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ABSTRACT

We investigate the incorporation of larger time-scale information,
such as prosody, into standard speaker ID systems. Our study is
based on the Extended Data Task of the NIST 2001 Speaker ID
evaluation, which provides much more test and training data than
has traditionally been available to similar speaker ID investiga-
tions. In addition, we have had access to a detailed prosodic fea-
ture database of Switchboard-I conversations, including data not
previously applied to speaker ID. We describe two baseline acous-
tic systems, an approach using Gaussian Mixture Models, and an
LVCSR-based speaker ID system. These results are compared to
and combined with two larger time-scale systems: a system based
on an “idiolect” language model, and a system making use of the
contents of the prosody database. We find that, with sufficient test
and training data, suprasegmental information can significantly en-
hance the performance of traditional speaker ID systems.

1. INTRODUCTION

The task of speaker identification in recorded speech is frequently
pursued using purely acoustic techniques, commonly Gaussian Mix-
ture Models (GMMs) [1]. The most obvious advantages of GMMs
are their simplicity and robustness to short-length recordings. These
characteristics reflect the model’s assumption that every 10–20 msec
frame of speech can be treated independently. This works well
when the test recording is only a few seconds long. However, as
the amount of test and training data increases it becomes attrac-
tive to make use of speaker-specific characteristics which involve
larger time scales, such as prosodic patterns. In this paper we
will describe two standard speaker ID systems: a Gaussian mix-
ture model (GMM) approach and a system based on large vocab-
ulary continuous speech recognition (LVCSR), which were devel-
oped as part of Dragon Systems’ regular participation in the annual
NIST Speaker ID evaluations [2]. We then examine how larger
time-scale information can be added to enhance the performance
of these baseline systems.

The data set used for this study comes from the Extended
Data Task of the 2001 NIST Speaker ID evaluation, described in
[3]. This task is based on the Switchboard-I (SWB-I) corpus of
recorded telephone conversations [4], and consists of a series of tri-
als, where the speaker ID system is presented with a test recording
from an unknown speaker and training data from a hypothesized
target speaker. The system is then required to provide a score re-
flecting its belief that the test came from the target. In this task,
a “test” is an entire SWB-I conversation side, averaging roughly
3 minutes of speech, and between one and sixteen conversation
sides (up to an hour of speech) of training data are provided from

the hypothesized target speaker. This scale of test and training data
has not been used in recent NIST evaluations and made this task a
useful testbed for the study of the interaction between short- and
long-time-scale features.

Another attraction of the Extended Data Task was the avail-
ability of SRI’s prosody database of SWB-I conversations [5], mak-
ing it possible to explore prosodic features for this study. The use
of prosody for speaker ID is not a new idea. For example, SRI
fielded a system incorporating prosodic features in the 1998 NIST
speaker ID evaluation [6], and publications on prosody-based speaker
ID go back at least 30 years [7]. The novelty of our system lies in
our access to an unusually wide variety of prosodic indicators via
SRI’s database, coupled with the availability of test and training
data based on entire conversation sides.

We contrast the results of our prosody-based speaker ID ap-
proach with a system which identifies speakers based on word us-
age, or “idiolect”, alone. This language model (LM) approach was
developed by G. Doddington [8], and he has kindly provided us
his results for this study.

We begin with a brief description of our baseline GMM and
LVCSR systems and their performance on the Extended Data Task.
Doddington’s “idiolect” approach is next described and interpo-
lated with the GMM and LVCSR results. We then discuss our
prosody-based system and its interaction with the other three sys-
tems.

2. BASELINE SYSTEMS: GMM AND LVCSR

Dragon Systems’ GMM and LVCSR-based speaker ID systems
are described in detail in [2]. We provide here an outline of their
operation and performance on the Extended Data Task.

The GMM system consists of a single mixture of 4096 com-
ponents representing a generic 10 msec frame of speech from a
given target speaker. A universal background model (UBM) is
first constructed from roughly 2 hours of gender-balanced speech
taken from the Switchboard-II corpus of recorded telephone con-
versations. Speaker-specific target models are then generated us-
ing Baum-Welch adaptation of the UBM to the target’s training
data. For each hypothesized target-test combination specified by
NIST’s test protocol, the log likelihood score for the adapted target
model and for the UBM are computed on the test data. An energy-
based silence detector is applied to each test, and frames falling
below an energy threshold are not included in the score computa-
tion. The raw score is computed as the difference between UBM
and target model scores, normalized by the number of test frames.
We further normalize the score to take into account several sources
of variation, such as handset differences, using the HNORM tech-
nique described in [9].



The LVCSR-based system attempts to capture more about the
structure of a target’s speech characteristics, rather than modeling
a “generic” speech frame. The system starts with a full recogni-
tion pass over the test and training data, using a slightly simpli-
fied version of Dragon’s 1998 HUB5 evaluation recognizer [10].
From the recognition pass, we obtain errorful transcripts and as-
sociated forced time alignments, assigning each speech frame to a
phoneme state. The speaker ID models are monophone acoustic
models, and are used to rescore the test speech, given the frame
labels from the recognition pass. As was done for the GMM, we
construct a speaker-independent UBM from independent data, and
train target speaker ID models using Baum-Welch adaptation. The
speaker ID score for a target-test combination is then computed as
the frame-averaged score difference between the UBM and target
models, normalized using HNORM.

The results of the LVCSR-based system on the Extended Data
Task are compared to the GMM results in Fig. 1, using the De-
tection Error Tradeoff (DET) curve format [11]. It is clear that
the additional information available from the LVCSR model sig-
nificantly improves speaker ID performance in the Extended Data
Task environment. This is contrasted with earlier GMM and LVCSR
results on 3 and 30 second tests from the NIST 1998 Speaker ID
Evaluation [2], where the LVCSR system lags behind the GMM
approach until at least 30 seconds of test data are available for
analysis.
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Fig. 1. GMM and LVCSR system results on Extended Data Task
(lowest pair), contrasted with results on 30 sec tests (middle) and
3 sec tests (upper pair) from the 1998 NIST Evaluation.

3. SPEAKER ID USING A LANGUAGE MODEL

The length of the test segments and quantity of training data avail-
able in the Extended Data Task support the use of larger-scale
structures for speaker ID. One possibility is to construct a speaker-
specific, or “idiolect”, language model.

G. Doddington has performed such an LM-based study, de-
scribed in [8]. He constructed bigram language models from each
target speaker’s training data, and scored these models and the cor-
responding speaker-independent model on the target-test combina-
tions in the Extended Data Task. The score he assigned was the log
of the likelihood ratio of target and background values.

We have used logistic regression to determine the optimal lin-
ear interpolation weights of the GMM, LVCSR, and LM scores on
the Extended Data Task. A summary of the results obtained from
these approaches appears in Fig. 2. Not unexpectedly, the LM re-
sults alone, which use no acoustic information at all, significantly
underperform both GMM and LVCSR results. More surprisingly,
we see only a small gain in overall performance when the LM is
interpolated with the GMM and LVCSR systems.
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Fig. 2. Extended Data Task results for LM, GMM, and LVCSR
separately, and successive interpolations of GMM+LVCSR,
GMM+LVCSR+LM (Plot lines appear in order specified by key).

Our expectation was that the accuracy of the “idiolect” model
would be a strong function of the amount of training data. We
therefore considered two extremes of training data volume, namely
for 1–2 training sides and for 8–16 training sides. The results of in-
terpolating the GMM and LM systems for these two extremes are
summarized in Fig. 3, and show clearly that the benefit of incor-
porating an LM increases substantially with larger training data
volumes. A smaller gain is seen for the interpolation of the LM
with the combined GMM+LVCSR system, but the trend with data
volume is the same.
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Fig. 3. Extended Data Task results from interpolation of LM
scores with GMM system, broken out by amount of training data.



4. PROSODIC INDICATORS OF SPEAKER IDENTITY

To provide more speaker-specific characteristics, our next step was
to incorporate prosodic information into our systems. We used a
detailed prosodic feature database created by SRI, originally de-
veloped for an NSF project on utterance segmentation. Thus, the
features were not optimized for Speaker ID. The database contains
data drawn from two corpora, SWB-I and Broadcast News.

In SRI’s database, the transcribed, time-aligned speech is as-
sociated with raw and derived prosodic features, including pause
and segmental durations, voicing information and pitch-based fea-
tures, with scales ranging from the subword level to the conver-
sation level. Pitch information includes both actual F0 values and
values based on a piecewise linear stylization. Besides prosodic
variables, the database includes lexical annotations of phenomena
such as disfluencies, yielding a total of approximately 120 vari-
ables per conversation side.

Our prosodic speaker ID system is based on a set of features,
each of which is reduced to a single value per conversation side.
Some quantities are taken as is from the SRI database; others are
derived from its contents. The features that we use can be roughly
divided into four types, some prosodic and others lexical (we will
refer to them all as “prosodic”):

� Pitch-related features, such as the mean and standard devi-
ation of raw and stylized versions of the pitch track;

� Duration-related features, such as the mean and standard
deviation of the word and phone lengths;

� Indicator-word usage, as given by the relative frequencies
of specific words likeI, okay, yeah, uhhuh, right;

� Conversational-style features, such as pause and turn lengths,
and the relative frequency of disfluency classes such as pause-
fillers (e.g. uh, um), discourse markers (e.g.you know),
backchannel expressions (e.g.all right, sure), editing mark-
ers (e.g.I mean), conjunctions, sentence fragments.

Altogether we use up to 48 predictors.
Our prosodic “model” for a target speaker simply uses the

means of the predictor values over the assigned training conversa-
tions. For most predictors, the score for a given test conversation
is defined as the normalized squared difference:

score =
X

predictors

wi
(xi � �i)

2

�2i
(1)

wherexi is the value of theith predictor from the test conversa-
tion, �i is obtained from the target’s training data, and weights
wi are obtained from logistic regression. Because of the paucity
of training data, the standard deviations�i are computed from the
deviations over the training data fromall speakers in the corpus.
(The�i could equally be absorbed into the weightswi.)

The specific-word predictors are a special case. These can oc-
cur very rarely and are not well-modeled by equation (1), hence we
use a Poisson distribution instead. The frequency of a word for a
given speaker model is computed by aggregating all that speaker’s
training conversations before computing the mean predictor rate.
If the word never occurs in the training data, we assign a count of
0.5. The score is then the log of the Poisson probability.

5. PERFORMANCE ON SWB-I DATA

SRI’s database covers roughly half of the conversation sides in
SWB-I. We built a subset of the Extended Data Task from the 2001

NIST evaluation, using only the SWB-I conversation sides present
in the SRI database. We also removed any trial whose target model
used one or more training conversation sides not present in the
SRI database. We will subsequently refer to this reduced data set
as the “prosody subset”. Unfortunately, this process retained only
7679, or 13%, of the original 58642 trials. In particular, there was
virtually no representation of trials involving target models built
with 8 and 16 training conversation sides, where we expect to see
the greatest benefit from suprasegmental information.

No independent development data was available in the Ex-
tended Data Task to train the weightswi. We therefore derived
them from the same data we used for our final tests, using a jack-
knifing approach to avoid “cheating”. To train the weights, we
removed any trials involving that target’s data or data from any
speaker used as an impostor for that target model. Unfortunately,
this process has the highly undesirable effect of completely remov-
ing any speaker-characteristic information from the weights.

The results of the prosody system alone are compared to the
LM results in Fig. 4, and can be seen to be comparable in discrim-
inating power. The effect of linear interpolation of the LM and
prosody scores is also displayed, and demonstrates that the two
systems indeed capture some independent information.
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Fig. 4. Results of prosodic speaker ID system compared to and
interpolated with the LM approach on the prosody subset.

We note that, as part of the logistic regression optimization, we
allow the statistics package to select the “best” subset of predic-
tors, both here and in the experiments below. Among the prosodic
predictors routinely selected as valuable are

� the relative frequency of disfluencies of all types

� the average word duration

� the relative number of “long” pauses, defined as being over
150 msec in length

� the relative number of “sentence-like” boundaries [12]

The above features consistently appear as the top prosodic predic-
tors, both in a prosody-only model and in combination with GMM,
LVCSR, and LM scores. In addition, the predictors related to pitch
and specific word identity are generally useful.

We repeated the interpolation via logistic regression, adding
in the GMM and LVCSR model scores as well. A close-up of the
results from sequentially adding GMM, LVCSR, LM, and prosody



together appears in Fig. 5. We can see evidence for a modest en-
hancement of performance with the interpolated GMM+LVCSR
+LM+Prosody system over the GMM+LVCSR combination alone.
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Fig. 5. Closeup of results of successive interpolation of GMM,
LVCSR, LM and prosodic systems on the prosody subset of the
Extended Data Task (Note: Plot lines appear in order specified by
key).

Several factors encourage us to believe that the potential gains
from prosody-based speaker ID are considerably larger than seen
in this preliminary study. We believe the most significant perfor-
mance limitations are the loss of the target models that are based
on 8 and 16 training conversation sides and the lack of a develop-
ment set with which to train speaker-specific feature weightswi.
Another constraint is the small size of the prosody subset, coupled
with the small number of errors (� 2% equal error rate) made
by the baseline GMM and LVCSR systems. This limits our sta-
tistical sensitivity to further performance improvements from the
introduction of suprasegmental information.

Beyond overcoming the limitations imposed on the study by
the data set, there are a number of ways the prosodic speaker ID
system could be improved. The features of the SRI database were
not selected with speaker ID in mind; we anticipate that further
optimization is possible. We would also like to make better use
of within-conversation distributions of prosodic predictors, rather
than reducing them to single values for a conversation side. Im-
provements could be made in the robustness and accuracy of our
pitch tracking system, particularly given the problems of back-
ground noise and narrow telephone bandwidth. Finally, more so-
phisticated approaches to combining information sources could be
considered, rather than simple linear interpolation of the system
scores.

6. CONCLUSIONS

We have found the Extended Data Task of the NIST 2001 Speaker
ID evaluation to be an interesting testbed for comparing our GMM
and LVCSR speaker ID systems with systems based on supraseg-
mental information. As we saw with the GMM and LM systems,
the performance improvements from the introduction of large time-
scale information are greatest when large amounts of training data
are available.

The constraints of the prosody subset limit the visibility of
potential benefits of incorporating prosodic information. Despite
these limitations, the incorporation of our preliminary prosodic
system has already provided a modest enhancement of our baseline
system performance. We believe that suprasegmental information
will have a valuable role to play in future speaker ID efforts.
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