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ABSTRACT

Psychoacoustic studies show that human listeners are sen-
sitive to speaking rate variations [10]. Automatic speech
recognition (ASR) systems are even more affected by the
changes in rate, as double to quadruple word recognition
error rates of average speakers have been observed for fast
speakers on many ASR systems [6]. In our earlier work [5],
we studied the causes of higher error and concluded that
both the acoustic-phonetic and the phonological differences
are sources of higher word error rates. In this work, we
have studied various measures for quantifying rate of speech
(ROS), and used simple methods for estimating the speak-
ing rate of a novel utterance using ASR technology. We have
also implemented mechanisms that make our ASR system
more robust to fast speech. Using our ROS estimator to
identify fast sentences in the test set, our rate-dependent
system has 24.5% fewer errors on the fastest sentences and
6.2% fewer errors on all sentences of the WSJ93 evaluation
set relative to the baseline HMM/MLP system.

1. INTRODUCTION

There are demonstrable speaking rate differences between
speakers'. Miller et al. [4] have shown that the articula-
tion rate varies considerably within each and across speak-
ers. These rate alterations modify the acoustic fine struc-
ture of individual syllables and affect properties that con-
vey segmental information for both consonants and vowels
[7]. Listeners are extremely sensitive to these variations and
treat the segmentally relevant acoustic properties in a rate-
dependent manner [10]. ASR systems, perhaps even more
than humans, are sensitive to the rate of speech differences,
as double to quadruple word recognition error rates of av-
erage speakers have been observed for fast speakers [6].

In our earlier work [5], we investigated the acoustic-
phonetic and the phonological differences of fast speech as
the source of high word error, and implemented mechanisms
to make our ASR system more robust to fast speech given a
prior# information that enabled us to calculate the ROS. In
this paper, we discuss ways to measure the ROS of a novel
sentence reliably and use this information in the recognition
process.

In our experiments, we use ICST’s hybrid HMM/MLP
speech recognition system (explained in [1]). Since similar
rate of speech effects have been observed for recognizers
incorporating mixtures of Gaussians [6, 8], we think it likely
that the conclusions of our work will be useful in those
systems as well.

1The doubtful may attend a public auction.
?In particular, we assumed the knowledge of the correct word
transcription.

2. MEASURING THE RATE OF SPEECH

To improve robustness to speaking rate, we first need a con-
sistent measure for quantifying speaking rate. In the course
of our study, we noticed a lack of consensus in the litera-
ture on such a measure. It has been our experience that
choosing one ROS metric over others can lead to significant
differences in experimental results.

In the next two sections, we will discuss the various di-
mensions along which ROS can be measured and report our
study on the effects of these variables.

2.1. Issues in Measuring the Rate of Speech

In this section we briefly discuss some choices that must be
made in choosing a ROS measure.

2.1.1. Treatment of Mid-Sentence Silences

Should mid-sentence silences be included in the ROS cal-
culation or dropped? For measuring ROS, we think it is of
more value to exclude mid-sentence silence periods, since
these durations may be dependent on factors other than
speech rate. We will revisit this issue in our experiments in
Section 2.2.

2.1.2.  Granularity of Calculating ROS

Should ROS be measured per speaker or per sentence?
The advantage of the former is that it allows for the group-
ing of speakers into “fast” and “slow” speakers. Speaker
categorization is more intuitive, as we tend to think of
speakers, and not just a set of particular sentences, as be-
longing to either a fast or slow group. The disadvantage is
that for a given speaker, the ROS varies considerably across
sentences [4].

2.1.3. Units of ROS

Does words/second more accurately characterize ROS or
phones/second? Although words/second is a simpler unit
to calculate, it is coarser than phones/second and may cause
inaccuracies. Consider the two perennial favorite examples
of speech researchers: “How to wreck a nice beach” and
“How to recognize speech”. If we use words/second as the
unit, these two sentences, which have nearly identical pho-
netic structure, spoken at the same speaking rate, will be
labeled with widely varying ROSs.

2.1.4. Formula for Calculating the ROS

There are (at least) two ways to calculate the ROS of
an utterance. One measure is the Inverse of Mean Dura-
tion (IMD), where the total number of phones is divided
by the total duration of the sentence [5] as in ROSimp =

W, where n is the total number of phones, and
uration;

duration; is the duration of each phone 7 in the sentence.
The second measure is the Mean of Rates (MR) formula-
tion, where first an ROS for each phone in the sentence is
calculated, and then the phone rates are averaged to get



rate;

the ROS for the sentence [8], that is, ROSmr = E#,

where rate; is defined as d% for each phone.
uration;

2.1.5. Using ASR technology to estimate the ROS

How do we estimate the ROS of sentences for which we
do not have the correct phone level transcription? If we do
have the correct word level transcription, we can use it to
perform a forced alignment to obtain the phone duration
information. If we have neither the correct word or phone
level transcription, there are (at least) two possible options.
One is to perform word recognition on the novel utterance
and use the hypothesized transcription for the forced align-
ment (also suggested by [8]). The advantage of this method
is that we can rely on higher level knowledge (i.e., language
model) to get a more accurate phonetic segmentation. One
drawback may be that we enforce a particular pronunciation
of a word, even if the “fast” pronunciation is different from
the normal word-model due to phone omission, for exam-
ple. Another drawback is that incorrect word recognition
can lead to the wrong phonetic segmentation. A second op-
tion is to perform phone recognition for the novel utterance
and use the state transition information to determine ROS.
The advantage of this method is that we can estimate the
ROS for any novel utterance, even if do not have a word
model to represent it. Another advantage is that substitu-
tion errors in the phone classification do not affect the ROS
measure. The drawback of both of the above methods is
that their accuracy depends on the accuracy of the ASR
system, which may be poorer for rapid speech.

2.2. Correlation of the ROS Measures

We used TIMIT for the following experiments. First, we
calculated the ROS using the phonetic hand segmentation,
and defined it as the “correct” ROS. Then, we calculated
the ROS using the methods discussed above and estimate
the “goodness” of the ROS measure by its correlation with
the “correct” measure. The relevant values are shown in
Table 1.

As we see in Table 1, the ROSs measured using the MR
formula are consistently less correlated with the phoneti-
cally hand transcribed ROS calculated using the same for-
mula. The IMD formula seems to be a more reliable way
of estimating the ROS of a sentence. Also, taking out
mid-sentence silences seems to make the ROS estimation
slightly more consistent. The correct word transcription
method is superior to using the hypothesized phone tran-
scriptions. Note that we have not used the hypothesized
word transcription method for ROS calculation, because we
think that this method is particularly unsuitable for TIMIT.
TIMIT is primarily a phone recognition task, and the word
recognition error rate is high given our simple back-off bi-
gram grammar (estimated from the TIMIT training set).
We will revisit these methods for WSJ0 in Section 4.1.

3. ANALYSIS OF FAST SPEECH

In our earlier work [5], we explored two sources for the
higher error rate of faster sentences: (acoustic-phonetic and
phonological causes. First, we were able to train artifi-
cial neural networks to discriminate between fast and slow
frames (using PLP [2] and energy features) for a given phone
and gender. The discrimination accuracy on average was
about 70%, and for some vowels between 80-90%. We con-
cluded that because of increased coarticulation effects, the
spectral features of fast speech seem to be inherently differ-
ent from normal speech and these differences are reflected in
the extracted features (acoustic-phonetic causes). We also
observed a strong correlation between ROS and duration
and deletion mismatches (p = 0.93) in the word models.
Therefore, the second culprit of the higher word error rates
may be that the normal word models are unsuitable for fast

speech because of phonemic durational mismatches (dura-
tional errors) or phone omission (deletion errors).

4. INCREASING ROBUSTNESS TO ROS

In the following two sections, we discuss our experiments
in increasing robustness to fast speech. All the experi-
ments were run on the WSJ0 corpus, and we have used
the WSJ0-93 evaluation set for testing because two of the
ten speakers in this test set speak very quickly and pro-
vide a good benchmark. Our baseline WSJ0 recognizer is a
gender-independent system, with context-independent and
one phone per state word models, and utilizes a 5K bigram
grammar. It has 16.1% word error for the WSJ0-93 evalu-
ation set. The overall structure of our ROS robust system
is shown in Figure 1.
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Figure 1. The over-all structure of our rapid-
speech-tuned ASR system. The conditional branch
is chosen on the basis of a threshold in ROS esti-
mate.

4.1. The ROS Estimator for WSJ0

Here, we briefly look at how each of the ROS estimation
methods choose a set of “fast” sentences from the WSJ0-93
evaluation set.
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Figure 2. The correlation of the correct word tran-
scription method with the hypothesized phone tran-
scription for the WSJ0-93 Eval sentences, based on
the IMD formula. The dashed lines are drawn at
w4+ 1.65*0.

We see in Figures 2 and 3 that the ROS calculated using
the hypothesized word transcriptions has higher correlation
with the ROS calculated using the correct word transcrip-
tions than the hypothesized phone transcriptions. As we
commented earlier, for a tasks which the word recognition
accuracy is acceptable, hypothesized words may provide a



[ Corr. Coeff. of Different ROS Measures with the Phonetically Hand Transcribed ROS ]

IMD formula MR Formula
ROS Method W/O Mid-sil [ W Mid-sil || W/O Mid-sil | W Mid-sil
Wrd Correct 0.88 0.87 0.40 0.40
Phn hypothesized 0.84 0.83 0.61 0.60

Table 1. Correlation coefficient for the 1344 TIMIT test sentences between various methods of calculating
the ROS with the phonetically hand transcribed calculated ROS.
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Figure 3. The correlation of the correct word tran-
scription method with the hypothesized word tran-
scription for the WSJ0-93 Eval sentences, based on
the IMD formula. The dashed lines are drawn at
w4+ 1.65*0.

better technique than hypothesized phones for estimating
the ROS. This may be because the word models provide a
constraint in addition to the acoustic-phonetic information
which helps to determine the phone boundaries.

4.2. Adapting the ASR System to Fast Speech

Based on our observations in Section 3, we decided to adapt
our MLP phonetic estimator to fast speech and to modify
the duration constraints in the word models.

4.3. Adapting the MLP

We chose the top 5% fastest sentences (a total of 367) from
the WSJO0 training data (C = ROS Cutoff = g + 1.650 =
16.17 phones/sec). We adapted our 4000 hidden unit MLP
phonetic probability estimator, which was already trained
on all of WSJ0, by retraining it on these fast sentences for
three more epochs.

We examined the word recognition error rate on the
WSJ0-93 evaluation set for the fast sentences (with ROS >
C') and slow and medium sentences (with ROS < C), where
C, the cutoff, was either defined to be p+1.000 or p+1.650
(Table 2).

From Table 2 we conclude that by lowering the ROS cut-
off from 1.650 to 1.000 and allowing more sentences to ben-
efit from the fast-speech modification, the overall improve-
ment for the test set increases. Another observation from
the Table 2 is that estimating the ROS using the correct
word transcriptions improved the performance more than
using the hypothesized words, and the latter was in turn
better than using the hypothesized phones. This is in line
with what we had predicted in Section 4.1.

4.4. Modeling the Duration of Fast Speech

We then adjusted the durational models of phones in order
to compensate for the fast speech effects. Our current phone
model, shown in Figure 4.a, requires a minimum duration
constraint.

We experimented with various schemes such as reducing
the number of states per phone and increasing the phone
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a Regular word model for "at" b. Graded Scaling of the Probabilities

Figure 4. Examples of word models for “at”.

[ Manner | Scaling Factor | Probability |
Stops 0.0 0.70
Affricates 0.2 0.74
Fricatives 0.2 0.74
Nasals 0.4 0.80
Liquids 0.7 0.84
Glides 0.7 0.84
Vowels 1.0 0.90

Table 3. The scaling factor in the left column is a
subjective measure of relative duration change for
a particular manner of articulation; the right col-
umn is a mapping from the scaling factor to the
probability range [0.7,0.9].

exit probability based on manners of articulation. Increas-
ing the phone exit probability improved the error the most.
The intuition behind this is that certain manners of articu-
lation (e.g. vowels) are more likely to shorten in fast speech
than others (e.g. stops) [3]. Therefore we increased the
exit probabilities in a graded scale with stops at the bot-
tom of the scale, vowels on top, and all other phones in
between. The assigned probabilities for the 0.7-0.9 lexicon
are reported in table 3. The scaling factor is a subjective
measure of relative duration change for a particular man-
ner of articulation. Although the scale factors have not been
optimized, this scaling method improves the error rate on
fast speech. The results are reported in Table 4.

[ Rel. Percent Improvement in W.E.R. for WSJ-93 Eval Set ]

[ ROS Estimation || fast | overall (215 sents) |
Corr. Word (1deal) 24.5% (50 sents) 10.6%
Hyp. Word 22.6% (37 sents) 6.2%
Hyp. Phone 23.2% (44 sents) 5.6%

Table 4. The table shows the percent improvement
in recognition word error for WSJ-93 Evaluation
set.

4.5. Merging the Two Solutions

We combined the most promising of the approaches we
tested. We used the phonetic probabilities from the adapted
net and, for decoding, used the lexicon with exit probabil-
ities increased between 0.7 and 0.9. The improvements on
this combined system was slightly less than the improve-
ments with the tuned lexicon alone. Perhaps both modifi-
cations are making up for the same fast speech differences,
and when combined together, may do “over-modification”.

5. CONCLUSIONS

In earlier work [5], we conducted a number of exploratory
experiments to determine the likely sources of speech recog-
nition errors due to fast speech. We concluded that both
the acoustic-phonetic and the phonological differences are
sources of higher word error rates.



Relative Percent Improvement in Word Error for WSJ-93 Eval Set Using MLP Adaptation

C = pu+1.000

C=u+1.650

ROS Estimation Criteria fast | overall (215 sents) fast | overall (215 sents)

Correct Word (idealized) [[ 15.0% (50 sents) 6.8% 16.7% (33 sents) 5.6%
Hypothesized Word 14.4% (37 sents) 4.3% 10.2% (21 fast) 1.9%
Hypothesized Phone 10.9% (44 sents) 3.1% 15.5% (17 fast) 1.2%

Table 2. The table shows the percent improvement in recognition word error for the WSJ-93 Evaluation
set. Each row shows a different method for estimating the ROS (see text for explanation). The “fast”
sub-column is improvement of the fast sentences (which are over the cutoff) relative to the baseline system,
and the “overall” sub-column is the percent improvement for the whole test set.

We studied various methods of measuring ROS for a novel
sentence and discussed the merits of each. We concluded
that in the absence of phonetic hand transcription, using the
correct word transcriptions was the best method for calcu-
lating ROS, followed by both the hypothesized word and
phone transcriptions. If the word recognition accuracy is
acceptable, the ROS calculation based on the hypothesized
word method is superior to hypothesized phone method;
otherwise, the latter may be better than the former. Hy-
pothesized phone method is useful for measuring the ROS
of sentences for which we do not have word models.

We also implemented modifications to our ASR system
to make it more robust to fast speech. We adapted our
MLP phonetic probability estimator and changed the word
models in our lexicon to better model the durations of fast
speech. The modification with the most performance gain
was obtained by modifying transitional probabilities, where
the exit probabilities for the vowels were increased to 0.9,
the stops to 0.7, and the rest of the phones gradually be-
tween 0.7 and 0.9. Assuming an ideal ROS estimator (which
knows about the correct word transcription), the relative
improvements for both fast and all sentences were signifi-
cant, with p < 0.01 and p < 0.05 respectively. The rela-
tive improvement on the fast sentences were also significant
(p < 0.01) when ROS was estimated based on the hypoth-
esized words and phones method. The hypothesized words
criterion was slightly better than hypothesized phones cri-
terion in estimating the ROS of a novel sentence.

As a final note, although some of the improvements may
seem insignificant with respect to a large collection of sen-
tences, an ROS-tuned system increases robustness to fast
speakers, for whom the system might fail seriously. For ex-
ample, for the fastest sentence in WSJ0-93 evaluation set,
our baseline system has a word error of 40%. The ROS-
tuned system, however, reduces this error to 20%, effectively
reducing the word errors by 50%. This reduced degradation
for the extreme cases could help user acceptance of ASR
technology.

6. FUTURE DIRECTIONS

Here, we have reported a significant improvement in recog-
nition accuracy for fast sentences. However, error rates for
fast sentences are still significantly higher than for normal
sentences. The following is a sketch of further research:

e For applications where ROS must be measured in a
smaller granularity than of a sentence, ROS may be
measured per phone, per 1 second intervals, or per
group of syllables. Distributions of this variable may
be sufficient, or perhaps phone-specific measures may
be required. For instance, the duration of a phone
in a given utterance may be compared to the average
(perhaps the context dependent average) duration of
a phone, and a standardized Z value may be calcu-
lated to determine how the phone duration compares
to the ideal phone. Since phone recognition is more
error prone than broad category phone class recogni-
tion, the latter may be performed on the novel utter-
ance instead. To get a smoothed estimate of the ROS

variations along the whole utterance, the ROS may be
calculated successively for overlapping time windows.

e Although rule-based pronunciation modeling did not
reduce word error, this avenue of research still seems
like a likely source of improvements for conversational
speech. More specific applications of the reduced pro-
nunciations may be required.

e Adapting the acoustic models and the word model du-
rations improved the error for fast sentences. Combin-
ing the two methods, though, was not always benefi-
cial. Studying the interaction between these two adap-
tations may lead to better robustness techniques. In
particular, we are considering the use of a discriminant
HMM approach [1] to simultaneously learn the acoustic
and phonetic dependencies on rate.
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