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ABSTRACT

Conventional speech recognition is notoriously vulnerable to ad-
ditive noise, and even the best compensation methods are defeated
if the noise is nonstationary. To address this problem, we propose
a new integration of bottom-up techniques to identify ‘coherent
fragments’ of spectro-temporal energy (based on local features),
with the top-down hypothesis search of conventional speech re-
cognition, extended to search also across possible assignments of
each fragment as speech or interference. Initial tests demonstrate
the feasibility of this approach, and achieve a reduction in word
error rate of more than 25% relative at 5 dB SNR over stationary
noise missing data recognition.

1. INTRODUCTION

Recognition of speech in its natural, noisy, setting remains an im-
portant unsolved problem in a world increasingly dominated by
mobile communication devices. While techniques for ameliorat-
ing the effects of stationary or slowly-changing acoustic back-
grounds have been partially successful – albeit still some way
short of human performance – little progress has been made to-
wards handling nonstationary sources.

Approaches to the latter problem fall into two broad categories.
Bottom-up(BU) techniques are based essentially on exploiting
statistical regularities possessed by components emanating from
a common sound source. The different perspectives of primit-
ive computational auditory scene analysis (see review in [3]) and
blind source separation/independent component analysis [2] fall
into this category, as do mainstream signal processing approaches
such as [5].Top-down(TD) approaches utilise models of acous-
tic sources and attempt to find combinations which jointly ex-
plain the observation sequence. HMM decomposition[8] and par-
allel model combination (PMC) [6] are the prime examples of the
model-based approach.

Neither bottom-up nor top-down approaches have been particu-
larly successful at tackling real-world acoustic mixtures. BU al-
gorithms, such as grouping by common fundamental frequency
[5], tend to produce reasonable local results but fail to deliver
complete separation. TD systems work well, but only when ad-
equate models for all sound sources present exist, and when the
number of sources is small (typically 2) and known in advance.

In this paper, we show how BU and TD approaches can be com-
bined to exploit the locally reasonable behaviour of BU tech-
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niques and the globally-consistent decoding abilities of TD sys-
tems. Rather than relying on perfect BU organization, better BU
performance helps by leading to reduced TD search. Our ap-
proach also does away with the requirement that prior models ex-
ist for all sources. At the heart of the system is a multi-source
Viterbi decoder which pieces together a subset of evidence frag-
ments delivered by BU processes. The next section describes the
architecture of the multi-source decoder. Section 3 presents ex-
ample behaviour on several artificial noise intrusions and recog-
nition results on a noisy digit sequence recognition task. Section
4 discusses performance refinements and theoretical foundations.

2. THE MULTI-SOURCE DECODER

Conventional speech recognition divides into two main pieces: an
acoustic model, estimating the probability that observed features
correspond to certain speech classes, and a hidden Markov model
(HMM) decoder, which searches for a word-sequence hypothesis
matching a highly likely sequence of speech-class states.

In contrast to conventional decoding, where all the observations
are assumed to belong to the source being recognized, the task
of a multi-source (MS) decoder is to determine the most likely
model state sequence at the same time as decidingwhich obser-
vations to use, and which to ignore as ‘background’. We assume
that we have models for the speech source, but in contrast with
approaches such as PMC and HMM decomposition we do not re-
quire models for the acoustic background.

The input to the MS decoder is a set ofcoherent source fragments.
Such fragments consist of parameters such as energy estimates in
some arbitrary time-frequency region. These fragments have been
marked as belonging to a single source by an earlier BU process.
Due to speech energy dynamics, it is feasible to find regions with
favourable local SNR even if the global SNR is low. Example BU
processes include forming time-frequency elements into tracks,
or tracks into groups of harmonics with a common fundamental,
or exploiting common onset or location in space. In this study we
use extremely simple BU processing as described in section 3.

Given a set of source fragments, MS decoding is based on two
key ideas. First is the ability from missing data recognition [4,
1] to evaluate the match of a speech model to an observation
whose elements are variously tagged as ‘present’ or ‘missing’ (i.e.
masked behind an interfering sound source). The second idea is
that this missing-data match can be compared across alternative
possible interpretations of which data is indeed valid; finding the
best match should establish both the correct word sequence and
the optimal present/missing labelling.



2.1. Decoding evidence fragments

One approach to recognising speech from a set of evidence frag-
ments is to evaluate every possible combination of fragments over
an entire utterance. Unfortunately, there are2N subsets ofN frag-
ments, andN could typically become rather large. An alternative
approach is to merge decoder hypotheses every time a fragment
ends. The complexity then reduces to2M whereM is the max-
imum number ofsimultaneousfragments. This is tractable if BU
processes deliver evidence fragments above some minimum gran-
ularity, say over some tens of milliseconds duration. Crucially, al-
thoughN increases with utterance length,M remains essentially
constant. Based on the examples in section 3,N can exceed 40
even for short utterances, whileM rarely exceeds 6.

The resulting decoder is based on the standard token-passing Vi-
terbi algorithm with the following modifications:

� Tokens keep a record of the fragment assignments they
have made i.e. each token stores its labelling of each frag-
ment encountered as eitherspeechor background.

� When a new fragment starts all existing tokens are duplic-
ated. In one copy the new fragment is labelled as speech
and in the other it is labelled as background.

� When a fragment ends we compare, for each state, pairs of
tokens that differ only in the label of the fragment that is
ending. The less likely token is deleted.

� At each time frame tokens propagate through the HMM
as usual. However, each state can hold as many tokens as
there are different labellings of the currently active frag-
ments. When tokens enter a state only those with the same
labelling of current active fragments are directly compared.
The token with the highest likelihood score survives and
the others are deleted.

The scheme may also be seen as a parallel set of normal Viterbi
decoders (i.e. with one token for each state) but when a new frag-
ment starts each decoder is duplicated, and when a fragment ends
pairs of decoders are merged.
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Figure 1: The evolution of a set of parallel decoders. Each paral-
lel path represents a separate decoder, with the shaded dots indic-
ating which ongoing fragments are being considered as speech.

Figure 1 illustrates the evolution of a set of parallel decoders pro-
cessing a segment of noisy speech which has been dissected into
3 fragments (shown schematically by the shaded regions in the
figure). When the first fragment (white) commences, the decoder
is duplicated. In one decoder all tokens are assigned the “white
is speech” labelling and in the other they are assigned “white is

background”. When the grey fragment starts the decoders are
again duplicated, each pair covering both possible labellings for
the grey fragment. When the white fragment ends, pairs of de-
coders are merged if their labelling only differs for the white frag-
ment, and so on until the end of the utterance. Note that there are
at most 4 active decoders, not the 8 required to decode every pos-
sible subset of 3 fragments.

2.2. The merging problem

When a fragment ends and decoders are merged, tokens from
each decoder are paired up and their likelihoods are compared.
However, there is a problem inherent in this comparison: these
tokens have arisen from decoders with different speech/background
labellings, and as such are calculating missing-data fits based on
different patterns of present and missing data. The missing data
framework treats the two types of data somewhat differently: the
match score for present data is the likelihood calculated by mar-
ginalising the full model probability density function (pdf) over
the missing features. However, for the missing data we calculate
the ‘bounded’ probability of the speech being less energetic than
the observed background - a true probability rather than a like-
lihood, and as such not directly comparable. This difficulty has
been overcome in previous missing data work, where the amount
of present and missing data is the same for each competing hy-
pothesis, by the simple expedient of a scaling factor. However,
when comparing decoder hypotheses with differing foreground/-
background interpretations, a better solution is required.

As one solution, the results in section 3 scale the missing data
probabilities by dividing them by the integration range over which
they were computed e.g. if the observed value of the background
is X, then the speech energy is assumed to lie between 0 and
X, and the model probability is computed by integrating the pdf
between 0 andX. An ‘average likelihood’ (i.e. the average value
of the pdf over the integration range) is formed by dividing the
probability byX, something comparable (when scaled by a fixed
constant) with the likelihood values constituting the match score
for present data.

Further discussion of this issue along with a more principled solu-
tion are presented in section 4.1.

3. EXPERIMENTS

Experiments to test the new decoder architecture build on previ-
ous missing data work on robust recognition of connected digits.
The current experiments evaluate the new decoding algorithm while
using a naive technique to perform the dissection of the spectro-
gram. This establishes a baseline against which to compare future
work that will employ more sophisticated auditory scene analysis
techniques.

The system employed in these experiments has the following steps:

1. The first 10 frames (assumed to contain only noise) are
averaged to estimate a stationary noise spectrum.

2. The noise spectrum is used to estimate the local SNR.

3. A present data mask is made by thresholding the local SNR
estimate at some minimum SNR.
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Figure 2: An overview of the multi-source recognition system.

(These 3 steps match the standard missing data approach.)

4. The present data mask is dissected by first dividing it into
four frequency bands and then labelling contiguous regions
within each subband as the separate fragments.

5. The set of fragments and the noisy speech representation
are passed to the MS decoder.

6. Spectro-temporal regions that are not contained in any frag-
ment are assigned a fixedbackgroundlabel.

If the actual noise is non-stationary the noise spectrum estimates,
and hence the local SNR estimates, are often grossly inaccurate.
A local peak in noise energy can lead to a spectro-temporal region
that is mistakenly labelled as having high local SNR. This error
then generates a spurious region in the present data mask, usu-
ally causing poor recognition. In the new approach, the MS de-
coder should reject these fragments and label them as background,
thereby producing a better recognition hypothesis. This effect is
illustrated in figure 3, where broad-band noise bursts have been ar-
tificially added to the noisy data representation. These unexpected
components appear as bands in the present data mask and hence
disrupt the standard missing data recognition technique (“1159” is
recognised as “81o85898”). The third image in the figure shows
how the mask is now dissected before being passed into the MS
decoder. The final panel shows abacktraceof the fragments that
the MS decoder marks as present in the winning hypothesis. We
see that the noise pulse fragments have been dropped (i.e. rela-
belled as “background”). Recognition performance is now much
improved (“1159” is recognised as “61159”).

Figure 4 shows a further example with a different pattern of artifi-
cial noise – a series of chirps – imposed upon the same utterance.
Again, noise contaminated fragments are mostly placed into the
background by the decoder.

The examples discussed so far are artificial and the non-speech
intrusions in the data mask are very distinct. To test the technique
on real noise, TIDigits utterances [7] were mixed with NOISEX
factory noise [9] at various SNRs. NOISEX factory noise has a
stationary background component but also highly unpredictable
components such as hammer blows etc. which make it particu-
larly disruptive for recognizers.

Recognition was performed on a 240 utterance test set. The miss-
ing data systems were based on a 24 channel filter bank repres-
entation and 8 state, 10 mixture HMMs (as described in [4]). The
results in figure 5 compare standard missing data with the new
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Figure 3: An example of the multi-source system performance
when applied to data corrupted by artificial transients (see text).
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Figure 4: Another example of the multi-source decoding for data
corrupted with artificial chirps.

multi-source technique. The scaling constant required to balance
missing and present data scores as described in 2.2 was optimally
tuned, but a single value sufficed for all noise levels.

It can be seen that multi-source decoding provides a significant
improvement at the lower SNRs, e.g. at 5db recognition accuracy
is improved from 70.1% to 78.1% – a word-error rate reduction
from 29.9% to 21.9%, or 26.7% relative.

Also shown on the graph are results using a traditional MFCC
system with 13 cepstral coefficients, deltas and accelerations, and
cepstral mean normalisation (labelled MFCC+CMN). This demon-
strates that the multi-source technique is providing an improve-
ment over a missing data system that is already robust by the
standards of traditional techniques.

4. DISCUSSION

The results in figure 5 labelled “a priori” show the performance
achieved using missing data techniques if prior knowledge of the
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Figure 5: Recognition results for a baseline MFCC system, a
missing data system, and the multi-source system.

noise is used to create a perfect local SNR mask. Even using the
multi-source technique results fall far short of this upper limit as
the noise level rises above 10dB SNR.

One possible cause of this this significant performance gap is that
the fragments supplied to the multi-source decoder are not suf-
ficiently coherent. In this work we have used a simple set of
fragments generated by clumping high energy regions in the SNR
mask. If the noise and speech sources occupy adjoining spec-
tro temporal regions this technique will not be able to separate
them. This is evident is figures 3 and 4 where, as a result of both
noise and speech being mixed in the same fragment, a lot of clean
speech energy has been removed from the masks and some of the
noise energy has survived.

4.1. Posterior probability formulation

Traditional speech recognition is formalized as a search for the
most likely model state sequenceQ� (and hence wordstring) given
the observed dataX i.e.

Q
� = argmax

Q

p(QjX)

The term being maximised is rearranged through Bayes’ rule to be
p(XjQ)p(Q), where the data priorp(X) is ignored since it does
not depend onQ. In missing data recognition, earlier processing
supplies a mask, and we maximise

p(Qjmask;X)

As discussed above, the subsidiary calculation ofp(XjQ;mask)
presents problems when combining model likelihoods for present
data with bounded integrals for the missing dimensions. This
can be avoided, at some compuational expense, by evaluating
the full posterior above including the data priorp(Xjmask) =P
Q
p(XjQ;mask)p(Q).

The multi-source approach is different in that maximisation oc-
curs over the mask too (constrained by a-priori BU fragment as-
signment), so we are now finding theQ that maximises

p(Q;maskjX)

This can be expanded by Bayes’ rule into:

p(Qjmask;X)p(maskjX)

i.e. the missing data term plus a mask-specific weighting inde-
pendent of the state sequence. This term could represent a prior
on different mask patterns (i.e.p(mask)), perhaps reflecting BU
‘good continuation’ rules applied to the underlying fragments.
The dependence onX suggests an integration of fragment forma-
tion into the search – perhaps weighting alternate fragmentations
by their likelihoods.

5. CONCLUSIONS

We have presented an approach to exploit bottom-up organiza-
tion within the top-down hypothesis-search framework of con-
ventional speech recognition. This approach, in conjunction with
missing data techniques, allows speech recognition that also se-
arches across possible interpretations of fragments as speech or
background. Initial experiments, based on crude BU techniques
and using a partially-heuristic probabilistic formulation, show the
approach as tractable and able to offer significant improvements
in high-noise situations over static missing data recognition. Fu-
ture work to integrate more sophisticated BU algorithms and a
rigorous probabilistic evaluation holds great promise.
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