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ABSTRACT

We present a hierarchical architecture for tandem acoustic
modeling. In the tandem acoustic modeling paradigm a
Multi Layer Perceptron (MLP) is discriminatively trained
to estimate phoneme posterior probabilities on a labeled
database. The outputs of the MLP after nonlinear transfor-
mation and whitening are used as features in a Gaussian
Mixture Model (GMM) based recognizer. In this paper we
replace the large monolithic MLP with hierarchies of MLP
experts .We apply this approach on Speech in Noisy Envi-
ronments (SPINE1) evaluation conducted by the Naval Re-
search Laboratory (NRL). We observe a reduction in word
error rate of 30% with context-independent models and 5%
WER with context-dependent models relative to PLP fea-
tures.

1. INTRODUCTION

In the tandem approach [1, 2, 3] a MLP classifier is first
trained to estimate the context-independent phoneme poste-
rior probabilities. The probability vectors are gaussianised
and decorrelated and used as features for GMM system.
The MLP and GMM are trained independently. This ap-
proach performed best in the ETSI Aurora evaluation [4],
a continuous digit recognition task in noisy environments
and achieved significant reduction in word error rate with
context-independent models in large vocabulary SPINE1
evaluation [3].

Modular and hierarchical neural networks have been
studied extensively in pattern recognition literature [5, 6].
These networks divide the overall classification task among
several networks. The decisions from networks are com-
bined in a hierarchical manner to arrive at the overall net-
work output. Thus the task of classifying a global set of
classes, context-independent phonemes in the case of tan-
dem approach, is divided into subsets. The partition is based
on prior knowledge about the task or by data-driven cluster-
ing algorithms. For example, natural choice of first parti-
tioning in the case of phonemes will be speech and silence.

The hierarchical systems have shorter training times and
can have fewer parameters than the monolithic neural net-
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works. This technique has been applied to build connec-
tionist acoustic models [7]. In this paper we investigate the
effectiveness of hierarchical approach in feature extraction
under tandem framework. This is implemented as hierar-
chies of MLPs. We make soft splits of data using soft clas-
sification trees. This is based on the statistical method of
factoring posteriors [8] which is explained in the next sec-
tion. Section 3 describes the design of hierarchical tree. Ex-
perimental results are presented in section 4. In section 5
we discuss the results, followed by our conclusions.

2. HIERARCHICAL CLASSIFICATION

2.1. Factoring Posterior Probabilities

Let L denote the set of classes A, to be discriminated. Con-
sider the partition of L into M disjoint and non-empty sub-
sets L; such that members of L; are least confused with
members of L; (Vj # ¢). A particular class A, will now be
a member of L and only one of the subsets L ;. Therefore,
we can rewrite the posterior probability of class A\, as a joint
probability of the class and the corresponding subset L ; and
factor it according to

P(Ak|x) = p(Ae, Lilx), A\ € Ly
= p(Li|x)p(Ak|Li, x).

Thus, the global task of discriminating between all the
classes in L has been converted into discriminating subsets
L; and independently discriminating the classes A remain-
ing within each of the subsets L ;. Recursively repeating this
process yields a hierarchical tree-organized structure. The
posterior probability for a specific class can be computed by
multiplying all the conditional posteriors from root node to
the leaf corresponding to the specific class.

Conditional node posteriors can be estimated by restrict-
ing the training set of the corresponding MLP to the subset
L; on which the probability is conditioned. Thus the train-
ing data for each node is shared among all its child nodes
according to the partitioning of classes and the amount of
training data decreases with increase in specialization. Due
to the diminishing training data as we traverse down the tree
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and the errors in posterior estimation, the the design of hi-
erarchical structure become crucial.

3. HIERARCHICAL TANDEM SYSTEM

3.1. Hierarchical Tree Structure

If all the nodes in the tree would compute true conditional
posteriors, the tree structure would have no influence on the
classifier performance because any kind of factoring yields
an exact decomposition of the class posteriors.Since this not
true in practice, the choice of tree structure is important.
Due to the large number of choices at each node it is im-
possible to find an optimal structure through an exhaustive
search. Hence we apply evidence from data and heuristics
to design the tree structure.

In speech recognition the obvious first partitioning is
speech and silence. At the root of the tree we discrimi-
nate speech and background noise. This is motivated by
the observation that these classes are easy to distinguish
acoustically. The speech subset is further split into voiced
and unvoiced classes. The leaf nodes of the tree compute
monophone posteriors conditioned on voiced and unvoiced
classes. Figure 1 shows the topology of the hierarchy. In
this paper we design a hierarchical tree with three levels.
Table 1 shows the hierarchical splitting of classes. “Tan-
dem 0” system is the basic tandem system with single MLP.
“Tandem 1” has two levels of hierarchy and “Tandem 2” has
three levels of hierarchy.

Speech-Sil
MLP

Sil Speech-MLP

Voiced—MLP Unvoiced—MLP

Voiced Classes  Unvoiced Classes

Fig. 1. Hierarchies of MLPs

Classifier | Hierarchy Classes
Tandem 0 0 monophones + sil
Tandem 1 0 speech - sil
1 monophones
0 speech - sil
Tandem 2 1 voiced - unvoiced
2 voiced classes
2 unvoiced classes

Table 1: Hierarchical splitting of classes.

3.2. Postprocessing of Posteriors

The posterior probabilities have a skewed distribution, mak-
ing them harder to be modeled by mixture of Gaussian com-
ponents. Different postprocessing methods to warp the pos-
teriors into a different domain has been tried [1]. Replacing
the softmax nonlinearity at the output layer with a linear
function is shown to make the distribution more Gaussian.
This retains the rank ordering of posteriors. In the hierar-
chical architecture the class posterior probabilities are com-
puted by a cluster of MLPs. We cannot remove the softmax
nonlinearity of each of them as this does not retain the rank-
ing of posteriors. Removing the softmax is equivalent to the
logarithm of the posteriors with a normalization constant.

li =log(p(Ci|x)) — K,0<i<N -1

where [; is the linear output corresponding to class C'; and
K = log(ziligl exp(l;)). Since we have no means of ob-
taining K from p(C;|x) we approximate it by the average of

the log posteriors.

N-1
1 .
K=+ ;0 log(p(Cilx)),0 <i <N -1

The distribution of resulting features is found to be simi-
lar to the one obtained by removing the softmax. Diago-
nalization of the global covariance matrix of the features
by Karhunen-Loeve (KL) transformation improves the per-
formance because the GMM assumes that features are un-
correlated. We retain all the feature components after KL
transformation.

4. EXPERIMENTAL EVALUATION

4.1. System Description

We tested the hierarchical system on SPINEL1 task [3]. The
task focuses on transcribing speech produced in noisy envi-
ronments with emphasis on noisy military environments. It
involves a medium-sized vocabulary of about 5000 words.
The data consists of conversations between two communi-
cators working on a collaborative, Battleship-like task in
which they seek and shoot at targets.Each person is seated
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in a sound chamber in which a previously recorded military
background noise environment is accurately reproduced.
The speech is sampled at 16KHz.

Perceptual Linear Prediction (PLP) cepstral features are
extracted from a frame of 25 ms of speech, every 10ms. The
feature vector consists of 13 PLP coefficients augmented by
deltas and double-deltas. They are then normalized over the
utterance to zero mean and unit variance. The input to each
MLP is a window of 9 successive feature vectors.

The labels for training MLP are generated by the pro-
cess of forced alignment as explained in [3]. From ICSI56
context-independent phoneme set a subset of 50 phonemes
occurring in SPINE1 data was derived. Each MLP in the
hierarchy is trained by backpropagation with a minimum-
cross-entropy criterion to "one-up’ targets obtained from the
labels. The outputs from the MLPs are fed to the GMM sys-
tem after the postprocessing. The GMM system is trained
according to the standard EM algorithm. We used CMU
SPHINX-I1I recognizer with 3 states per context-dependent
triphone with 2600 tied states, each modeled by a mixture
of 8 Gaussians.The context-independent phonemes are also
modeled using 3 state HMMs with 8 Gaussians per state.
The tandem MLP and GMM are trained independently and
use different number of context-independent phonemes. Ta-
ble 2 shows the architecture of each MLP in the hierarchy.

Classifier | Hierarchy | No. of Classes | U HU | OU
Tandem 0 0 50 351 | 1000 | 50
Tandem 1 0 2 351 | 500 2
1 49 351 | 750 49
Tandem 2 0 2 351 | 500 2
1 2 351 | 500 2
2 37 351 | 500 | 37
2 12 351 | 500 12

Table 2: Architecture of MLPs in the hierarchy. U stands
for number of input units, HU for hidden units and OU for
output units.

4.2. Results

The SPHINX system was trained on 8 hours of data. Models
were trained for three tandem features and the PLP features.
Recognition was performed on 9 hours of evaluation data.
The word error rates for all the systems are shown in table 3.
The recognizer was not tuned to improve the performance
of individual systems.

It can be seen that all the tandem systems outperform
the PLP system when CI models are used for decoding. The
word error rates are 30%, 27% and 26% lower than PLP
system for Tandem 0, Tandem 1 and Tandem 2 respectively.
The increase in error rate with hierarchical structure is dis-
cussed in the next section.

The performance of the systems tend to converge when
context-dependent models are used for recognition. The

tandem systems are marginally better than the PLP sys-
tem. However, Tandem 2 system performs 3% better than
the Tandem 0 system and 5% better than the PLP system.
This reversal of trend in performance of the tandem system
compared to context-independent models is discussed in the
following section.

Type of feature Dimensions | CI CD
PLP with A and A? 39 716 | 39.1
Tandem 0 50 50.5 | 38.3
Tandem 1 50 52.0 | 38.2
Tandem 2 50 535 | 37.1

Table 3: Word error rates (%) with SPHINX-I11 system for
various feature sets. Cl stands for context-independent and
CD for context-dependent.

5. DISCUSSION

We find that the tandem systems perform significantly bet-
ter than the PLP system with context-independent mod-
els whereas only marginal improvement is obtained with
context-dependent models. It is observed that the hierar-
chical tandem system perform marginally better than the
monolithic classifier based system with context-dependent
models and worse when context-independent models are
used.

In [3] we interpreted the MLP in tandem modeling as
a transformation of the feature space that magnifies re-
gions around phonetic boundaries and suppressing the non-
phonetic variability due to speaker and noise within the re-
gion corresponding to class. In the tandem approach we
train the MLP to maximize the separability of context-
independent phonemes with a block of 9 successive frames
of feature vectors as input. The target phoneme corresponds
to the frame at the center of the window. This introduces
shift-invariance and suppresses the context, speaker and en-
vironmental variability. Thus there is little information left
to be modeled by context-dependent GMMs. This explains
why the advantages obtained by context-independent mod-
els did not carry over to context-dependent models.

Dividing the data reduces the bias of an estimator, but it
generally increases the variance [5]. We make “soft” splits
of data i.e., allowing the data to lie simultaneously in mul-
tiple regions. This has a variance decreasing effect since
many classifiers contribute to the final output. The increase
in word error rate of the hierarchical tandem system com-
pared to the single MLP with context-independent models
may be due the effective increase in variance. The low com-
plexity context-independent modeling is unable to model
this additional variability caused by data splitting. But this
may be helping the context-dependent modeling, as can be
seen from table 3.

It can be observed from table 2 that the number of pa-
rameters in Tandem 3 system is half of that in Tandem 0.
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This has reduced the training time and system complexity
without affecting the performance.

To investigate further the reasons for the disparity
in improvements from context-independent and context-
dependent models we tested the features with GMMs of
varying complexity. Figure 2 shows the performance curve
of PLP system and Tandem 3 system for different number
of Gaussians/state keeping the number of states per model
unit same (=3). Increasing the number of Gaussians gives
GMM additional parameters to model the variability in fea-
ture space within each phoneme. It can be seen from the
figure that the performance of the tandem system and PLP
system tend to converge with increasing number of Gaus-
sians/state. The word error rate of PLP system reduced by
25% from 1 Gauss/state to 8 Gauss/state whereas the tan-
dem system improved by only 10%. This is consistent with
the earlier observation that the tandem MLP suppresses the
context variability within the phoneme.

75 T
—— PLP Baseline
— — Hierarchical Tandem

T -v

I I I I
Cl 8gau/st CD 1 gau/st CD 2 gau/st CD 4 gau/st CD 8 gau/st

Model Complexity

Fig. 2. Word error rates (%) of feature sets vs. Complexity
of models

6. CONCLUSIONS

We presented a preliminary study on hierarchical feature ex-
traction under tandem framework using a MLP tree. Hi-
erarchical modeling offers a power method of combining
multiple classifiers into a tree structure. We have shown
that it achieves comparable word error rates to a monolithic
MLP, with fewer parameters. The design of tree was based
on the prior knowledge of classes. A much more struc-
tured approach to the design of classifier tree could improve
the performance. Although we achieved significant reduc-
tion in word error rate with context-independent models fur-
ther work needs to be done to extend this performance to
context-dependent models. We conclude that tandem mod-
eling approach offers considerable advantages for low com-

plexity systems with few subword classes especially when
signal to noise ratio is low.
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