models. The mathematical foundation for using these models is described in [1]. This
earlier work has now been extended to constrain the underlying statistical model to consist
of a sequence of Auditory Events or avents, separated by relatively stationary periods (ca.
50-150 ms). Avents occur during temporal intervals in which the spectrum and ampli-
tude are rapidly changing (as in [2]). Avents are likely to generate enhanced activity in
the upper stations of the auditory pathway, and may be fundamental components for the
perception of continuous speech. During the intervals between avents the auditory system
and higher nervous centers are likely to be engaged in some sort of perceptual integration
analogous to “gap-bridging” [6]. In our approach, all of the stationary regions are tied to
the same class. Markov-like recognition models can use avents as time-asynchronous ob-
servations. In this case, the models themselves consist of states that represent avents (on
which recognition will be based) and other “non-perceiving” states that are responsible for
processing the stationary segments (and which are not used directly for recognition). Dis-
criminant models can be trained to distinguish among all classes (including the non-avent
class). The training data can be automatically aligned using dynamic programming, and
the discriminant system (e.g., a neural network) can be trained on the new segmentation.



These two steps can be iterated, as discussed in [1], and are guaranteed to converge to a
local minimum of the probability of error (on the training set). This process should focus
modeling power on the perceptually-dominant and information-rich portions of the speech
signal, which may also be the parts of the speech signal with a better chance to survive in
adverse environmental conditions.

A statistical framework that is more commensurate with higher-level auditory function
should be a better match to front-end modules that attempt to incorporate properties
of the auditory periphery [3], particularly when similar temporal auditory properties are

incorporated [5]. We have named this new framework the Stochastic Perceptual Auditory-
event-based (Avent) Model, or SPAM.

II. AUDITORY FOUNDATIONS

The present framework draws its inspiration from physiological and psychoacoustic stud-
ies of auditory processing. Speech and other complex vocal communication systems have
evolved to exploit specific properties of sensory transduction and neural coding that enhance
reliability of transmission for a wide range of acoustic conditions. Speech is readily under-
stood by human listeners under many conditions with which the most advanced automatic
speech recognition systems can not cope, including low signal-to-noise ratios, reverberant
environments, unusually fast or slow speaking rates, and strong regional dialects and foreign
accents.

Although it is not our intent to model all of the operations performed by the audi-
tory system, we aim to capture those sensory properties which enable listeners to extract
informationally salient elements of the speech signal under a wide range of adverse con-
ditions. The relevant set of auditory properties would enable us to derive a more stable
representation of the speech signal than is presently used in speech recognition applications.

This effort began a number of years ago with the development of Perceptual Linear
Prediction (PLP) by Hermansky [4]. PLP transforms the speech signal into a spectral
form commensurate with the resolving power and integration capabilities of the auditory
system. More recently, Morgan and Hermansky [5] have extended this effort with RASTA-
PLP, which de-emphasizes those portions of the signal undergoing little spectral change
over time.

The current project extends this earlier work by focusing on the identification and
description of avents, which signal the occurrence of perceptually significant information.
Avents are associated with temporal intervals over which there are rapid changes in the
spectrum. Such spectral transitions are associated in the speech signal with changes in the
underlying articulatory configuration and thus can be used to infer the initiation of a new
phonetic segment.

The auditory properties of relevance to avent detection are:

1. Rapid adaptation, in which the probability and magnitude of neural discharge is
highest during the initial 5 ms of a new segment

2. The frequency resolution of the auditory pathway controlling the discharge probability
of neural elements across frequency channels

3. Inhibitory circuitry that sharpens the activation to novel spectral features in both the
time and frequency domains



The consequence of these properties is to increase the level of neural excitation at those
points in time and frequency associated with the greatest magnitude of change, and to
de-emphasize the more predictable, less content-laden portions of the speech signal. These
properties are important for creating a representation of the speech signal that maximizes
the probability of accurate phonetic segment identification under unpredictable conditions;
the system is optimized to focus on information relevant to phonetic identification and
to disregard most of the other properties of the signal. Although it is logical to assume
that the most important portions of the speech signal are those which vary greatest as a
function of time and frequency, there are surprisingly few perceptual studies that enable
us to identify those segments with any degree of confidence. Furui’s study [2] is perhaps
the only experimental investigation that has so far convincingly shown associated spectral
transitions with phonetic identification in natural speech. We have initiated some related
experiments, which are briefly described in section TV.

III. THEORETICAL FOUNDATIONS

3.1 Definitions We first define notation and basic terms:

e A set of avents (auditory events): Q = {qo,q1,...,qx}. This set is currently ini-
tialized to be the set of boundaries between phones. In the future this choice may
be modified as a consequence of psychoacoustic experiments now in progress. Given
such an initialization, the avents would be determined automatically in an embed-
ded Viterbi-based dynamic programming procedure (as is currently accomplished with
phone-like subword models).

Each ¢, £ = 1,..., K, represents an auditory event on which recognition will be

based. gg represents a non-avent or non-perceiving state.

e A sequence of acoustic vectors that is associated with an utterance: X =
{z1,29,...,2N}.
Ideally, these acoustic vectors should be defined to optimize detection of transitions
or avents (e.g., RASTA-PLP, or measures of auditory neural synchrony).

L4 X;Zj; = {xn—da BEERR A PR xn+c}‘
This is a a sub-sequence of acoustic vectors that is local to the current vector, ex-
tending d frames into the past and ¢ frames into the future.

e A word model M; is then represented as a sequence of avents with looped non-
perceiving states in between.

" = avent perceived at time n.

®q
e ¢; means that avent ¢; has been perceived at time n.

e L[ represents our knowledge about the language (e.g., syntax, semantics, pragmatics).

3.2 Decoding



In this approach, the goal is to use recognition models for speech, as opposed to standard
HMM production models. If M;, (¢ = 1,...,1), represent the possible word or sentence
models as defined above and X a sequence of N acoustic vectors, the goal of recognition is
to find the most probable word or sentence 7 maximizing the a posteriori probability of
M; given what you hear (X ) and what you know about the language (£), i.e.

j = argmax P(M|X,L) (1)
1
This is referred to as the Maximum A Posteriori (MAP) criterion.

Taking into account all possible avent-based segmentations, P(M;|X, L) is computed

in the following manner:

P(M;|X,L)
L L
=3 Pl M| X, L) (2)
=1 =1

for all possible {q}1 Y .,qgv} € I', the set of all possible paths in M,.

If we are only interested in the best segmentation, a MAP approximation equivalent to the
Viterbi maximum likelihood approximation used in standard HMMs can be obtained by
replacing all summations in (2) by a max operator, yielding

P(M;|X) = max P(q),....q}, Mi|X, L) (3)

1,--0t N
where P(-) represents the Viterbi approximation of the actual a posteriori probability.

Without any assumptions, each term of the sums in (2) or of the max operator in (4) can
be factored into

Plaj,, ... a0, M| X, L)
=P(q},, . a0 | X, L)P(M;|X, Lo qf,s . a0
(4)
In the above expression, the first factor represents the acoustic decoding, in that the
acoustic vector sequence X is decoded in terms of a sequence of avents. For many purposes

the second factor can be ignored, since the state sequence and language model may uniquely
determine the utterance.

The global probability P(ql}1 . .,qﬁf|X, L) that is required to calculate P(M;|X, L) can be
factored, without any assumptions, into local probabilities as

Plq},,...,q) | X, L)
= pla), | X, C)p(af | X, L.q}) - ..
N_
p(qé\;le7'C7 Ql}lv c "qZN—ll)

N
= Tl »@"1Q". X, 0) (5)

n=1



where ()7 represents the avent sequence associated with X7 Probabilities
P(q}l,...,qﬁJX,ﬁ) can thus be calculated from local probabilities p(¢”|Q7~", X, L) that
will be referred to as conditional transition probabilities.

Given (5), calculation of P(q}l,...,quX,E) for use in (2) (full MAP) or in (3) (Viterbi

approximation) requires the calculation of the (local) conditional transition probabilities

parla " ar 2, q,, X, L) (6)
for all n =1,..., N and all possible avents ¢, ({ = 1,..., L) making up M.
Local probabilities (6) may be simplified by relaxing the conditional constraints.

For initial experiments, we are ignoring the contribution of linguistic knowledge, for in-
stance by using independent cost contributions from simple statistical grammars. However,
ultimately the integration of the £ term may be crucial to this approach.

A reasonable simplifying assumption can be to ignore the dependence on states prior to the
last perceived avent. In this case, the avent sequence {qu__ll , qfn__i, .. .,q}l} appearing in
the conditional of (6) simplifies into

A

@ " (7)
in which n — An corresponds to the previous time index for which an avent had been
perceived, i.e., the last time index n — An for which a qZ_A” was perceived with k£ #

0. Note that this assumption is in principle less unrealistic than the typical first-order
conditional independence assumption of HMMs, since the former implies only that an avent
is independent of avents prior to the previous avent, which on the average might be 200
msec into the past. Ideally, the influence from earlier perceived avents is lumped into the
contribution from the language model, which provides expectations of phonetic sequences
to follow.

By also including the An factor in the conditional, we include the only remaining infor-
mation about the non-perceiving state between avents. In this case the avent sequence
{q?__l1 , q?n__i, .. .,q}l} appearing in the conditional of (6) simplifies into

n

{gp=2", An} (8)

Taking these assumptions into account, one can do SPAM recognition based on the following
local probabilities, in order of decreasing complexity (ignoring for the moment the influence
of the language model):

plaflap ™", An, X750, { VE=1,2,....K ®)

If we assume that the probability of an avent is independent of the previous avent, we
can also use:

pla; |An, X350, (10)



Figure 1: A schematic of a three avent SPAM, with tied non-perceiving states separating
the avents. This could be a model for a two-phone word, for instance, with the ¢ states
corresponding to steady-state regions, and the ¢;, ¢;, and g states corresponding to the three
phonetic transitions.

IV. EXPERIMENTAL DIRECTIONS
We have developed an initial theory. However, we have also begun a series of experiments
with human listeners and with machine classification systems.
We have initiated a series of perceptual experiments designed to extend Furui’s results
[2] to English spoken in sentence contexts (Furui’s study focused exclusively on isolated



consonant-vowel syllables in Japanese). Of particular interest is the minimum duration
required for accurate phonetic identification, and the temporal location of the maximal
information-bearing segments. In particular we wish to refine our definition of an avent
based on human listening experiments. We are also interested in how spectral information
pertaining to a specific phonetic entity is integrated with that of other phonetic entities
to create a single perceptual object (e.g., syllable or word) from such dynamic spectro-
temporal patterns.

We have also initiated some machine experiments with the TIMIT database to examine
what features, windows, and classifier strategies work best for the classification of the
avent categories we have initially chosen. To begin with we are using 408 categories of
avent, where each category initially corresponds to 51 fine phonetic classes on the right of
the phone boundary for each of 8 broad acoustic-phonetic categories on the left. A pilot
experiment was done in which an MLP (used as in [1]) was trained on 136,667 phonetic
boundary regions as marked in TIMIT. 8th order PLP features (and their time derivatives)
were extracted every 10 msec. Each training pattern consisted of 9 of these feature vectors
extracted from a local region of acoustic context (plus and minus 40 msec). The input
included no duration or conditioning on prior context (i.e., (11) was estimated). 29% of
an independent test set consisting of 7675 patterns corresponding to avents were correctly
classified. Adding a simple unsmoothed avent bigram grammar improved this result to
34.5%. For the no-grammar case, roughly 60% of the avents were in the top 5 choices. For
this large number of phonetic categories, we consider these to be reasonable initial scores,
but we do not as yet know how they will translate to speech recognition.

V. SUMMARY

In this paper we have described a hypothesis, and have presented a theoretical foun-
dation for its application to speech recognition. In particular, we are proposing to focus
statistical modeling power on regions of significant change rather than on relatively steady
state regions, and to do so by using a single model to represent all possible stationary
segments; discrimination is provided by modeling of several hundred categories of major
spectro-temporal changes. At the moment such regions can be thought of as truncated
diphones, but as the work develops we expect our definition of these perceptually relevant
regions to be refined.

We have just begun to explore the consequences of this hypothesis experimentally.
Ultimately our hope is to develop a speech recognition system that has some of the robust
properties of human audition for speech perceived under adverse conditions. This paper
represents the first effort on our part to pursue this goal by modifying the fundamental
statistical substrate for this goal, as opposed to merely improving the acoustical feature
extraction.
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