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Abstract

We describe the ICSI-SRI-UW team’s entry in the Spring 2004
NIST Meeting Recognition Evaluation. The system was de-
rived from SRI's 5xRT Conversational Telephone Speech (CTS)
recognizer by adapting CTS acoustic and language models to
the Meeting domain, adding noise reduction and delay-sum
array processing for far-field recognition, and postprocessing
for cross-talk suppression. A modified MAP adaptation proce-
dure was developed to make best use of discriminatively trained
(MMIE) prior models. These meeting-specific changes yielded
an overall 9% and 22% relative improvement as compared to
the original CTS system, and 16% and 29% relative improve-
ment as compared to our 2002 Meeting Evaluation system, for
theindividual-headseandmultiple-distanimicrophones condi-
tions, respectively.

1. Introduction

Processing natural multi-party interactions presents a number of
new and important challenges to the speech community, from
dealing with highly interactive and often overlapping speech to
providing robustness to distant microphones recording multiple
talkers. Data collected from meeting rooms provide an ideal
testbed for such work, supporting research in robust speech
recognition, speaker segmentation and tracking, discourse mod-
eling, spoken language understanding, and more.

Recent years have seen increased research activity on meet-
ing data at such sites as CMU/Karlsruhe [13] and ICSI [8],
as well as a number of European initiatives. In March 2004
NIST conducted an evaluation of speech recognition systems
for meetings (RT-04S), following on its initial Meetings evalu-
ation two years prior (RT-02) [2]. Our team had participated in
RT-02 with an only slightly modified CTS recognition system,
providing little more than a baseline for future work. For RT-
04 our goal was to assemble a system specifically for meeting
recognition, although the limited amounts of meeting-specific
training data dictated that such a system would still be substan-
tially based on our CTS system. This paper describes and eval-
uates the design decisions made in the process.

The evaluation task and data are described in Section 2.
Section 3 includes the system description, followed by results
and discussion in Section 4. Conclusions and future work are
presented in Section 5.

2. Task and Data

Test Data. The RT-04S evaluation data consisted of two meet-
ings from each of the recording sites CMU, ICSI, LDC, and
NIST, each about one hour or more in length. Systems were
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required to recognize a specific 11-minute segment from each
meeting; however, data from the entire meeting was allowed for
purposes of adaptation, €tcSeparate evaluations were con-
ducted in three conditions:

MDM Multiple distant microphones (primary)
IHM Individual headset microphones (required contrast)
SDM Single distant microphone (optional)

The CMU meetings came with only one distant mic; for the
other meetings between 4 and 10 distant mics were available.
The IHM systems were allowed to use all mics (distant or indi-
vidual). For MDM and SDM conditions, NIST only evaluated
regions of speech with a single talker, thus eliminating over-
lapping speech. Unlike recent CTS evaluations, the Meetings
evaluation included non-native speakers of English.

The RT-02 evaluation data (another 8 meetings from the
same sources) served as the development test set for RT-04.
However, this set was somewhat mismatched to the RT-04 eval-
uation data in that CMU and LDC used lap#istead of head-
mounted microphones. An additional 5 meetings (2 ICSI, 2
CMU, 1 LDC) were available from the RT-02 devtest set.
Training Data. Training data was available from CMU (17
meetings, 11 hours of speech after segmentation), ICSI (73
meetings, 74 hours), and NIST (15 meetings, 14 hours). No
data from LDC was available. The CMU data was problematic
in that only lapel and no distant microphone recordings were
available.

We excluded any data which failed to force-align with the
released transcriptions. This eliminated 0.1% of the data from
each of ICSIl and NIST, and 11% from CMU. For acoustic train-
ing of the distant mic systems, we also excluded regions with
overlapped speech, based on forced alignments of the individ-
ual mic signals.

3. System Description

Our meeting recognition system was based on a fast (5 times
real-time) version of SRI's CTS recognizer, which we aug-
mented and adapted for the meeting task. Key aspects of the
system are described in the following sections.

3.1. Signal Processing and Segmentation

Noise Reduction of the Far-Field Microphone Signals.The
distant mic signals are filtered using a batch version of the noise

1Since preliminary experiments had shown only minor benefits from
normalizing and adapting on entire meetings, this option was not pur-
sued.

2Throughout the texindividual micsubsumes both individual lapel
and individual head-set mic conditions.



reduction algorithm developed for the Aurora 2 front-end pro-
posed by ICSI, OGI, and Qualcomm [3]. The algorithm per-
forms Wiener filtering with typical engineering modifications,
such as a noise over-estimation factor, smoothing of the filter
response, and a spectral floor. We modified the algorithm to
use a single noise spectral estimate for each meeting waveform.
This was calculated over all the frames judged to be nonspeech
by the voice-activity detection component of the Qualcomm-
ICSI-OGI front end. We applied itindependently for each meet-
ing waveform and used overlap-add resynthesis to create noise-
reduced output waveforms, which then served as the basis of all
further processing.

Segmentation. To identify regions of speech activity and seg-

except that no voicing features were included and a two-stage
transform, consisting of standard LDA followed by a diagonal-
izing transform [11] were used to map the feature space from
52 to 39 dimensions. Also, the PLP models were trained with
feature-space speaker adaptive training [6].

The CTS models were adapted to the meeting domain using
ICSI and NIST training data (the CMU meetings were deemed
to be mismatched to the eval data, as discussed in Section 2).
Since the prior models had been trained with the maximum mu-
tual information criterion (MMIE) [10] we developed a version
of the standard maximum a-posteriori (MAP) adaptation algo-
rithm that preserves the models’ discriminative properties. CTS
MMIE models were used to collect numerator and denomina-

ment them into suitable chunks for further processing, a recog- tor counts on the meeting data (downsampled to 8kHz). These
nizer with two phones (speech and nonspeech) was used to de- counts were combined with CTS numerator and denominator
code the signal. The phone models impose minimum duration counts, respectively. Finally, new Gaussian parameters were es-
constraints and the language model (LM) penalizes switches be- timated from the combined counts (mixture weights and HMM
tween the two models. The resulting segments were postpro- parameters were left unchanged in the process).

cessed to satisfy length constraints, and to pad speech bound- Experiments showed that an adaptation weight near 20 for
aries with a few frames of nonspeech. For distant mics, the al- the numerator and 5 for the denominator was optimal. Further-
gorithm performs acoustic clustering to keep different speakers more, as reported in Section 4, most of the improvement can
in separate segments, and to group same or similar speakers into be achieved by only adapting the numerator counts; this could
clusters that can subsequently be used for feature normalization be convenient for some applications since denominator training

and acoustic adaptation.

For the headset mics condition, the segmentation models
were trained on ICSl and NIST headset mics training data, using
forced alignments against the references. For the distant mic
conditions, two sets of models were trained: ICSI and NIST
data were used to train models for those two sources; the RT-
02 devtest data (which included some CMU and LDC far-field
data) were used to train models for segmenting the CMU and
LDC meetings.

Multiple Distant Microphone Array Processing. For MDM
processing, segmentation was performed on a single, central
mic. Array processing was then performed separately on each
speech region of the noise-reduced signals according to the
common segmentation. The waveform segments from the var-
ious distant microphones were aligned to compensate for time
skew and sound travel delays. Finally the aligned signals were
summed to yield a single new segmented waveform.

The rationale behind this processing is that speech will be

requires lattices to be generated for the adaptation data.
Feature Mapping. We also experimented with the probabilis-
tic optimum filtering (POF) [9] approach to cope with the mis-
match between far-field signals and our CTS-based recogni-
tion models. In this approach a probabilistic mapping of noisy
(distant mic) to clean (headset mic) features is trained based
on stereo recordings. However, the method is complicated by
time skew between channels, changing speakers, and location-
specific background noise. We obtained an error reduction with
a feature mapping trained on test data, but were not able to ob-
tain an improvement when using only training data, and there-
fore did not include this method in our eventual system.

3.3. Language Model and Vocabulary

Our CTS language model is a mixture LM trained on 4M words
of Switchboard transcripts, 150M words of Broadcast News,
and 191M words of web data chosen for style and content [4].
It was adapted for meeting recognition by adding two meeting-

summed in-phase and amplified, whereas noise components are specific mixture components: Meetings transcripts from ICSl,

summed out of phase and will be dampened. Delays for time

CMU, and NIST (1.7M words), and newly collected web data

alignment were estimated using maximal cross-correlation, in  (150M words) related to the topics discussed in the meetings
which the central mic channel was used as the reference. Since and also aimed at covering new vocabulary items. Also, 5.3M

the microphone and speaker locations were unknown, the same words from the CTS Fisher collection were added for cover-

search interval was used for all microphone pairs at a given site; age of current topics. The mixture was adapted by minimizing

an educated guess as to the possible delay ranges was madeperplexity on a held-out set consisting of approximately equal

based on available documentation of the recording room con- amounts of transcripts from the four sources. We also experi-
figurations. Note that the method assumes that each waveform mented with source-specific LMs, but found that the available

segment contains only one speaker and thus that the alignment tuning data was insufficient to estimate source-specific mixture
delays would not vary within a segment (hence the segmenta- weights robustly.

tion step had to precede the array processing). The vocabulary was extended (relative to the baseline CTS
system) to include all non-singleton words from Fisher and

Meetings transcripts. The vocabulary size was close to 50,000,
and yielded a 0.9% out-of-vocabulary rate on the development
test transcripts.

3.2. Acoustic Modeling and Adaptation

Gender-dependent recognition models were derived from CTS
models trained on 420 hours of telephone speech from the
Switchboard and CallHome English collections. The MFCC
models used 12 cepstral coefficients, energy, 1st, 2nd and 3rd
order difference features, as well as 2x5 voicing features over a
5-frame window [5]. The 62-component raw feature vector was
reduced to 39 dimensions using heteroscedastic linear discrim-
inant analysis [7]. PLP models used a similar configuration,

3.4. Decoding

The recognition search was structured as in the SRI “fast”
(5xRT) CTS system. Within-word MFCC models were adapted
with phone-loop MLLR and used to generate bigram lat-
tices. The lattices were then rescored with a 4-gram LM and



Table 1:Improvement of the new baseline CTS system as compared to
the system used in the RT-02 evaluation, reported on RT-02 eval set.

| | Al TICSI [ CMU [ LDC ] NIST |
Individual Mics
RT-02 System || 36.0 | 259 | 47.9 | 36.8 | 35.2
RT-04 Baseline|| 32.8 | 24.0 | 443 | 33.2 | 315
Single Distant Mic
RT-02 System || 61.6 | 53.6 | 645 | 69.7 | 61.6
RT-04 Baseline|| 56.6 | 48.8 | 61.9 | 60.5 | 60.3

Table 2:Effect of language model adaptation on RT-04 devtest data.
| || All | ICSI | CMU | LDC | NIST |

Individual Mics
Baseline 33.3| 235 | 446 | 34.2 | 32.0
Adapted LM || 31.5| 20.9 | 43.6 | 33.7 | 285
Single Distant Mic
Baseline 56.2| 459 | 61.0 | 63.7 | 59.9
Adapted LM || 53.6 | 43.0 | 60.8 | 62.9 | 52.3

Table 3:Effect of different acoustic adaptation algorithms on the IHM

consensus-decoded to obtain preliminary hypotheses. These condition (RT-04 dev). The source of the adaptation data is matched to
were then used to estimate speaker-adaptive feature transforms the test data (except for LDC, where ICSI data was used in adaptation).

and MLLR model transforms for the cross-word PLP models,
which were employed to generate 2000-best lists from trigram-
expanded lattices. The N-best lists were then rescored with a
4-gram LM, pronunciation, pause, and duration models [12],
and combined into final confusion networks, from which 1-best
hypotheses and confidence values were extracted.

3.5. Cross-Talk Suppression

The decoded word hypotheses from the IHM system were post-
processed in an attempt to eliminate cross-talk. We assumed
that when cross-talk was sufficiently loud, recognized words

with low confidence would be produced, and that most speech
was not overlapped. Therefore, we time-aligned the words on
all channels, and deleted those words which had confidence
score below a given threshold, and overlapped, by at least 50%,
with a word on another channel.

4. Results and Discussion

Since both the old RT-02 system and this year’s baseline system
were developed for the CTS domain, we were interested to see
how much of the improvements made on the CTS recognition
task would carry over to the Meeting task. Using RT-02 sys-
tem components comparable to the current 5xRT system, the
WER on the 2002 CTS task reduced from 29.4% to 23.6%, a
20% relative reduction. As shown in Table 1, the same system
achieved relative improvements of 8% and 9% on the RT-02
meeting evaluation data, in the individual and distant mic con-
ditions, respectively.

In the rest of this section, we report results on the official
RT-04S development test, whose references differed somewhat
from the RT-02 evaluation set. We present experiments in cu-
mulative fashion, so that each improvement is the baseline for
the following experiment. To be consistent with RT-02, unless
otherwise noted, individual mic recognition uses reference seg-
mentations, while distant mic experiments use automatic seg-
mentation, plus noise filtering.

First we examine the effect of LM adaptation (see Sec-
tion 3.3), shown in Table 2. The improvement is roughly 5%
overall and appears to be more substantial for ICSI and NIST,
and less so for CMU and LDC data. Besides the lack of training
data for LDC meetings, the observed difference could be due to
the consistency of meeting topics in the ICSI and NIST data,
and their relative variability in the CMU meetings.

Next we tested the MMIE-MAP acoustic adaptation ap-
proach described in Section 3.2. Table 3 shows small, yet con-
sistent, improvements over the standard MLE-MAP approach.
MMIE adaptation was effective even if only the numerator
counts were updated ("NUM-MAP”).

For the IHM condition, models were adapted on training
data recorded with head-mounted microphones; for the MDM

| [ AT [ICSI [ CMU [ LDC [ NIST ]

Unadapted || 31.5| 20.9 | 43.6 | 33.7 | 285
MLE-MAP 30.4| 184 | 428 | 33.2 | 28.0
NUM-MAP 30.0| 183 | 42.0 | 33.0 | 27.3
MMIE-MAP || 29.8 | 17.9 | 414 | 329 | 27.6

and SDM conditions, training data recorded with distant mi-
crophones were used. For the latter conditions, experiments
showed that adapting models to duplicate versions of the data
from different microphones decreased the WER by 35-63%
more than when models were adapted to data from the central
microphone only.

Table 4 shows the improvement of adapted versus un-
adapted models. Acoustic adaptation provided an impressive
improvement of 12.5% for the SDM condition (12.6% for
delay-summed MDM) and 5.3% for the individual mic con-
dition. For the distant mic conditions, combining the ICSI
and NIST data for adaptation proved to be more effective than
source-matched adaptation. Also for the distant mic condition,
the best results for CMU were produced by using ICSl-only
adapted models. Acoustic adaptation was most effective for
ICSI data. One reason is surely that ICSI was the source with
by far the most adaptation data. Another likely reason is that
ICSI meetings are dominated by speakers that recur throughout
the entire corpus, including in the test sets.

The acoustic front-end processing of delay-summing the
test signal (as discussed in Section 3.1) produced a further im-
provement of 6.6%. The delay-summing technique was also
most effective for ICSI data, possibly because we had more in-
formation about ICSI's meeting room configuration than for the
other sources. Delay-summing the adaptation data proved to be
not as effective as using acoustic models that were adapted to
multiple versions of the signal from all microphones (by 5% rel-
ative). This may be because in the latter case channel variability
is better represented in the adaptation data.

Table 5 shows WERs with different segmentations. For in-
dividual mics, the automatic segmentation increases the WER
significantly compared to using reference segmentations. Re-
search on speaker diarization techniques could be a solution
in recognizing cross-talk and producing a better segmentation.
The cross-talk suppression technique described in Section 3.5
led to a 2% WER reduction. The improvement was largest for
the lapel recordings (CMU and LDC); postprocessing was not
done for NIST meetings, which seemed to have very little cross-
talk.

Finally, Table 6 shows the results on the RT-04 evaluation
set, which turned out remarkably similar to the devtest overall.
The CMU individual mic recognition is much improved, pre-
sumably as a result of the switch to headset mics, though this
doesn't seem to be true for LDC. Note that, for the MDM condi-



Table 4:Effect of acoustic adaptation on RT-04 devset. “SM Adapted”
meanssource-matchedthe source of the adaptation data is matched to
the test.“I+N adapted” means adapted@SI+NISTtraining data.+:
there was no training data for LDC, so ICSI data was usedecog-
nition on CMU was best with models adapted to ICSl-only, and SDM
and MDM results are identical since only 1 microphone was available.
Since the CMU and LDC dev data were mismatched to the eval data for
IHM (lapel vs. headset), they were given less consideration in making
the overall design decisions.

| [ Al [ICSI [ CMU [ LDC [ NIST |

Individual Mics

Headset Lapel Lapel Headset

Unadapted || 31.5| 209 | 43.6 | 33.7 | 285
SMAdapted || 29.8 | 179 | 41.4 | 32.9+| 27.6
I+N Adapted || 30.3 | 17.4 | 43.0 | 34.0 | 275

Single Distant Mic
Unadapted || 53.6 | 43.0 | 60.8 | 62.9 | 52.3
SM Adapted || 48.5| 355 | 60.6 | 56.0 | 49.0
I+N Adapted || 46.9 | 34.3 | 59.0* | 54.3 | 46.9
Multiple Distant Mics (Delay-Summed)

Unadapted || 50.1 | 35.2 | 60.7 | 61.5 | 49.9
I+N Adapted || 43.8 | 28.4 | 59.0* | 52.3 | 44.0

Table 5: Overall WERs on RT-04 devset with reference and auto-
matic segmentations, and with post-processing to eliminate cross-talk
for IHM. The distant mic signals are delay-summed.

| || Ref Seg| Auto Seg | Auto+postproc |
IHM 30.3 36.8 36.1
MDM 42.9 43.8 N/A

Table 6:Results on the RT-04 evaluation set. “H” marks headset, “L”
lapel mic conditions.

| [ Al [ICSI [ CMU | LDC [ NIST |

Individual Mics
Dev IHM 36.1| 20.5 | 50.2L | 43.8L | 30.1
RT-04s IHM 348 | 24.2 | 403H | 447H| 27.1
Distant Mics
Dev MDM 43.8 | 28.4 59.1 52.3 44.0
RT-04S MDM || 47.0 | 20.5 56.4 51.2 415
RT-04S SDM || 51.3 | 30.4 56.4 52.2 56.2

Table 7:Results with full recognition system on RT-04 evaluation set.
[ System [ MDM | IHM [ CTS |

5xRT 47.0 348 | 24.1

Full 44.9 32.7 | 22.2

tion, even though the per-source WERs are all lower, the overall
WER is not, due to the fact that the more difficult sources (CMU
and LDC) contribute a larger portion of the test set.

After having developed and tuned the system based on
our 5XRT recognition architecture, we ported our current full
(20xRT) CTS evaluation system to the Meeting domain. The
full system adds a second decoding path using within-word PLP
and cross-word MFCC models, lattice regeneration and model
readaptation, and a final system combination of three different
acoustic models. Table 7 shows overall results for IHM, MDM,

and, for reference, 2003 CTS recognition. We see almost identi- [13]

cal absolute error reductions on the three test sets, although the
relative improvement is somewhat smaller on Meetings (around
5%, compared to 8% for CTS).

5. Conclusions and Future Work

We have shown how a combination of model adaptation, pre-
and post-processing techniques can be effective in retargeting
a conversational telephone speech recognizer to the meeting
recognition task. The severe acoustic mismatch for distant mi-
crophones especially was alleviated by a combination of dis-
criminative model adaptation and signal enhancement through
noise filtering and array processing. Combined with LM adap-
tation, we achieved relative improvements of 9% and 22%, re-
spectively, for individual and distant mic conditions. The sys-
tem gave excellent results in the Spring 2004 NIST evaluation.

Still, many challenges remain. Automatic speech segmen-
tation remains a problem, leading to significant degradation
compared to a manual segmentation, which we hope to rem-
edy with the use of novel acoustic features. Meetings also pro-
vide fertile ground for future work in areas such as acoustic
robustness, speaker-dependent modeling, and language and di-
alog modeling.
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