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ABSTRACT

The syllable serves as an important interface between the lower-
level (phonetic and phonological) and the higher-level (morpho-
logical and lexical) representational tiers of language. It has been
demonstrated that reliable segmentation of spontaneous speech
into syllabic entities is useful for speech recognition. An auto-
matic method is described for delineating the temporal bound-
aries of syllabic units in continuous speech using a Temporal Flow
Model (TFM) and modulation-filtered spectral features. The TFM
is a neural network architecture that supports arbitrary connectivity
across layers, provides for feed-forward as well as recurrent links,
and allows variable propagation delays along links. Two TFM con-
figurations, global and tonotopic, have been developed and trained
on a phonetically transcribed corpus of telephone and address num-
bers spoken over the telephone by several hundred individuals of
variable dialect, age and gender. The networks reliably detected
the boundaries of syllabic entities with an accuracy of ca. 84%.

1. INTRODUCTION
The syllable is playing an increasingly important role in the de-
sign of automatic speech recognition (ASR) systems, providing
an intermediate representation capable of binding the lower-level
(phonetic and phonological) linguistic tiers with those germane to
the lexicon and grammar [3]. The syllable’s significance makes
it a useful representational unit for developing future-generation
speech recognition systems capable of reliably detecting and seg-
menting syllabic entities in the acoustic speech signal.

Most current-generation ASR systems for English use the
phonetic segment as the basis from which to derive lexical informa-
tion from the acoustic signal. Although this phone-based approach
has been moderately successful for carefully enunciated speech un-
der pristine acoustic conditions, it has been less useful for recog-
nizing such material under real-world conditions (i.e., background
noise and reverberation) or when the speech is of a form more char-
acteristic of informal conversation [7].

One potential reason why current ASR systems do so poorly
under such conditions is that lexical units are represented solely as
sequences of phonetic segments. Because automatic segmentation
and labeling of speech at the phonetic-segment level (a.k.a. auto-
matic alignment) are not very accurate (compared to the segmen-
tation and labeling performed by trained phoneticians [4]), ASR
word models are inherently fragile and often “break” under a wide
variety of environmental and linguistic conditions. Increasing the
stability of lexical models is likely to result in significant gains in
speech recognition performance [8] and there are a number of rea-
sons why stable lexical models are more readily based on syllables
than on phones. Primary among these are the close statistical asso-
ciation between words and syllables (in English) and the structural
integrity of the syllabic onset, nucleus and coda [3]. Moreover, it
has recently been shown that an ASR system based on syllabic
units is more accurate (when combined with the classic phone-
based approach) than a system based purely on phonetic segments

[10][15][16]. In view of the above, we believe that segmentation
of the acoustic signal into syllabic segments is an important stage
in the development of a syllable-centric ASR system.

2. TEMPORAL FLOW MODEL
We perform syllabic segmentation using a neural network archi-
tecture based on the Temporal Flow Model (TFM) of Watrous and
Shastri [13]. TFM supports arbitrary link connectivity across mul-
tiple layers of nodes, admits feedforward as well as recurrent links,
and allows variable propagation delays to be associated with links
(cf. Figures 1 and 2). The recurrent links in TFM provide a means
for smoothing and differentiating signals, measuring the duration
of features, and detecting their onset. The use of multiple links
with variable delays allows the system to maintain context over a
window of time and thereby carry out spatio-temporal feature de-
tection and pattern matching. In combination, the use of recurrent
links and variable propagation delays provide a rich mechanism for
simulating such properties as short-term memory, integration and
context sensitivity — properties that are essential for processing
time-varying signals. In the past TFM has been successfully ap-
plied to a number of phoneme-recognition tasks covering a broad
range of the articulatory space [11][14] as well as hand-printed
digit recognition [9].

3. TELEPHONE DIGIT RECOGNITION TASK
In order to explore the feasibility of applying TFM to syllable seg-
mentation we have limited its current application to the domain
of numerical sequences spoken over the telephone. As our exper-
imental test-bed we chose a subset of the Numbers95 corpus [2]
containing “fluent” numbers such as are spoken in the context of
household addresses.

Each word in this corpus has been labeled and segmented at
the phonetic-segment level by a linguistically trained individual
and these materials have been automatically syllabified. Num-
bers95 contains only 33 separate syllables, making the corpus
particularly useful for the development of novel recognition al-
gorithms. Despite the restricted size of the lexicon, the corpus
contains speech spoken by a large number of individuals (of both
genders) spanning a wide range of geographical dialects, speaking
rates and variable utterance length.

4. MODULATION SPECTROGRAM
Prior to syllabic segmentation the acoustic signal is transformed
into a modulation-filtered spectrogram (MSG) [5][8]. This rep-
resentation encodes the speech signal in terms of low-frequency
energy (< 16 Hz) across time and frequency. The statistical prop-
erties of the modulation spectrum have been shown to closely re-
flect the duration of syllabic segments in spontaneous speech, with
a peak in the distribution at ca. 5 Hz [3][4]. Significant alteration
of the modulation spectrum has a deleterious effect on speech in-
telligibility [3].
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Figure 1: Architecture of the global Temporal Flow Model neural
network used for syllabic segmentation.

For the current study the spectrum was partitioned into 11
discrete, critical-band-like (1=4-octave) channels, over which the
modulation spectrogram was computed using a 250-ms, Hamming
window using a slide interval of 10-ms.

5. TASK FORMULATION
The immediate goal was to develop a TFM capable of automati-
cally identifying the onset and offset of syllabic constituents using
the MSG representation of the speech signal.

The target outputs for training the neural networks were de-
rived from the syllable-level transcription of the utterances. The
duration of each syllable was ascertained from the segmentation
information in the transcription and a Gaussian curve plotted over
the syllabic segment as the target output. The target outputs were
then normalized across all syllables and scaled so that the height of
the Gaussian curves were directly proportional to the length of the
associated syllables. The Gaussian target outputs were intended to
provide only a rough approximation to the network during train-
ing as a means of obtaining the sort of response desired from the
network.

6. NETWORK MODELS
Two distinct TFM network configurations were investigated, one
with global connectivity (Figure 1), the other with tonotopic con-
nectivity (Figure 2). Both configurations contained an input layer,
two hidden layers (H1 and H2), and an output layer. The input
layer in both configurations contained eleven nodes - one for each
of the eleven MSG features. The two network configurations dif-
fered, however, in (a) how the input layer was connected to H1
and (b) the density of lateral connections within H1. In the global
configuration, all input nodes were connected to all H1 nodes and
all H1 nodes were densely connected via lateral links. In the tono-
topic configuration, H1 nodes were divided into distinct groups,
each receiving activation from a small number of adjacent input
nodes (i.e., channels). Nodes within a group were densely con-
nected, but nodes across groups had only sparse interconnections.
In both configurations, H1 nodes were fully connected to H2 nodes
which, in turn, projected to the output node.

Figure 1 shows a typical configuration of the global model.
The model has 11 input nodes, each receiving an MSG feature. H1
and H2 consist of hidden nodes with self-recurrent links. Between
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Figure 2: Architecture of the tonotopic Temporal Flow Model
neural network.

each input node and each node in H1 there are three separate links,
each with a different propagation delay (1, 2, 3). Nodes within H1
are also connected with lateral links. Between each node in H1 and
each node in H2, there are two links with delays 1 and 3, respec-
tively. Nodes in H2 are connected to the output node via a similar
constellation of links. In general, the number of links, propagation
delays and the number of hidden nodes can vary depending on the
task.

Figure 2 shows a typical configuration of the tonotopic model.
The hidden nodes in H1 are divided into five distinct groups. Each
of these receives activation from three adjacent input nodes. The
input nodes of adjacent groups overlap by a factor of one (i.e., the
“receptive fields” of two adjacent groups overlap by 1). An H1
node receives three links with propagation delays of 1, 2 and 3,
respectively, from each input node in its receptive field. All nodes
within a group are fully connected with links of different propaga-
tion delays. Nodes across groups are also connected via links of
different propagation delays, but these links are quite sparse. The
H2 nodes receive two links from each H1 node with propagation
delays of 1 and 2, respectively. H2 nodes are also fully linked to
the output node in a similar manner. In general, the size of, and the
overlap between, the receptive fields of H1 nodes, the number of
nodes within each group in H1, the number of links, propagation
delays and the number of H2 nodes can vary depending on the task.

7. TRAINING PROCEDURES
The specification and training of the neural networks was per-
formed with GRADSIM [12], a connectionist network simula-
tor that uses gradient optimization techniques. GRADSIM al-
lows different delays to be associated with links, it supports fixed
and modifiable link-weights, it admits feedforward as well as
recurrent architectures, and it implements a number of differ-
ent optimization methods. For this specific application we used
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [1][12],
a second-order, gradient-based optimization algorithm because of
its speed and accuracy. The network was trained on a subset of
training-set sentences. At each iteration the trained parameters
were tested on a smaller cross-validation set. To avoid overfit-
ting, the training was stopped when the error rate on the cross-
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Figure 3: Sample output of a TFM network (tonotopic model).
The vertical lines (composed of diamonds) are actual syllable
boundaries. The heavy dots on the time axis indicate segments
of silence.

validation set stopped decreasing for a pre-specified number of
iterations. Network output samples at the convergence point are
shown in Figures 3 and 4.

7.1. APPLICATION TO SYLLABLE DETECTION AND
SEGMENTATION

The accuracy of the network output can be evaluated in a prelimi-
nary fashion by visual inspection. However, to provide a quantifi-
able metric for comparison of different networks, we applied the
trained network to predict the presence of syllables in sentences
for which it had never been trained. Automatic procedures were
created to convert the network outputs to syllable detection, and
eventually, accuracy scores in terms of percentages of false nega-
tive and false positive responses. Before applying the conversion
procedure the network outputs were processed with a simple low-
pass filter to obtain a smoother representation of the outputs. The
conversion procedure and the filtering only depend on a limited
number of frames (usually no more than three frames) around the
current frame of interest. The entire system can be implemented in
an on-line form with minimal delay.

7.1.1. Two-level Threshold Syllable DetectionThe simplest
method for syllable detection is to statically set a threshold for the
network outputs. A syllable onset is detected whenever the net-
work output crosses the threshold in an upward-going trajectory.
The temporal position of the detected syllable is compared with
that associated with the boundary derived from manual segmenta-
tion. If the onset of the automatic system is within a certain toler-
ance limit of the human-delimited boundary then the automatically
defined onset is considered to have been accurately determined (a
“hit”). If the network’s onset lies outside of the tolerance window
the event is scored as a “miss.” The threshold level used can be
determined empirically on a validation data-set. The drawback of
using a single, fixed threshold is that it ignores the variations in
magnitude of the network output associated with the duration and
amplitude of the syllabic sequences.

A two-level dynamic thresholding method was developed to
minimize such problems. Thus, in addition to a fixed higher-level
threshold, a dynamic lower-level threshold was also used. Such a
two-tiered threshold enabled the network to respond to syllables
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Figure 4: Sample outputs of a TFM network (global model).The
vertical lines (composed of diamonds) are actual syllable bound-
aries. The heavy dots on the time axis indicate segments of silence.

with weaker outputs levels. The distance between the higher- and
lower-level thresholds was determined dynamically with a decay-
ing, running average of the network output levels computed over
the course of the utterance. Figure 5 illustrates this method in op-
eration. The two-level thresholding reduced false-negative errors
by ca. 30%. False-positive errors were reduced by setting a lower
bound on the allowable syllabic duration (doing so, however, in-
troduced some false-negative errors).

The two-level dynamic thresholding method together with the
minimum syllabic duration heuristic yielded a reasonable level of
performance. Table 1 indicates the prediction error on test utter-
ances using the minimum syllabic duration heuristic and either the
static threshold or the two-level dynamic thresholding algorithm.
The results are shown for both a global network and a tonotopic
network.

8. DISCUSSION
The modulation spectrogram was used as input to the neural net-
works because of its close association with syllabic entities as well
as its fidelity to certain functional properties of upper stations of
the auditory pathway. However, it is also possible to use other rep-
resentational forms, such as RASTA [6] in order to segment speech
at the phonetic-segment level (as has been done in preliminary ex-
periments).

In many situations, instead of a “yes” or “no” response, it
would be desirable to ascertain the probability associated with
the occurrence of a syllable. The current network architecture is
amenable to such a probabilistic framework and could provide such
an input to an ASR system.

The TFM neural network architecture offers several ad-
vantages over the traditional feedforward multi-layer perceptron
(MLP) architecture. A TFM network treats time in a transparent
manner — the input to a TFM network at timet is simply the input
signal at timet. In particular, the input nodes of a TFM network are
not replicatedn times to realize a context window of sizen. In a
TFM network, the requisite temporal integration of the input signal
occurs within the network as a result of converging activity arriv-
ing along recurrent links and links with varying delays. The archi-
tecture of the tonotopic TFM model is particularly well-suited for
extracting temporally extended features within limited frequency
channels (in layer H1) and subsequently integrating several such
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Figure 5: An illustration of the two-level threshold method for
detecting syllables from network output. The network outputs have
been low-pass filtered. Five syllables are detected in this example.

features across multiple frequency bands (in layer H2). The tem-
poral extend of such features is determined within a network as a
consequence of learning.

9. SUMMARY AND CONCLUSION
A Temporal Flow Model network has been developed to extract
syllabic boundary information from continuous speech. The TFM
naturally captures the time-varying properties of speech in a com-
pact network representation. Two distinct forms of TFM networks
have been applied to modulated-filtered spectrographic representa-
tions of the OGI Numbers corpus - a global model and a tonotopic
model. The networks produce outputs incorporating syllabic in-
formation. This information can be used to predict the onset of
syllabic entities with an accuracy of ca. 84%. Even for low-level
tasks such as syllable onset detection, a “perfect” solution can often
only be acquired by using higher-level grammatical and semantic
knowledge. Ultimately, it would be useful to incorporate feedback
from higher representational tiers steps into lower-level segmenta-
tion in order to enhance the system’s performance.
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