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ABSTRACT

The current “state-of-the-art” in phonetic speaker re@igmuses
relative frequencies of phone n-grams as features foritigin
speaker models and for scoring test-target pairs. Typicdlése
relative frequencies are computed from a simple 1-bestelden
coding of the input speech. In this paper, we present resnltie
Switchboard-2 corpus, where we compare 1-best phone degdi
versus lattice phone decodings for the purposes of penfay ptio-
netic speaker recognition. The phone decodings are useairio c
pute relative frequencies of phone bigrams, which are tlseal u
as inputs for two standard phonetic speaker recogniticlesys a
system based on log-likelihood ratios (LLRs) [1, 2], and stsymn
based on support vector machines (SVMs) [3]. In each experi-
ment, the lattice phone decodings achieve relative reshgtin

recognition has yet to be realized—mainly because pastragste
have used 1-best decodings instead of lattice decodingsitoste
relative frequencies of phone n-grams. In this paper, we-com
pare 1-best phone decodings vs. lattice phone decodingbdor
purposes of performing phonetic speaker recognition. Tiome
decodings are used to compute relative frequencies of phiene
grams, which are then used as inputs for two standard plooneti
speaker recognition systems: a conventional system baskedo
likelihood ratios (LLRs) [1, 2], and an SVM-based systemikm

to that of Campbell et al. [3]. The results indicate thatidatde-
codings provide a much richer sampling of phonetic pattdras
1-best decodings. Note that a similar comparison betweeodde
ing methods—with similar results—was recently reported inith
the field of language recognition [8]. We were unaware of this
work until the time of its publication, shortly after the saission

equal-error rate (EER) of between 31% and 66% below the EERS f tnig paper.

of the 1-best phone decodings. Our best phonetic systerawashi
an EER of 2.0% on 8-conversation training and 1.4% when com-
bined with a GMM-based system.

1. INTRODUCTION

Most conventional speaker recognition systems use Gaussia

ture models (GMMs) to capture frame-level characteristta
person’s voice, where the speech frames are assumed todse ind
pendent of one another. Because of this independence assamp
GMMs often fail to capture certain types of speaker-spedaific
formation that evolve over time scales of more than 1 frang. F

The paper is organized as follows: Section 2 describes she ta
and dataset. Section 3 describes our phone recogniticensysid
outlines a procedure for estimating relative frequencfeghone
bigrams. Section 4 describes the metrics that were usedito tr
speaker models and score test-target pairs. Section SluEstne
experiments that we performed and discusses the resultallyri
section 6 provides a summary of our findings.

2. TASK AND DATA

The experiments reported in this paper were performed on the
NIST 2003 Extended Data task, which uses phases Il and Il of

example, since words usually span many frames, GMMS tend t0he Switchboard-2 corpus. The combination of phases Il #nd |

be poorly suited for modeling differences in word usageo{@tit)
between speakers. In [4], Doddington used word n-grams ttemo
speaker-specific patterns of word usage.

Another recent effort at moving beyond the standard GMM-
based paradigm is to explicitly model phone sequences uged b
speakers. This line of research, which is generally refetoeas
phonetic speaker recognitipiwvas pioneered by Andrews et al.,
who used relative frequencies of phone n-grams to captareese
tial patterns in an individual’s speech [1, 2]. This work veabse-
quently extended in various papers, such as the work of the “S
perSID” team at the JHU 2002 Summer Workshop [5, 6, 7]. In

amounts to a total of 14257 conversation sides with an aeerag
length of approximately 2.5 minutes of speech. Under the Ex-
tended Data task, the conversation sides are divided ingplit8.
There are no common speakers between any two splits. Thus,
when one split is selected for testing, the remaining 9 Spkin

be used to train a background model.

The NIST Extended Data task comprises 5 different training
conditions: 1, 2, 4, 8, and 16-conversation training. rs {hé-
per, we provide results for 1-conversation and 8-conviensatain-
ing. These two training conditions provide a reasonablgrimia-
tive view of how speaker recognition accuracy is affectedHhsy

2003, Campbell et al. used support vector machines (SVMs) to amount of available training data.

train phonetic speaker models [3].
While these phonetic approaches have generally been duite e
fective, it is our opinion that the true potential of phooetpeaker

This material is based upon work supported by the Nationanse
Foundation under grant No. 0329258

3. PHONETIC PROCESSING

The following section describes the steps involved in caingu
relative frequencies of phone bigrams from conversatidassi



3.1. Speech/non-speech detection

For the experiments in this paper, we used a speech/noctspee
detector developed at SRI International [9] to remove nueesh
frames from the input audio. This step breaks the originaven
sation sides into smaller chunks containing mostly speech.

3.2. Phonerecognition

After removing non-speech frames from the input conversa-
tion sides, we used the DECIPHER speech recognition sys-
tem [9] developed by SRI International to perform both 1tbes
and lattice phone decoding. Our particular version of DE-

CIPHER uses gender-dependent, monophone acoustic models,

speaker model and test conversation side that are scoratstiga
each other).

4.1. Thelog-likelihood ratio (LLR) approach

The traditional method for scoring a test-target pair in artic
speaker recognition system is to compute the log-likelihdio
(LLR) of the target speaker model vs. a background model. For
this paper, we use the following equation to compute the LR f
test conversation sidé and target speaker modBt

p(di|spks)

M
LLR(A,B) = p(dilconvSidey) lo
(4.5) =2 p(d] 108 d k)

i=1

®)

where each monophone is modeled by a 3-state hidden MarkovHere,p(d;|convSidea), p(di|spks), andp(d;|bkg) refer to the

model (HMM). The acoustic model was trained on the Switch-
board 1 corpus using MFCC features. Note that the phone decod
ings were performed in open-loop mode (i.e. we used a unigram
phone language model with uniform probabilities).

3.3. Estimating relative frequencies of phone bigrams

3.3.1. 1-best phone decoding

Given a phone decoding (either 1-best or lattice), the ntef s
is to compute the relative frequency of each phone bigranmr. Fo
the case of a 1-best phone decoding, this step is straiglafdr—

we simply count the number of times each phone bigram appears

in the hypothesized phone sequence and then divide by thie tot
number of bigrams. Given some input audld, we have:

count(d;|X)
Sar, count(di| X)

p(di|X) = @)

Note thatd, .. ., dn represents the set of unique phone bigrams,
andcount(d;| X) refers to the number of times phone bigradm
appears in the decoding of the input audid, The termp(d;| X),
represents the observeelative frequencyof d;, which we can
interpret as the sample probabilitydyfwithin the 1-best decoding
of X.

3.3.2. Lattice phone decoding

For the case of a lattice phone decoding, we can use the fajow
equation to compute the expected count of phone bigtagiven
an input speech signak':

Bleount(di| X)] = 3" p(Q|X) - count(d:|Q)  (2)
Q

probability of phone bigrand; for conversation sided, speaker
model B, and for the background model, respectively. For the
experiments in this paper, we used relative frequenciegpated
from splits 6 through 10 as a background model—that is, te esti
mate thep(d;|bkg) terms in equation (3)—for all speaker models
belonging to splits 1 through 5, and vice versa. Similarly,wsed
relative frequencies derived from the training convecsasides of
speakeB to estimatep(d;|spkgs) foralli € 1,..., M. Note that
the form of the LLR used in equation (3) is equivalent to theedi

in [1], [2], and [3].

Given the large number of speakers that were used to train
the background models (each background model comprises ove
500 speakers), we might expect our estimateg(df|bkg) to be
reasonably robust. The amount of data available for trgitiire
speaker models, on the other hand, is considerably less—2anly
8 conversation sides, depending on the number of trainingese
sations. Thus, our estimates pfd;|spks) may be fairly noisy,
particularly for the case of 1-conversation training. Tokenaur
probability estimates more robust, we applied the folla@yviim-
ear smoothing model to relative frequencies extracted fiiven
speaker:

pe(dilspka) = (1 — @) - p(dilspka) + a - p(dilbkg)  (4)

In the above equatior, (d;|spka) represents the smoothed rel-
ative frequency ofd;, which we compute by taking a weighted
average ofp(d;|spka) andp(d;|bkg). The parametery, deter-
mines the amount of smoothing, and can be set anywhere hetwee
0 and 1. Note that a similar smoothing model was indepengentl
developed and reported by Baker, et al. in [10].

We can also define an analogous model for smoothing rel-
ative frequencies extracted from conversation sides (itbe
p(di|convSide 4 ) terms in equation (3)). However, in practice, we
have found the benefits of smoothing #i@;|convSidea) terms
to be fairly negligible, at least for the purposes of compyitiLR

Here,Q represents a hypothetical phone sequence correspondingscores. For this reason, we only apply smoothing to reldtie

to the entire utteranceX, andp(Q|X) represents its posterior
probability, as determined by the phone recognizer. Then,ter
count(d;|Q), refers to the number of timed; appears within
phone sequenc@. A standard forward-backward approach can
be used to efficiently compute the expected counts in equéio

quencies that correspond to speaker models (i.epttigspks)
terms).

4.2. Thesupport vector machine (SVM) approach

Once we have a complete set of expected counts, we can use equan their 2003 NIPS paper, Campbell et al. demonstrated agifwon

tion (1) to convert them into relative frequencies.

4. MODEL TRAINING AND SCORING

In this section, we describe two methods for training speake
models and for scoring test-target pairs (i.e. a partictdeget

speaker recognition system based on support vector macfdhe
One of the main innovations of the paper was the following-'ke
nelized” version of the log-likelihood ratio:

k(A, B) :i”

i=1

(di|convSidea) p(di|convSiden)

5
\/p(di|bkg) V/p(di|bkg) ©




The above expression follows from replacipgd;|spks) with
p(di|convSideg) in equation (3) and then applying the approx-
imation,logz ~ z — 1. If we ignore the offset term in the re-
sulting expression, we arrive at the kernel shown in equa).
Note thatk(A, B) is simply an inner product of relative frequen-
cies of phone bigrams, where each relative frequency idelivby
the square root of the corresponding relative frequenay ftice
background model. To allow for affine decision boundarieshe
vector of relative frequencies can be augmented with a bias.t

Campbell et al. used the kernel in equation (5) to train SVM-
based speaker models [3]. For this paper, we used all of the co
versation sides in the background model of a given speakdeimo
as negative training examples for that model. This amouwnts t
approximately 6740 negative training examples for evepakpr
model. To balance the number of positive versus negativenexa
ples, we weighted the training errors for each positive gxarhy
%, whereP and N represent the total number of positive and neg-
ative training examples, respectively.

Given that we apply linear smoothing to relative frequesicie
when computing LLRs, it might seem reasonable to use a simila
form of linear smoothing on the(d;|convSide) terms in the
SVM kernel of equation (5). However, since SVM classifiers ar
invariant to uniform scaling and shifting of the input fetwec-
tors, applying a linear smoothing model like that of equat()
would have no effect on the output results of an SVM-based sco
ing system. For this reason, we do not apply smoothing for any
experiments involving SVMs.

5. EXPERIMENTS

Experiments were conducted on the 1-conversation and tioe8-
versation training conditions. For each training conditiove ran
experiments on all four possible combinations of decodieghod
and scoring method (i.e. 1-best decoding vs. lattice degpaind
LLRs vs. SVMs). As explained in section 4.1, equation (4) was
used to smooth the(d;|spk.) terms for the LLR scoring method.
Smoothing parameters for equation (4) were trained by fgdin
the value ofa that minimizes the equal-error rate (EER) for each
combination of decoding method and number of training cenve
sations, as measured on NIST’'s 2001 Extended Data set. iNgte t
the 2001 Extended Data set uses the Switchboard-1 corpich wh
is similar in format to Switchboard-2, but comprises an retyji
different set of speakers. To do SVM training and scoring, we
used the SVNi9* package with: = 1 [11]. We also included a
bias term in the kernel of equation (5).

The EERs for the experiments are listed in table 1, and the
corresponding detection-error tradeoff (DET) curves am@w in
figure 1. We have also listed the relative reductions in EER th
are achieved by using lattice decodings over 1-best degedm
table 1. The results show that the EERs for the lattice degsdi
are substantially lower than the corresponding EERs fol.thest
decodings. As shown in table 1, the lattice decodings are mos
successful—both in terms of minimizing EER and in terms of the
improvement that they achieve over 1-best decodings—wheth us
in conjunction with SVMs.

To provide some perspective on these results, we note that th
EERs in table 1 for “LLRs, 1-best decoding” compare favoyabl
with those reported by Campbell et al. in [3] for the NIST 2003
Extended Data task (Campbell et al. reported EERs of 21.8% an
8.8% for LLR systems using 1 and 8-conversation training, re
spectively). For the case of SVM-based scoring, Campbaeil.et

# Training
Conversations
1 ] 8
LLRs, 1-best decoding| 16.4% | 6.1%
LLRs, lattice decoding|| 10.5% | 4.2%
relative EER reduction
using lattice decoding| 36% | 31%
SVMs, 1-best decoding| 18.2% | 5.9%
SVMs, lattice decoding| 8.5% | 2.0%
relative EER reduction
using lattice decoding| 53% | 66%

Table 1. EERs and relative reductions in EER from using lattice
decodings vs. 1-best decodings

; T T T
—#— 1-conv, SVMs, 1-best decodin
: #*- 1-conv, LLRs, 1-best decoding
\ : —#- 1-conv, LLRs, lattice decoding
5 - —% 1-conv, SVMs, |attice decoding
N : Lo §-cohv, LLRs, 1-best decoding
N —&— 8-conv, SVMs, 1-best decoding
o —2- 8-conv, LLRs, lattice decoding
‘ -£ §-conv, SVMs, lattice decoding
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Fig. 1. corresponding DET curves for the systems in table 1

reported EERs of 13.4% and 3.5% [3], which outperform those
of our “SVMs, 1-best decoding” systems. However, we not¢ tha
Campbell et al. used a “phonetic refraction” system, whictkes
use of multiple phone decodings obtained from recognizaisetd

on various languages. In spite of the fact that our system onl
uses a single English phone recognizer, the EERs achievedrby
“SVMs, lattice decoding” systems are, to the best of our Khow
edge, the lowest reported for a phonetic speaker recogrsgie-
tem on the NIST 2003 Extended Data task.

These results suggest that lattice decodings may yield more
robust estimates of the relative frequencies of phone trigrhan
1-best decodings. To support this claim, we can examinexthe
parameters that were used to smooth estimatggdfspka) in
the LLR systems. Table 2 shows thevalues that were trained
for every combination of decoding method and number of iingin
conversations. Note that thevalues represent tteptimalamount
of smoothing for minimizing EER on the Switchboard-1 data] a
should provide some indication of the robustness of theiraig
phone bigram statistics (i.e. lower values presumably point to



# Training
Conversations

1 [ 8
1-best decoding| 0.955 | 0.670
lattice decoding|| 0.920 | 0.040

Table 2. a values trained on the Switchboard-1 corpus

# Training
Conversations
1 1 8
phonetic system
(SVMs, lattice decoding)| 8.5% | 2.0%
GMM system || 6.6% | 2.6%
GMM + phonetic system| 5.0% | 1.4%

Table 3. EERs for the individual systems and for the combined

GMM + phonetic system

more sufficiently-trained models). As shown in the table dh

values are quite large for each of the systems except fotdktece

decoding, 8-conversations” system, wherés only 0.040. Note
that in every case, the values are smaller for the lattice decodings
than for the 1-best decodings. Based on this, we might sertiné
relative frequencies obtained from lattice decodings terix less

noisy than those obtained from 1-best decodings.

As a final experiment, we tried combining the output scores
from the “SVMs, lattice decoding” systems with scores afdi
from a GMM-based speaker recognition system developed bt SR
International [9]. The combination was performed by taking
simple weighted average of output scores. We used the Switch
board-1 corpus to train the combination weights. A comparis
between the EERs of the individual and combined systemsis pr
vided in table 3, and the corresponding DET curves are shown
in figure 2. The results show that the phonetic approach uged b
the “SVMs, lattice decoding” system is, too a significanteext
complementary to the GMM system. According to table 3, the
combined system achieves substantial reductions in EERtn b

the 1-conversation and the 8-conversation conditions.

6. CONCLUSIONS

In this paper, we compared 1-best phone decodings vs. dattic
phone decodings for the purposes of performing phonetiaksge

recognition. In each experiment, the lattice decodingseaeh

relative reductions in EER of between 31% and 66% below the
EERSs of the 1-best decodings. Our best lattice decodingsyst
achieves an EER of 2.0% on 8-conversation training and 1.4%

Miss probability (in %)

40 T T T

—#— 1-conv, phonetic system
*- 1-conv, GMM system

—- 1-conv, GMM + phonetic system
A 8-conv, GMM system

—&— 8-conv, phonetic system

-£- 8-conv, GMM + phonetic system
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Fig. 2. corresponding DET curves for the systems in table 3

(1]

—

2]

(5]

(6]

(7]

(8]

when combined with a GMM-based system. These results suppor [9]

the view that lattice decodings provide a much richer samypdf
phonetic patterns within speech than 1-best decodings.
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