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ABSTRACT

In this report we present experimental and theoretical re-
sults using a framework for training and modeling contin-
uous speech recognition systems based on the theoretically
optimal MAXIMUM A POSTERIORI (MAP) criterion. This
is in constrast to most state-of-the-art systems which are
trained according to a MAXIMUM LIKELIHOOD (ML) crite-
rion. Although the algorithm is quite general, we applied
it to a particular form of hybrid system combining HiD-
DEN MARKOV MoODELS (HMMs) and ARTIFICIAL NEURAL
NETWORKS (ANNSs) in which the ANN targets and weights
are iteratively re-estimated to guarantee the increase of the
posterior probability of the correct model, hence actually
minimizing the error rate. More specifically, this training
approach is applied to a transition-based model that uses
local conditional transition probabilities (i.e., the posterior
probability of the current state given the current acous-
tic vector and the previous state) to estimate the posterior
probabilities of sentences. Experimental results on isolated
and continuous speech recognition tasks show an increase
in the estimates of posterior probabilities of the correct sen-
tences after training, and significant decreases in error rates
in comparison to a baseline system.

1. INTRODUCTION

1.1. Maximum a Posteriori (MAP) Framework

In statistical pattern classification, it is known that the sys-
tem leading to the minimum probability of error is the one
that is trained to maximize the a posteriori probability of
the correct class conditioned on the evidence [1] and uses
that same criterion during recognition. Thus, in the case
of speech recognition, if X = {z1,...,%n,...,zN} Tepre-
sents the input sequence to be classified, M; (: =1,...,1)
the possible models, I the parameter set of the language
model (i.e., both a lexicon and a probabilistic grammar),
and © the acoustic model parameters, X will be optimally
assigned to the sentence associated with model M if

M; = argmax P(M;|X,L,0), i=1,...,1 (1)

¥y

The ideal training algorithm should determine the set of
parameters (©,L) that will maximize P(Mu;|X;, L, ©) for
all training utterances X; (j = 1,...,J), associated with

1
My, e,

J
®,1) = argmax P(Mu,|X,;,L,0©) 2)
(6,1) g [1 P, ) (@)

J=1

1 M.; represents the model associated with the specific input
sequence X; that is known at training time.
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with the following constraint:

I
> P(Mi|X,L,0) = 1 (3)

=1

for every X, and where the sum over i represents the sum
over all possible models. Note that this constraint makes
the Maximum a Posteriori (MAP) criterion (2) discrimi-
nant. Indeed, when increasing the posterior probability of
the correct model, the total probability mass assigned to
the other models will automatically be reduced.

1.2. Maximum Likelihood (ML) Framework

Despite the optimality of the MAP criterion, most speech
recognition systems are trained according to a maximum
likelihood criterion that maximizes, in the parameter space,
the likelihood of the data given some model. In HIDDEN
Markov MODELS (HMMs), this likelihood can be repre-
sented as P(X|M,0). Classically, the likelihood formula-
tion of (1) is obtained by applying Bayes’ rule:

P(X|M,L,®)P(M
P(X|L,0)

L,0) (4)

P(M|X,L,0)=

For practical reasons, it is assumed that:

1. The parameters © of the acoustic model are indepen-
dent of the parameters L of the language model, yield-
ing

P(X|M,L,0)
P(M|L,0)

P(X|M,©) (5)
P(MI|L) (6)

~
~
~
~

2. Despite the fact that © and L vary during training,
P(X|L,0©) is assumed to be constant (leading to the
poor discrimination properties of ML based systems).
To understand this, imagine that a change in © hap-
pened to increase the likelihood of alternate models as
well; in this case both the numerator and the denomi-

nator of (4) might increase.

1.3. Hybrid HMM/ANN Systems

In recent years there has been a significant body of work,
both theoretical and experimental, which has aimed to over-
come some of the limitations of the current HMM-based
systems by combining HMMs and ANNs. In particular,
we have shown that fairly simple layered structures can
be used to estimate local emission probabilities for HMMs
[2]. This approach is now usually referred to as a HYBRID
HMM/ANN sysTEM. Although the initial architecture
(which we have called the DiscRIMINANT HMM) was de-
veloped to estimate global posterior probabilities P(M|X),
theoretical as well as implementation problems led us to
a simplified version of this approach that was still based
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on a likelihood criterion discriminantly trained at the local
(HMM state) level. A number of speech recognition sys-
tems based on this latter approach have been proved, in
controlled tests, to be to be both effective in terms of accu-
racy (comparable or better than equivalent state-of-the-art
systems) and efficient in terms of CPU and memory run-
time requirements [3].

1.4. Posterior-based Hybrid HMM/ANN
In [4], we presented a new hybrid HMM/ANN approach

that directly optimizes the acoustic parameter set © ac-
cording to the MAP criterion, i.e., maximizing P(M|X,O)
where M is the correct HMM associated with X. In prin-
ciple this approach should minimize the error rate; cross-
validation will be used to guarantee that minimization of
the error rate happens not only on the training data, but
also on an independent test set. This algorithm, which we
call REMAP (RECURSIVE ESTIMATION AND MAXIMIZATION
OF A POSTERIORI PROBABILITIES), iteratively re-estimates
ANN targets and weights to guarantee an increase of the
posterior probability of the correct sequence. We show in [4]
that estimation of the new ANN targets can be done using
“forward” and “backward” recurrences that are reminiscent
of the EM-based Forward-Backward training algorithm of
standard HMMs.

In [5] we reported initial experimental results on an iso-
lated word recognition task. Here, we report extended ex-
perimental results on the earlier task and on a small con-
tinuous speech recognition task (all the experiments were
done using only acoustic information). In addition, we
describe theoretical ideas on how to incorporate language
information into our framework. We begin by briefly re-
viewing our transition-based model, DiscRIMINANT HMM
(DHMM), and our training algorithm, REMAP.

2. DISCRIMINANT HMM (DHMM)

REMAP is developed in the context of a transition-based
model (though it is also applicable to non-transition-based
models). Furthermore, the model uses local conditional
transition probabilities (i.e., the posterior probability of the
current state given the current acoustic vector and the pre-
vious state) to estimate the global posterior of sentence
models. Thus, it is a true recognition model, i.e., it directly
maps from acoustic sequences to sentences, unlike Hidden
Markov Models (HMMs) that model the inverse modeling
(the likelihood of producing an acoustic sequence).

In [2] it was shown that it is possible to compute the
global posterior probability P(M|X,L,©) of (1) and (2)

as:

P(MIX,L,0) = Y P(M,T;|X,L,0) (7)
VF]'

= ZP(M|F],X,L,®)P(F]|X,L,®)
VF]'

(8)
in which “VI';” represents all possible (legal) state se-
quences in M. Let ¢, denotes the specific state visited at
time n for path T';, with ¢; . € @ = {¢",...,¢", ¢%,...,¢"},
the set of all possible HMM states making up all possi-
ble models M. Considering the second factor of (8) as the
acoustic model and assuming that it is independent of the
langnage model parameters (coupled with other standard
assumptions [4]), we can then rewrite it as:

N
P(1]X,0) = [] P(asnlayn-1,70,0) (9)

n=1

The first factor in (8) can be considered independent of the
acoustic sequence X (since the state sequence is assumed)
and will be further discussed later in this paper. An exam-
ple of the model is given in Figure 1.

These new acoustic models, referred to as DISCRIMINANT
HMMs (DHMM)?, are thus now described in terms of
CONDITIONAL TRANSITION PROBABILITIES P(qh|¢f_1, 2,),

in which ¢, stands for the specific state ¢° of Q hypothe-
sized at time m. As with traditional hybrid HMM/ANN
systems, conditional transition probabilities can be esti-
mated by an ANN (in our case a multilayer perceptron)

with K output units and in which the acoustic input z,°
is complemented by a set of additional input units repre-

senting the state ¢° hypothesized at the previous time step
n—1. The conditional transition probabilities are thus func-
tions of ©, the ANN parameter set, and can be written as

P(sz|qfl—1; In, @)

3. REMAP FOR DISCRIMINANT HMMS
3.1. Motivations

Discriminant HMMs as described above use conditional
transition probabilities as the key building block for acous-
tic recognition. It is, however, well known that estimat-
ing transitions accurately is a difficult problem [6]. In our
previous hybrid systems, the targets used for ANN train-
ing are typically given by the best segmentation resulting
from a Viterbi alignment. This procedure thus yields rigid
transition targets, which may not be optimal in the case of
training (and testing!) of conditional transition probabili-
ties.

One possible solution to this problem is to use a “full”
MAP algorithm taking all possible paths into account to
estimate conditional transition probabilities. This would
lead to smooth estimates of ANN targets and (implicitly)
to more training examples (including “negative” examples)
since all the vectors of each training sentence will be as-
signed, with different probabilities, to all possible transi-
tions permitted by the associated HMM.

3.2. Problem Formulation
Global MAP training of Discriminant HMMs should find

the optimal parameter set © maximizing (2). In the fol-
lowing derivation we omit the dependency on the lan-
guage model L; this will be further discussed in Section
5. Although, in principle, we could use a generalized back-
propagation-like gradient procedure in © to maximize (2)
(see, e.g., [7]), an EM-like algorithm should have better con-
vergence properties, and would preserve the statistical in-
terpretation of the ANN outputs. In this case, “full” MAP
training of transition-based HMM/ANN hybrids requires a
solution to the following problem: given a trained ANN at
iteration ¢ providing a parameter set ©" and, consequently,
estimates of P(qh|zn, ¢5_1,©), how can we determine new
ANN targets that:

1. will be smooth estimates of conditional transition prob-
abilities, V possible (k,f) state transition pairs in M
and Vr € [1,n].

2. when used in training the ANN for iteration ¢+ 1, will
lead to new estimates of '+ and P(¢f|zn, ¢k_1, ©'1)
that are guaranteed to incrementally increase (2)?

2Tt could be argued that these models are no longer HMMs
but more like “stochastic finite state acceptors”.

3 As done with previous hybrid HMM/ANN systems, @y, will
usually be replaced by X:i'g ={Zn_c,.. ., &n,...,Tpyq} totake

some acoustic context into account.



P(/K/ | IK/, X)
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P(/ael | /k/, x)

Figure 1.
acoustic observation z, at time n.

In [4], we prove that a re-estimation of ANN targets that
guarantee convergence to a local maximum of (2) is given
by*:

P*(qu|zn;qlri—1):P(q'ﬁ'X;qu—l;@t;M) (10)
which means that the new ANN target associated with z,,
and a specific transition ¢" — ¢* has to be calculated as the
probability of that specific transition CONDITIONED ON THE
WHOLE TRAINING SENTENCE X and the associated model
M. Roughly speaking, our global optimization goal (2) is
realized through the estimation of the targets (that corre-
spond to a “local” acoustic window, e.g., 100 ms) by using
the whole utterance. In [4], we further prove that alter-
nating ANN target estimation (the “estimation” step) and
ANN training (the "maximization” step) is guaranteed to
incrementally increase (2) over t.

The remaining problem is to find an efficient algorithm
to express P(¢5|X,qk_1, M) in terms of P(qi|zn,qk_1, M).
This can be obtained by observing that:

p(qfl—l’qfl’ M|X)
>ooplah_y, b, M|X)

in which the terms on the right hand side can be computed
with « (forward) and § (backward) EM-like recurrences us-
ing only local conditional transition probabilities.

3.3. REMAP Training Algorithm

The general scheme of the REMAP training of hybrid
HMM/ANN systems can finally be summarized as follow.
Starting from some initial net providing P(g4|zn, ¢k _1, %),
t =0, V possible (k,£)-pairs®:

1. Compute ANN targets P(¢5|X, ¢k_;, 0%, M) according
o (11), ¥ possible (k, £) state transition pairs in M and
Vn € [1,n].

2. For all z,,’sin X, train the ANN to minimize the rela-
tive entropy between the outputs and targets. This
provides us with a new set of parameters ©', for
t=1t+1.

3. Iterate from 1 until convergence.

This procedure is thus composed of two steps: an Estima-
tion (E) step, corresponding to step 1 above, and a Maxi-
mization (M) step, corresponding to step 2. Convergence of
this training scheme can be proved [4]. In this regard, it is
reminiscent of the EM algorithm [8]. However, in the stan-
dard EM algorithm, the M step involves the actual maxi-
mization of the likelihood function. In a related approach,

4In the following, we consider only one particular training
sequence X associated with one particular model M. It is, how-
ever, easy to see that all of our conclusions remain valid for the
case of several training sequences X;, : = 1,..., 1.

5For instance, by training up such a net from a labeled

database like TIMIT.

P(/ael | /agl, x)

An example of a Discriminant HMM for the word “cat™.

Pt/ | 1t], %)

!

P(/t/ | lael, X)

The variable z refers to a specific

System Error Rate | Posterior
Baseline Hybrid 3.4% -
DHMM, pre-REMAP 2.7% 0.1269
1 REMAP iteration 2.5% 0.1731
2 REMAP iterations 2.5% 0.1773

Table 1. Training and testing on noisy isolated dig-
its.

usually referred to as GENERALIZED EM (GEM) algorithm,
the M step does not actually maximize the likelihood but
simply increases it (by using, e.g., a gradient procedure).
Similarly, REMAP increases the global posterior function
during the M step (in the direction of targets that actually
maximize that global function), rather than actually max-
imizing it. Recently, a similar approach was suggested for
mapping input sequences to output sequences [9].

4. EXPERIMENTS AND RESULTS

We report on experiments with isolated and continuous
speech, where recognition was based on acoustic informa-
tion. The isolated speech recognition task we started with
is the Digits+ corpus in use at ICSI, which is a subset of
a larger database recorded over a clean telephone line at
Bellcore. Tt is composed of 200 speakers saying the words
“zero” through “nine”, “oh”, “no”, and “yes”. For the ad-
ditive noise in these experiments, we used automotive sound
that was recorded over a cellular telephone. Noise was ran-
domly selected from this source and then added to the clean
speech waveforms (10db S/N ratio). In order to better uti-
lize the data we use a jack-knife procedure. For each of four
experiments, three fourths of the data was used for training
and cross-validation, and one fourth was used for testing.
Specifically, in each experiment we use 1720 utterances for
training, 230 for cross-validation and 650 (from 50 speak-
ers) for testing. All our nets have 214 inputs: 153 inputs for
the acoustic features, and 61 to represent the previous state
(one unit for every possible previous state). The acoustic
features are combined from 9 frames with 17 features each
(RASTA-PLP8 + delta features + delta log gain) computed
with an analysis window of 25ms computed every 12.5 ms
(overlapping windows) and the sampling rate was 8Khaz.
The nets have 200 hidden units and 61 outputs. The com-
bined results for all the four cuts are summarized in Table
1. Note that the row entitled “Baseline Hybrid” refers to
an ANN trained on targets of 1’s and 0’s that have been
obtained from a forced Viterbi procedure by our standard
HMM/ANN system as described in [2]; the row entitled
“DHMM, pre-REMAP” means a Discriminant HMM using
the same training approach, with hard targets determined
by the first system, and additional inputs to represent the
previous state. The rightmost column gives the average
probability of the correct model over all test words as de-
termined during recognition. Our recognition rate after the



System Error Rate
DHMM, pre-REMAP 14.9%
1 REMAP iteration 13.6%
2 REMAP iterations 13.2%

Table 2. Training and testing on continuous num-
bers, no syntax, no durational models.

first and second iterations of REMAP is significantly better
(at p < 0.05 level) than the baseline hybrid system. Al-
though for this task the contribution of the REMAP step
is small, combining it with the transition-based, posterior
framework as done in the Discriminant HMM, gives a sig-
nificant improvement.

Our next step was to test whether this improved perfor-
mance can also be obtained with continuous speech. For
this purpose we chose the Numbers’93 corpus. It is a
continuous-speech database collected by CSLU at the Ore-
gon Graduate Institute. It consists of numbers spoken nat-
urally over telephone lines on the public-switched network
[10]. The Numbers’93 database consists of 2167 speech files
of spoken numbers produced by 1132 callers. We used 877
of these utterances for training and 657 for cross-validation
and testing (200 for cross-validation) saving the remaining
utterances for final testing purposes. There are 36 words
in the vocabulary, namely zero, oh, 1, 2, 3,...,20, 30, 40,
50,...,100, 1000, a, and, dash, hyphen, and double. Our
results are summarized in Table 2.

The improvement in the recognition rate as a result of
REMAP iterations is significant at p < 0.05. However all
the experiments were done using acoustic information alone.
Using our (baseline) hybrid system under equal conditions,
i.e., no duration information and no language information,
we get 31.6% word error; adding the duration information
back we get 12.4% word error. We are currently experi-
menting with enforcing minimum duration constraints to
our framework.

5. LANGUAGE MODEL

Starting from (8), and assuming that given the state se-
quence and the language model, we can omit the depen-
dence on the acoustic sequence, we get:

P(Mi|X,0,L) &~ Y P(T|X,L,0)P(Mi[T', L,0) (12)
T

Using Bayes’ rule, we also have:

P(I|M,®L)P(M|L,©)
P(T|L,©)

P(Mi|X,0,L) = Y P(I'|X,0,1)
T

If we further assume that the effect of the language model
can be ignored in the acoustic term, ie., P(I'|X,0,L) =
P(T'|X,©), we finally have:

P(I|M, L,0)P(M|L,0©)

P(Mi|X,0,L) = Y P(I'|X,0) A

T

in which P(T'|X,©) is computed as described in Section 2.
P(M|L,O) can be assumed independent of the acoustic
model parameters and can be estimated using standard
language modeling techniques. In principle P(I'|M, L, O)
and P(T'|L, ©) can be estimated during training by dynamic
programming techniques similar to our o and f recurrences
[4], and the ratio of these two terms represents the addi-
tional state transition information that is gained by know-
ing the specific word sequence.

6. CONCLUSIONS AND FUTURE WORK

We presented a discriminant training algorithm for hybrid
HMM/ANN systems based on a global MAP criterion. Our
results on small isolated and continuous speech recognition
tasks show an increase in the estimates of the posterior
probabilities of the correct sentences after training, and sig-
nificant decreases in error rates in comparison to a baseline
system. However, all of our experiments were done using
acoustic information only. We have also described a way
to incorporate the language model in our framework, which
will be tested in the near future.
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