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ABSTRACT

A novel type of feature extraction for automatic speech recog-
nition is investigated. Two-dimensional Gabor functions,
with varying extents and tuned to different rates and di-
rections of spectro-temporal modulation, are applied as fil-
ters to a spectro-temporal representation provided by mel
spectra. The use of these functions is motivated by find-
ings in neurophysiology and psychoacoustics. Data-driven
parameter selection was used to obtain Gabor feature sets,
the performance of which is evaluated on the Aurora 2 and
3 datasets both on their own and in combination with the
Qualcomm-OGI-ICSI Aurora proposal. The Gabor features
consistently provide performance improvements.

1. INTRODUCTION

Speech is characterized by its fluctuations across time and
frequency. The latter reflect the characteristics of the hu-
man vocal cords and tract and are commonly exploited in
automatic speech recognition (ASR) by using short-term
spectral representations such as cepstral coefficients. The
temporal properties of speech are targeted in ASR by dy-
namic (delta and delta-delta) features and temporal filtering
and feature extraction techniques like RASTA and TRAPS
[1]. Nevertheless, speech clearly exhibits combinedspec-
tro-temporalmodulations. This is due to intonation, coar-
ticulation and the succession of several phonetic elements,
e.g., in a syllable. Formant transitions, for example, result in
diagonal features in a spectrogram representation of speech.
This kind of pattern is explicitly targeted by the feature ex-
traction method used in this paper.

Recent findings from a number of physiological experi-
ments in different mammal species showed that a large per-
centage of neurons in the primary auditory cortex respond
differently to upward- versus downward-moving ripples in
the spectrogram of the input [2]. Each individual neuron
is tuned to a specific combination of spectral and temporal
modulation frequencies, with a spectro-temporal response
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field that may span up to a few 100ms in time and several
critical bands in frequency and may have multiple peaks
[3, 4]. A psychoacoustical model of modulation perception
[5] was built based on that observation and inspired the use
of two-dimensional Gabor functions as a feature extraction
method for ASR in this study. Gabor functions are local-
ized sinusoids known to model the characteristics of neu-
rons in the visual system [6]. The use of Gabor features
for ASR has been proposed earlier and proven to be rel-
atively robust in combination with a simple classifier [7].
Automatic feature selection methods are described in [8]
and the resulting parameter distribution has been shown to
remarkedly resemble neurophysiological and psychoacous-
tical data as well as modulation properties of speech. Other
approaches to targeting spectro-temporal variability in fea-
ture extraction include time-frequency filtering (tiffing) [9].
Still, this novel approach of spectro-temporal processing by
using localized sinusoids most closely matches the neurobi-
ological data and also incorporates other features as spe-
cial cases: purely spectral Gabor functions perform sub-
band cepstral analysis—modulo the windowing function—
and purely temporal ones can resemble TRAPS or the RASTA
impulse response and its derivatives [1] in terms of temporal
extent and filter shape.

2. SPECTRO-TEMPORAL FEATURE
EXTRACTION

A spectro-temporal representation of the input signal is pro-
cessed by a number of Gabor functions used as 2-D filters.
The filtering is performed by correlation over time of each
input frequency channel with the corresponding part of the
Gabor function (with the Gabor function centered on the
current frame and desired frequency channel) and a subse-
quent summation over frequency. This yields one output
value per frame per Gabor function (we call these output
values the Gabor features) and is equivalent to a 2-D cor-
relation of the input representation with the complete filter
function and a subsequent selection of the desired frequency
channel of the output.

In this study, log mel-spectrograms serve as input fea-



tures for Gabor feature extraction. This was chosen for its
widespread use in ASR and because the logarithmic com-
pression and mel-frequency scale might be considered a very
simple model of peripheral auditory processing. Any other
spectro-temporal representation of speech could be used in-
stead and especially more sophisticated auditory models might
be a good choice for future experiments.

The two-dimensional complex Gabor functiong(t; f) is
defined as the product of a Gaussian envelopen(t; f) and
the complex Euler functione(t; f). The envelope width is
defined by standard deviation values�f and�t, while the
periodicity is defined by the radian frequencies!f and!t
with f andt denoting the frequency and time axis, respec-
tively. The two independent parameters!f and!t allow
the Gabor function to be tuned to particular directions of
spectro-temporal modulation, includingdiagonalmodula-
tions. Further parameters are the centers of mass of the en-
velope in time and frequencyt0 andf0. In this notation the
Gaussian envelopen(t; f) is defined asn(�) = 12��f�t � exp"�(f � f0)22�2f + �(t� t0)22�2t #

(1)

and the complex Euler functione(t; f) ase(�) = exp [i!f (f � f0) + i!t(t� t0)] : (2)

It is reasonable to set the envelope width depending on the
modulation frequencies!f and!t to keep the same number
of periodsT in the filter function for all frequencies. Here,
the spread of the Gaussian envelope in dimensionx was set
to �x = �!x = Tx=2. The infinite support of the Gaussian
envelope is cut off at between�x and2�x from the center.
For time dependent features,t0 is set to the current frame,
leavingf0, !f and!t as free parameters. From the com-
plex results of the filter operation, real-valued features may
be obtained by using the real or imaginary part only. In this
case, the overall DC bias was removed from the template.
The magnitude of the complex output can also be used. Spe-
cial cases are temporal filters (!f = 0) and spectral filters
(!t = 0). In these cases,�x replaces!x = 0 as a free pa-
rameter, denoting the extent of the filter, perpendicular to its
direction of modulation.

3. ASR EXPERIMENTS

3.1. Set up

The Gabor features approach is evaluated within the aurora
experimental framework [10] using a) the Tandem recogni-
tion system [11] and d) a combination of it with the Qual-
comm-ICSI-OGI QIO-NoTRAPS system, which is described
in [12]. Variants of that are b) and c): the Gabor Tandem
system as a single stream combined with noise robustness
techniques taken from the Qualcomm-ICSI-OGI proposal.
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Fig. 1. Sketch of the Gabor Tandem recognition system as
it was used in experiment a).

In all cases the Gabor features are derived from log mel-
spectrograms, calculated as in [13] but modified to output
mel-spectra instead of MFCCs, omitting the final DCT. The
log mel-spectrogram calculation consists of DC removal,
pre-emphasis, Hanning windowing with 10ms offset and
25ms length, FFT and summation of the magnitude val-
ues into 23 mel-frequency channels with center frequencies
from 124 to 3657Hz. The amplitude values are then com-
pressed by the natural logarithm.
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Fig. 2. Experiment d): Combination of Gabor feature ex-
traction and the Qualcomm-ICSI-OGI proposal system.

Fig. 1 sketches the Tandem system as it is used in exper-
iment a): 60 Gabor filters are fed into a multi-layer percep-
tron (MLP) after online normalization (OLN) and�;��
processing. The MLP (180 input, 1000 hidden, 56 output
units) has been trained on the frame labeled noisy TIMIT
corpus using frame by frame phoneme targets. The output
layer’s softmax non-linearity is omitted in forward passing.
The resulting 56-dimensional feature vector is then decorre-
lated by a PCA transform based on clean TIMIT. The result-
ing feature vectors are then given to the fixed Aurora HTK
back end.

Experiment d) is depicted in Fig. 2. After the initial
noise reduction (NR), which is the same as in [12], a Gabor
feature stream identical to that in a) is run in parallel with
the Qualcomm-ICSI-OGI proposal feature extraction. The
two streams are combined by concatenation before the fi-
nal frame dropping (FD) of frames judged to be nonspeech.
The 45 Qualcomm-ICSI-OGI features are combined with a
reduced set of 15 features from the Gabor stream which are
obtained by reducing the dimensionality in the PCA stage
from 56 to 15. In a variation of this, experiment c), the
full set of 56 features from the Gabor stream is used with
noise reduction and frame dropping but without concatenat-
ing the Qualcomm-ICSI-OGI feature stream. Experiment



Aurora 2 WER [%] Rel. impr. [%]
multi clean multi clean

R0: Aurora2 reference 12.97 41.94 0.00 0.00
R1: ICSI/OGI 9.09 15.10 26.41 66.53
R2a) T melspec 12.04 28.66 12.87 40.09
R2d): R1 + T melspec NR FD 9.18 14.01 34.55 72.29
G1a) T Gabor 11.68 30.17 14.52 37.19
G2a) T Gabor 11.99 26.51 8.40 44.42
G3a) T Gabor 11.99 23.63 4.03 51.24
G1b) T Gabor NR 10.33 16.51 19.88 64.64
G1c) T Gabor NR FD 10.42 14.42 25.74 70.86
G1d) R1 + T Gabor NR FD 8.85 13.04 37.84 74.99
G2d) R1 + T Gabor NR FD 8.70 13.30 37.65 73.88
G3d) R1 + T Gabor NR FD 8.60 12.29 36.40 75.23

Table 1. Aurora 2 (TIDigits): Performance of different front
ends in terms of WER and WER reduction relative to the base-
line system (R0). The Qualcomm-ICSI-OGI submission system
(R1) is compared and combined with different Gabor Tandem (T)
systems: Gabor set G1 was optimized on TIMIT phoneme inter-
group discrimination, G2 on TIMIT phoneme inter- and within-
group discrimination and G3 on German digits. NR indicates noise
reduction, FD frame dropping. R2 denotes a Tandem system based
on mel spectra.

b) also leaves out the frame dropping stage.

Reference systems are the aurora baseline (R0) front end
of 13 mel-cepstral coefficients and their delta and double-
deltas used in the unquantized, endpointed version [14], the
Qualcomm-ICSI-OGI proposal system (R1), and a combi-
nation of R1 with a melspec-based Tandem system (R2)
which is identical to the Gabor-based Tandem system used
apart from the input features to the MLP, which are 23 mel-
spectra with deltas and double deltas over 90ms (9 frames)
of context. Also, the number of hidden units has been re-
duced to 300 in order to keep the total number of weights
constant.

In the Aurora 2 experiment, training and testing use the
TIDigits English connected digits corpus, artificially mixed
with noise of varying levels and types. HTK is trained sep-
arately with clean and multi-condition training data. Test
set A refers to matched noise (in the case of multicondition
training), test set B to mismatched noise and test set C to
mismatched channel conditions. For Aurora 3 training and
testing use the Speechdat-car corpora for Finnish, Spanish,
German and Danish [14]. The corpora contain digits strings
recorded in various car environments. The experimental
results refer to well-matched (wm), medium-mismatched
(mm) and highly-mismatched (hm) conditions which de-
scribe the degree of mismatch of noise and microphone lo-
cation (close-talking versus hands-free) between the train-
ing and test sets. mm indicates a mismatch in noise only,
while hm indicates mismatch of noise and microphone.

Aurora 2 Aurora 3 overall
WER impr. WER impr. WER impr.

[%] [%] [%] [%] [%] [%]
R0 27.46 0.00 23.48 0.00 25.47 0.00
R1 12.10 46.47 9.43 53.94 10.77 50.21
R2 d) 11.60 53.42 9.23 56.73 10.42 55.08
G1 d) 10.95 56.41 9.20 57.60 10.08 57.01
G2 d) 11.00 55.77 8.91 58.28 9.96 57.03
G3 d) 10.44 55.82 8.88 57.44 9.66 56.63

Table 2. Aurora2 (TIDigits) and Aurora 3 (speechdat-car): Per-
formance of different front ends in terms of WER and WER re-
duction. Abbreviations as in Table 1.

3.2. Feature selection

The parameters of the 60 Gabor filters were chosen by op-
timization as described in [7, 8]. A simple linear classifier
was used to evaluate the importance of individual feature
based on their contribution to classification performance.
Gabor set G1 is optimized on inter-group discrimination
of phoneme targets from the TIMIT corpus combined into
broader phonetic categories of place and manner of artic-
ulation. Gabor set G2 is optimized on inter- and within-
group discrimination of broad phonetic classes, also using
the TIMIT corpus. G3 is optimized on German digits (zifkom
corpus) using word targets. G1, G2 and G3 respectively
contain 27, 28, and 48 filters with temporal extents longer
than 100 ms, although many in G1 are much shorter. Set
G1 consists of 35 features with purely spectral modulation,
23 with purely temporal modulation, and two with spectro-
temporal modulation. G2 (34/22/4) and G3 (12/18/30) have
a larger number of filters with spectro-temporal modulation.
In all three cases, most of the features are two-dimensional
in extent, simultaneously occupying more than one frequency
channel and time frame. Lists of the filter parameters are
available online [15].

3.3. Results

The results in Tables 1–4 are given in absolute word error
rate (WER=1-Accuracy) and WER improvement relative to
the baseline system (R0). The WER as well as the WER
reduction values are averaged over a number of different
test conditions in accordance with [14], so the average WER
improvement cannot directly be calculated from the average
WERs.

All systems in configuration a) yield better results on
the Aurora 2 task than the reference system R0 (cf. Table
1). The three Gabor sets vary in their performance for clean
and noisy training conditions. The more spectro-temporal
features in the set, the better the performance with clean
training, indicating an improved robustness with these fea-
tures. Adding the NR in b) and the FD in c) further improves
the performance.



Aurora 2 Word Error Rate [%]
Set A Set B Set C Overall

Multi 8.09 8.77 9.29 8.60
Clean 11.72 13.13 11.74 12.29
Average 9.90 10.95 10.51 10.44

Aurora 2 Relative Improvement [%]
Set A Set B Set C Overall

Multi 33.85 37.05 40.23 36.40
Clean 74.94 76.96 72.32 75.23
Average 54.40 57.00 56.27 55.82

Table 3. Aurora 2 (TIDigits) WER and relative improvement for
system G3d), a combination of the Qualcomm-ICSI-OGI system
(R1) and the Gabor Tandem G3 NR FD stream.

Aurora 3 Word Error Rate [%]
Finnish Spanish German Danish Average

wm 2.73 2.14 5.43 6.41 4.18
mm 10.81 4.14 11.71 19.01 11.42
hm 10.25 8.18 11.61 21.39 12.86
all 7.44 4.35 9.17 14.57 8.88

Aurora 3 Relative Improvement [%]
Finnish Spanish German Danish Average

wm 62.40 69.69 38.30 49.61 55.00
mm 44.54 75.19 38.24 41.83 49.95
hm 82.76 83.12 56.73 64.72 71.83
all 61.24 74.97 42.88 50.66 57.44

Table 4. Aurora 3 (Speechdat-car) WER and relative improve-
ment for system G3d).

Our best results are obtained by combining R1 with one
of the Tandem streams via concatenation in experiment d).
Table 2 summarizes the results for Aurora 2 and 3. Com-
bining the Qualcomm-ICSI-OGI feature set (R1) with Tan-
dem based features improves performance on Aurora 2 and
3 in terms of average WER and average WER improvement.
Gabor based Tandem systems perform better than the mel
spectrum based Tandem system (R2d)). System G2d) yields
the greatest (57.03%) overall relative improvement over R0,
while system G3d) yields the lowest overall WER (9.66%).
This is due to G3 being more robust in very adverse condi-
tions, where the absolute gain in WER is higher. Tables 3
and 4 give more detailed results for feature set G3d).

4. CONCLUSION

Optimized sets of Gabor features have been shown to im-
prove robustness when used as part of the Tandem system.
When incorporating the Tandem system as a second stream
into the already robust Qualcomm-ICSI-OGI proposal, the
overall performance can be increased further by almost 7%
absolute in relative WER improvement or over 1% abso-

lute reduction in WER. The fact that Gabor-based Tandem
systems consistently outperformed mel spectrum-based sys-
tems shows the usefulness of explicitly targeting extended
spectro-temporal patterns. In adverse conditions, the Gabor
set G3 with 50% diagonal features performs best, which fur-
ther supports the approach of spectro-temporal modulation
filters. It is to be investigated whether this holds for large
vocabulary tasks.
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