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ABSTRACT

In order to capture sequential information and to take atdgn

of extended training data conditions, we developed an lgor
for speaker detection that scores a test segment by corgpidia
rectly to similar instances of that speech in the trainingudahis
non-parametric technique, though at an early stage in vtslde-
ment, achieves error rates close to 1% on the NIST 2001 Estend
Data task and performs extremely well in combination witkeas
dard Gaussian Mixture Model system. We also present a naw sco
ing method that significantly improves performance by captu
only positive evidence.

1. INTRODUCTION

Traditionally, speaker detection tasks have involved astradew

things differently on different occasions), and only sorhatven-
couraged by short good matches (it is conceiveable that éoplp
could produce very similar frames or even short frame sezpgn

it is precisely the long good matches that ought to be mosuluse
for speaker detection. With this in mind, we have begun ttdkai
framework for example-based speaker detection.

This research, which represents an expansion of Dragor’s SN
system, is still exploratory. Compared with GMM or Hidden
Markov Model (HMM) approaches, little is known about the be-
havior of these example-based systems. In the sectionfotioay,
we describe the design and implementation of our systembeamd t
discuss some preliminary but promising results on the NISI12
Extended Data task.

2. THEALGORITHM

minutes of training speech and a minute of test speech. UnderWe use output from an automatic speech recognizer (ASR)rto pa

these circumstances, the Gaussian Mixture Model (GMM)¢civhi
lumps all speech frames together to create a generic frardelmo
is a reasonable approach. It succeeds by virtue of its sitypli
More recent techniques, however, attempt to capitalizereatgr
amounts of data available through NIST's Extended Data task
capture speaker information that exists in longer speetterpa.
Language modeling, duration modeling, and modeling ofouesi
prosodic cues have all proven useful [1, 2, 3]. The motivatar
our research is that given enough training examples, wead a
such explicit parameterized modeling altogether, andestest to-
kens by comparing them directly to similar instances in thming
data.

tition the test and target training speech streams intoetiek
Test-target pairs are then scored, using nearest-neigieicbr
nigques, by measuring the frame-level distances betweenaes
kens and instances of matching target tokens. The followirg
sections provide greater detail.

2.1. Featureextraction

As a front-end, we create feature vectors with 20 mel-fraqye
cepstral coefficients (MFCCgJjo - C19, and their first derivatives
for a total of 40 features per 10-ms frame. Cepstral MeanrScibt
tion (CMS) is used at the utterance level to correct for somele

A speaker detection system based on such direct compasison i channel differences.

not unprecedented. Higgins et al. developed a frame-|l@aziast-
neighbor approach that was competitive with a GMM systerhén t
early '90s [4]. Dragon Systems extended this idea to se@seoic
frames a few years later with encouraging results (see igéscr

of the Sequential Non-Parametric system (SNP) in [5]). Mere
cently, the speech recognition community has begun to Iotik i
example-based techniques to enhance long-standing HMM sta
dards (e.g. [6, 7]), and in the last few months, it has come to
our attention that [8] used a dynamic time warping word-8pot
technique to find and compare similar test and training fraee
guences.

Our motivating intuition is that if we want to know whether a
test speaker is the same as the target speaker, we oughktmtoo
very good acoustic matches that are as long as possiblee Wil
are not convinced of anything by long poor matches (as pesgyle

This material is based upon work supported by the Nationanse
Foundation under Grant No. 0329258.

2.2. Token labelsfor data

Using transcriptions and time-alignments from the SRI gaézer

[9], we divide the data into tokens. These could be phoneooisv

or word bigrams or anything else. While we know from Dragon’s
work on the SNP system that short tokens like phones aretigffec
we hope to show that even more speaker-discriminating paver
contained in longer tokens. Note that because we are usifg) AS
output, both the word identity and the alignment informatare
highly errorful. To get a sense for the costs of these ermwes,
will contrast systems that use ASR output and force-aligngtth
transcripts, below.

2.3. Comparingtest and target speakers

Comparing test and target utterances involves pairwisepaom
isons between each test token and every instance of that inke



the target training data. When we compare two tokens, wehase t
Euclidian metric to calculate the distance between aligreades.

In keeping with the nearest-neighbor strategy, we retaip the
best test-target pairing for each test token.

3. EXPERIMENTS

Our experiments are based on the Extended Data Task from
the NIST 2001 Speaker Recognition Evaluation [10], a text-

Before we can take such measurements, though, we need tdndependent single-speaker detection task using datanebta

decide how to line up the frames. The simplest method is ¢mali
the first frames of the test and target tokens and the secamf

from the Switchboard-1 corpus. This data set consists ofiabo
2400 telephone conversations among 543 speakers (30224éle,

and so on, and stop when we reach the end of the shorter tokenfemale) collected in the early 1990s by Texas Instrumentse T

We might instead choose to slide the shorter token through th
longer token, looking for the best place to start matching-tm
one. A third possibility is to use some sort of dynamic timepva
ing (DTW). DTW is the standard solution to the problem of com-
paring speech tokens of different lengths since it is assuiimat
certain sounds (vowels, for example) might be more pronerta-d
tion variation than others. Recall, however, that for theppse of
speaker detection, we are really interested in long goodtmeat
Ideally, we would like to find cases where the test token negtch
the target token exactly, without any stretching or shrigkias it

is reasonable to assume that there is speaker informattbe ofu-
ration of those sounds. We compare these alignment stestaui
the next section.

Once we have a score for each test token, we need to decid
how to produce an overall score. One method is simply to take
an average of the token scores. We will call this liasic-score
Specifically, we sum the unnormalized test-token scoreslmike
by the total number of frames. A second method involves kegpi
only positive evidence. Since we are intuitively more caned by
really good scores, we usehit-score(HS) to weight good scores
more heavily than bad ones. The hit-score for an entiretéeget
comparison is computed as follows:

>

ictest tokens

number of matched framesin

HS = Score]

@)

This formulation lets bad (larger) scores drop out as dffect
zeros and gives exponentially heavier weight to good (snall
scores. The value of the constantis estimated empirically to
be 2. We compare results obtained from these different rsgori
methods in the next section.

2.4. Normalizing the scores

It is well known that raw scores need to be normalized so tiet t
scores assigned to various test-target pairs are comparhlolr-
malization is especially important in our case since we ae n
adapting from any background model (as is customary with GMM
or HMM systems) which naturally tends to center the scores.

We apply two standard normalizations, one to correct for the
variability of the test data, and one to correct for the \litity of
the training data. For the former, a GMM system would sulbtrac
from the score of each test-target pair the score that theégs
ment receives against a background model to create thelogual
likelihood ratio score. Since we have no such backgroundemod
we create a “pseudo-speaker” whose speech consists ofrsanve
tions from a number of different held-out speakers. We subthe
test-pseudo-speaker score from each test-target scorddfess
target variability, we use ZNORM. Specifically, a set of heldt
impostor samples are each scored against the target gra@lata in
question. We subtract the mean impostor score from thedegtt
score and divide by the standard deviation.

speakers are divided into 6 independent “splits” so thatnihst-
ing on one split, the others can be used for normalization.

In the evaluation, 1, 2, 4, 8, and 16 conversation-side train
ing conditions are specified (the average conversation sde
tains 2 - 3 minutes of speech). We focus our attention on the 8-
conversation-side training, which has become a standamdbta-
intensive algorithms.

3.1. General results

Table 1 shows results for various choices of tokens. DTW éslus
to determine frame alignments; the final scores are lineaabéo
nations of the basic-score and the hit-score. Performainadyp-

dcal GMM system (provided by SRI) on this data is included for

reference. The Equal Error Rate (EER) and the minimum of the
Decision Cost Function (DCF) represent two points on the now
standard Detection Error Tradeoff (DET) curve [11]. The EER
the point where the two error types, false alarms and missesy
with equal relative frequency, while the DCF, as specifietlyT,
weights false alarms and misses in accordance with the disman
of many real-world applications.

[ Token | EER(%) DCF |
phones 1.85 0.0937
phone bigrams|  1.25 0.0685
phone trigrams| 1.14 0.0604
words 1.44 0.0736
word bigrams 2.09 0.1130

[ GMM | 0.9 0.0509]

Table 1. System performance for various tokens in terms of EER
and min. DCF on NIST'’s 2001 Extended Data Task. Typical GMM
performance is provided for comparison.

The best performance is obtained using phone trigrams,-an en
couraging result given our hypothesis that longer tokerghbto
be more useful for speaker detection. Word bigrams, howgixer
poorer performance than single words. To understand ticesess
we need to consider the tradeoff between the increased pafwer
longer tokens and data sparsity. For example, there aredahly
different phone tokens, but around 8600 different phoiggams,
so that a test phone might have a few thousand choices foget tar
match while a test phone-trigram might have fewer than tdre T
chances of finding a good match for a phone-trigram are isexka
by the additional context information inherent in the longter-
ance, but often this advantage is outweighed by overwhelmin
more abundant data for single phone matches. Note that while
finding a good match is useful evidence, not finding a good Imatc
could mean that the test and target are in fact differentkgrea
or that we simply have not seen enough target instances te mak
any claims, one way or the other. Thus, using shorter tokerits|
the sort of uncertainty that arises from data sparsity berifézes
the greater confidence gained from matching longer tokerthel



case of word bigrams, even the most common tokens (“you know”

“I think”, etc.) only appear a few times in each conversatieven
further exacerbating the data-sparsity issue.

3.2. ASRvs. truth

As mentioned earlier, the token labels and time-alignmengs

As it turns out, negative evidence, at least as we have formu-
lated it here, is almost meaningless. This may be one reakgn w
the hit-score outperforms the basic-score, which factoaliev-
idence, positive and negative. More specifically, we camirass
that not all tokens have the same speaker-discriminatinggpso
that the hit-score benefits from extracting only crucialchas that
are compromised in the basic-score’s across-the-boaraging

obtained from an ASR system which makes mistakes. Specifi- a@pproach. Perhaps this is why the disparity between thechite

cally, the ASR output, provided by SRI, is the product of a-sim
plified 1-pass recognition system using only a bigram laggua
model to compensate for the fact that the recognizer waseitai
on Switchboard-1 data (our test data). This system achiawneal/-

and the basic-score is greater for phone trigrams than fumgsh—
the phones are all fairly useful tokens but the phone trigreend
to vary in their speaker-discriminating power, whethershese of
their intrinsic value or because of sparsity constraints, the hit-

erage word error rate (WER) of about 30% on this material. As Score is better at picking out the useful information.

it turns out, current state-of-the-art recognizers novawbtVERS
in the teens on Switchboard-I1, so are now closing the gapdsatw
the “truth transcripts” and “ASR output” reported here.

Token
word bigrams
phone trigrams

ASR  Truth
2.09 1.17
1.14 1.03

Table 2. System performance (EER) using ASR and truth tran-

scripts.

The truth transcripts significantly improve our resultgpees
cially when we use word-level tokens. This might be becahse t
alignments are based on human transcriptions of the wotlesrra
than the phones. While more accurate word identities wordd p
vide more viable token matches, the phone identities giyetiné

3.4. Frame alignment methods

All the results reported so far have used DTW to align the &sm
for token comparisons. How do the other alignment strasegjie-
cussed earlier perform? What if we allow unconstrained hmage
—i.e. within the bounds specified by the token start and endg;j
we let each test frame match any target frame?

Token DTW SW FF UNC
phones 1.85 260 256 249
phone trigrams| 1.14 1.14 1.17 1.44

Table 4. Performance (EER) with various frame alignment meth-
ods (SW = sliding window, FF = first frames aligned, UNC = un-

ASR might be close enough to the truth to allow for good match- constrained frame matching)

ing. Nonetheless, this experiment demonstrates that wd sa+
nificantly improve our results given better ASR, but more a@mp
tantly, it might be to our benefit to find a way to exclude ASR
from our system entirely, perhaps by using some more daterdr
clustering algorithm to group similar frame sequences.

3.3. Scoring methods

All of the scores reported thus far are simple linear combina
tions of the basic-score and the hit-score methods disdiese
lier. In addition to these, we also experimented with a tharing
method which focuses on negative evidence which the hitesge
nores. Intuitively, we might be persuaded that a speakes doe
match a target if there is a case where even in the presencanyf m
potential token matches, there is not a single good score farh
mula for thisnegative-scoréNS) closely resembles the hit-score
but lets positive evidence drop out, emphasizing bad scores

>

ictest tokens

(matched frames if)(target instances)
%M —SCOTe]

NS = @)

Again, k is set at 2, whileM represents a best guess at the
maximum score. We compare these scoring methods in table 3.

Token Basc HS NS
phones 225 198 38.9
phone trigrams| 2.01 1.30 37.0

Table 3. Performance (EER) of basic-score, hit-score, and
negative-score for phones and phone trigrams.

When we use individual phones as tokens, DTW is clearly pre-
ferred, giving significantly better performance than theeoframe
alignment methods. However, we see a surprising result wigen
use phone trigrams. We expected that DTW would be more im-
portant for longer tokens than for shorter ones, in effeateming
for the scarcity of long well-matched test-target tokensd Aet,
our DTW algorithm shows no clear advantage over the non-time
warping methods in this case. At the moment, we are not sure
why this is the case, but we suspect that the problem miglm lie
our implementation of DTW, which currently limits the opt®for
doubling and skipping frames. It is also possible that gisech
low error rates, we have hit a performance barrier which ¢dy o
be broken once we have dealt with other issues such as channel
mismatches. On the positive side, we are encouraged by the re
markable performance of the non-time-warping methods, el w
as by the fact that the sequential methods provide a signifah
vantage over the unconstrained approach for the longensoke

3.5. System combinations

Another important test of a new speaker detection systervis h
well it combines with a standard GMM baseline. We designed
our system to capitalize on sequence information that theMGM
neglects with the expectation that the two methods woultbpar
well together. While our phone-trigram system is slightghind

the GMM, a simple 50-50 linear combination of the two systems
yields a huge improvement. Most notably, the DCF drops byemor
than a factor of 3, from 0.0509 (GMM) to 0.0157 (combined).
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Fig. 1. DET plots for the phone-trigram system, the GMM system,
and a linear combination of the two.

4. FUTURE WORK

This system is still at an early stage of development and nuack
remains to be done to realize its full potential. Our futuarkwcan
be split into short-term experiments and long-term prejeghort-
term efforts include:

e Expanding the background and ZNORM sets. Both nor-
malizations have proven extremely helpful (phone trigram
raw score = 9.5% EER; after background normalization =
2.8% EER; after ZNORM = 1.1% EER) but the sets were
kept small to minimize computation.

Trying other distance metrics. We ought to try performing
Linear Discriminant Analysis (LDA) on the features before
using the Euclidian metric or choosing a different distance
measurement.

Improving the DTW algorithm. Our DTW algorithm sup-
ports variable penalties for skipping and doubling frames,
but currently, we simply assign a constant penalty for all
frame skips. Since we know that the errorful ASR align-
ments reduce performance considerably, we ought to con-
sider reducing or eliminating the cost of frame skipping at
the edges of tokens, for example.

Changing the front-end. Given that our scores are closely
tied to the raw features, we stand to benefit from a fea-
ture mapping algorithm [12]. While CMS roughly corrects
for some channel variation, feature mapping more carefully
places utterances into a “handset-independent” space.

The long-term goals for this project are more exploratotyodgh

at present we simply compare a fixed set of test and targetsoke
using DTW instead of a more standard GMM or HMM approach,
we should exploit the freedom of our example-based methdad to
dynamic token selection, perhaps in a style comparablertabla-
length unit selection employed by some Text-To-SpeecleByst
We could use the longest test strings for which there exif§it su
cient target instances, and back off to shorter test-tangéthing

if necessary. We could also imagine an even more generag mor
data-driven approach. If we search dynamically for longjest-
target matches at the frame level rather than at the tokeh lee

can avoid using ASR entirely, which has the potential to b bo
faster and more accurate.

5. CONCLUSIONS

As more and more data becomes available for extended d&s tas
we would like to test our intuition that finding long good astia
matches between test and training data is the key to speetas-d
tion. Our initial experiments have yielded promising rés@nd
we look forward to expanding and improving our system.
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