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ABSTRACT

We evaluate the performance of several feature sets on the
AURORA task as defined by ETSI. We show that after a non-linear
transformation, a number of features can be effectively used in a
HMM-based recognition system. The non-linear transformation is
computed using a neural network which is discriminatively trained
on the phonetically labeled (forcibly aligned) training data. A
combination of the non-linearly transformed PLP, MSG and TRAP
features yields a 63% improvement in error rate as compared to a
baseline MFCC features. The use of the non-linearly transformed
RASTA-like features, with system parameters scaled down to take
into account the ETSI imposed memory and latency constraints,
still yields a 40% improvement in error rate.

1. AURORA TASK

The AURORA task [12] has been defined by the European Telecom-
munications Standards Institute (ETSI) as a cellular industry ini-
tiative to standardize a robust feature extraction technique for a
distributed speech recognition framework. The initial ETSI task
uses the TI-DIGITS database downsampled from the original sam-
pling rate of 20kHz to 8 kHz and normalized to the same amplitude
level. Four different noises - exhibition hall noise, babble noise,
suburban train noise and moving car noise have been artificially
added to different portions of the database at signal-to-noise (SNR)
ratios ranging from clean, 20dB to 0dB in decreasing steps of 5dB.

The training set consists of 8440 different utterances split
equally into 20 subsets of 422 utterances each. Each split has
one of the four noises added at one of the five SNRs (clean, 20dB,
15dB, 10dB and 5dB). The test set consists of 4000 test files di-
vided into four sets of 1000 files each. Each set is corrupted with
one of the four noises at 6 SNR levels (clean, 20dB, 15dB, 10dB,
5dB and 0dB), resulting in a total of (4 x 1000 x 6) 24,000 test
utterances.

The recognition system for this evaluation has been fixed to be
a toolkit-based (HTK) HMM system with eleven whole word digit
models, each comprising of 16 states with 3 mixtures per state.
Two silence models, one with 3 states and 3 mixtures to model the
utterance beginning and end silence, and the other with 1 state and
6 mixtures to model the interword silence have also been used.

In spite of some drawbacks of the current AURORA task such
as the matched test and training conditions, or the absence of nat-
ural level variations and variable linear distortions, the AURORA
task is of interest since it can demonstrate the potential benefits
of using noise-robust feature extraction techniques towards im-
proving the recognition performance on a task which (though with
matched training and test conditions) has substantial variability due
to different types of additive noise at several SNRs.
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Figure 1: Feature Extraction block diagram.

2. TEMPORAL-BASED FEATURES

Spectral-based features such as mel-frequency cepstral coefficients
(MFCC), perceptual linear predictive coefficients (PLP) etc., form
the basis of most feature extraction techniques in automatic speech
recognition (ASR) systems. These features characterize the spec-
tral envelope in a short-time frame (typically 10ms) of speech. A
drawback of the spectral features is that they are quite sensitive
to changes in the communication environment such as changes in
communication channels or environmental noise. Subsequently,
the performance of recognizers based on spectral features rapidly
degrades in realistic communication environments.

Psychoacoustic studies (reviewed in [4]) suggest that the pe-
ripheral auditory system in humans integrates information from
much larger time spans than the temporal duration of the frame
used in speech analysis. This time span is of the order of several
hundred milliseconds (around 200ms). Several emergent noise ro-
bust techniques (reviewed in [5]) now employ short-term feature
vectors which integrate information from such medium-time spans.
In this paper, we evaluate three such recently proposed techniques.

2.1. Temporal LDA based RASTA-like features

This technique introduced in [14] employs a data-driven approach
to the design of RASTA-like [6] filters on the time trajectories of
log critical-band energies. The linear discriminant analysis (LDA)
technique is used to optimize the linear discriminability between
the phoneme classes in the presence of undesirable within-class
variability (such as those introduced by speaker, channel, context
and environmentalnoise). The vector spacefor LDA is constructed
from around 1 sec segments (101 points at 10ms frame rate) of
the time trajectory of a single log critical-band energy, each of
which is labeled with respect to the center frame. These filters are
derived from around 3 hours of phonetically hand-labeled OGI-
Stories database [2]. Since, the AURORA task includes variability
due to environmental noise, volvo-car noise from the NOISEX-92



database [15], at a signal-to-noise ratio of 10dB, was artificially
added to the stories database. The filters are derived from the
15 Bark-spaced critical band energies [3]. The first three prin-
cipal vectors obtained from the LDA analysis for each of the 15
critical bands are used as 101-tap FIR RASTA-like filters. The
use of the three RASTA-like filters per critical band results in a
45-dimensional feature vector per frame. Karhunen-Loeve (KL)
transform derived on the training set of the AURORA database is
then used to reduce the dimensionality of the feature vector to 39
parameters (retaining 99.9% of the variability) and to diagonalize
the feature vector.

2.2. Modulation-Filtered Spectrogram (MSG) features

The modulation-filtered spectrogram is a robust speech represen-
tation for ASR [10]. The robustness of the representation is based
on two signal-processing strategies: 1) the emphasis of changes in
the spectral structure of the speech signal (measured with critical-
band-like resolution) occurring at rates of 16 Hz or less, 2) the
adaptation to slowly-varying components of the speech signal that
functions as a form of automatic gain control (AGC). The par-
ticular form of the algorithm used in these experiments uses two
modulation filter banks, covering roughly the 0-8 Hz and 8-16 Hz
modulation bands. The modulation-filtered spectrogram features
were computed as described in [10]. The MSG feature extraction
technique is carried out on 14 Bark-spaced critical band energies
and yields a 28-dimensional feature vector per frame.

2.3. TempoRAl Pattern (TRAP) features

The temporal pattern (TRAP) feature extraction technique is a
technique to extract temporal information from the speech signal to
improve the noise robustness of ASR systems [8]. This technique
uses two concepts hypothesized to occur in human hearing: 1)
independent processing at individual frequency channels, and 2)
temporal processing over medium time (syllable-length) spans. In
each of the 15 Bark-spaced critical bands, a one second (101 point)
long temporal vector of logarithmic energies is used as input to a
neural network (multi-layer perceptron (MLP)) for estimating the
probability of the phoneme at the center of this vector. The MLPs
in each critical band are trained on task-independent phonetically
labeled OGI-Stories database. The phonetic probability estimates
thus obtained independently from all the critical bands are further
non-linearly merged using a MLP which is trained on the task-
specific training data. This vector of merged probability estimates
comprises the TRAP feature set. The dimensionality of this vector
depends on the number of phonemes present in the database.

3. NON-LINEAR TRANSFORMATION OF FEATURES

In [9] it was shown that a MLP trained on the task-specific train-
ing data can be used to derive a mapping from any feature set
to the logarithmic likelihoods of context-independent phonemes.
This mapping is obtained by discriminatively training the MLP
on the phonetic labeled training data using a softmax activation
function on the output layer. The outputs of the MLP represent
estimates of the phoneme posterior probabilities [11]. In a well-
trained MLP, the right class typically has an estimate close to 1,
while the other class estimates are close to zero. This results in a
highly non-Gaussian distribution of the parameters in the feature

vector. Such a non-Gaussian distribution can violate the mixture-
of-Gaussian assumption typically used in a HMM system. One
way to make the distribution closer to Gaussian is to remove the
output softmax non-linearity from the trained net. The parameters
of such linearized outputs are then further diagonalized through
Karhunen-Loeve (KL) transform for subsequent HMM modeling
using diagonal covariance matrices.

The above described non-linear transformation requires that
the training data be phonetically labeled. For the AURORA database,
we obtained the initial phonetic segmentation for the training part
by forced alignment using a hybrid (HMM/MLP) recognition sys-
tem trained on the OGI Numbers task [2]. The Numbers database
consists of the same eleven digit vocabulary as the AURORA
database. This initial segmentation was further improved using
embedded training [11] on the AURORA database. The AURORA
database was labeled in terms of 24 monophone classes that de-
scribe the digits.

4. EXPERIMENTS

4.1. Combining multiple features

The features used in all the experiments described in this paper
have been derived from speech frames of length 25ms with a frame
rate of 10ms. Each frame has been windowed using a Hamming
window function.

4.1.1. Baseline system

The baseline system as defined by ETSI uses as features, 13 MFCC
coefficients along with their delta and acceleration coefficients.
The MFCC coefficients are derived from 23 mel-spaced triangular
filters. The baseline system thus uses a 39-dimensional feature
vector per frame. Table 1 shows the performance of the baseline
system at the different SNRs averaged over the 4 noises.

4.1.2. PLP-based system

The PLP feature extraction technique [3] differs from the MFCC
feature extraction technique mainly in the use of 15 Bark-spaced
critical bands followed by cepstral coefficient computation from
the autoregressive modeling of the critical band power spectrum.
Table 1 shows that the performance of the PLP features (39-
dimensionalvector consisting of 13 cepstral coefficients along with
delta and acceleration coefficients) is close to that of the baseline
system.

Table 1 also shows the performance of the non-linearly trans-
formed PLP features. The per frame input to the MLP for this
non-linear transformation consisted of 9 frames (current frame, 4
frames in the past and 4 frames in the future) as commonly used in
a hybrid ASR system [1] — i.e. (39 x 9) 351 inputs, 480 hidden
units and 24 outputs. PLP-NN refers to the non-linearly trans-
formed PLP features. It is the seen that these give around 48%
reduction in error as compared to the PLP features and the baseline
features.

4.1.3. Temporal LDA base RASTA-like features

In Table 1, LDA refers to the performance of the 39 RASTA-
like features when used directly for recognition, while LDA-NN
refers to the performance of these features after the non-linear
transformation into a 24-dimensional feature vector. Similar to



Table 1: Word error rate (%) for various features and combinations.
FEATURES Clean 20dB 15dB 10dB 5dB 0dB Average reduction

in error (20-0dB)
Baseline 1.5 2.7 3.8 7.3 16.8 41.6
PLP 1.2 2.7 4.1 7.5 16.8 40.9 -2
PLP-NN 1 1.4 2.1 3.7 8.4 22.4 48
LDA 1.5 2.4 3.8 6.7 13.9 28.3 14
LDA-NN 1.1 1.5 2.1 3.5 8.1 19.9 49
MSG 6.0 5.7 7.8 12.0 23.2 42.9 -64
MSG-NN 1.0 1.3 1.8 3.5 8.5 23.5 50
TRAPs 3.4 2.6 3.1 5.3 10.8 27.3 24
PLP-NN + LDA-NN 0.9 1.2 1.9 3.4 7.9 20.2 53
PLP-NN + MSG-NN 0.6 1.0 1.4 2.8 7.0 19.9 60
PLP-NN + TRAP 0.9 1.1 1.7 2.9 7.2 18.5 57
LDA-NN + TRAP 1.1 1.2 1.8 3.2 7.7 19.2 54
PLP-NN + LDA-NN + MSG-NN 0.8 1.0 1.5 2.8 7.2 19.0 59
PLP-NN + MSG-NN + TRAP 0.7 0.9 1.3 2.7 6.5 17.5 63
PLP-NN + LDA-NN + TRAP 0.8 1.0 1.5 2.9 6.9 18.1 60
PLP-NN + LDA-NN + MSG-NN + TRAP 0.8 1.0 1.4 2.6 6.6 18 62

Table 2: Word error rate (%) for the temporal-LDA system and reduced-complexity variants.
FEATURES Size of MLP Clean 20dB 15dB 10dB 5dB 0dB Average reduction

in error (20-0dB)
LDA101 (39x9:500:24) 1.1 1.5 2.1 3.5 8.1 19.9 49
LDA41 (39x9:500:24) 1.1 1.6 2.3 3.9 8.3 19.6 46
LDA41-Q-ds3 (39x3:200:24) 1.2 1.6 2.4 4.5 9.9 24.8 40

the PLP-NN system the per-frame input to the MLP consists of 9
frames (351 inputs), 500 hidden units and 24 outputs. It is seen
that the LDA system results in around 14% reduction in error as
compared to the baseline system, while the LDA-NN system results
in 49% reduction in error.

4.1.4. MSG features

As seen from Table 1, the 28-dimensionalMSG features when used
directly for recognition give worse performance than the baseline
system (64% increase in error). However, the non-linearly trans-
formed features, MSG-NN, (using an MLP with (28 x 9frames)
252 inputs, 480 hidden units and 24 outputs) yield a 50% reduction
in error as compared to the baseline system.

4.1.5. TRAP features

As used in [8], each of the critical band MLPs in the TRAP system
used a 101 point input, 300 hidden units and 24 outputs. The
combiner MLP uses (24 x 15) = 360 inputs, 300 hidden units and
24 output units. As seen from Table 1, these TRAP features yield
a 24% reduction in error as compared to the baseline system.

4.1.6. Feature combination

If two or more systems yield complementary information an effec-
tive combination of the outputs of these systems can yield perfor-
mance better than any single system [13] (see Fig. 1) The spectral
(PLP-based) system and each of the temporal-based systems gen-
erally make considerable number of complementary errors [5].
Hence we tested several combinations of the above four features
as shown in Table 1. The combination was done by averaging
the corresponding non-linearly transformed features sets prior to

orthogonalization. It is seen that each of the combinations gives
an improvement in performance as compared to any single sys-
tem. The best system which uses a combination of the non-linear
transformed PLP and MSG features along with the TRAP features
gives the best (around 63%) reduction in error as compared to the
baseline system.

4.2. RASTA-like features with scaled down non-linear trans-
formation

The above system assumed no constraints in terms of computation,
available memory and latency. The time-delay introduced by the
above features was of the order of around 500ms. However, the
Aurora task had the constraints that the latency should not exceed
250ms and the ROM requirement should be around 15 kwords
(30KB). It is possible for the above system to meet these require-
ments, if we allow for some stages of the feature-extraction to be
done on the server-end of the DSR system. In that case only the
critical band analysis, which is used in all the above techniques,
can be done on the front-end, with the non-linear transformation
moved to the server-end.

However, to evaluate the effect of scaling down the entire
feature extraction to meet the ETSI requirements, we chose to use
our system based only on the non-linearly transformed RASTA-like
features (LDA). The scaling down was done as follows:

� To reduce the latency to 200ms, the 101-tap filters were ap-
proximated by 41-tap filters. A least square approximation
of the frequency response of the 101-tap filters by 41-tap
filters was used.

� To reduce memory requirements, the 45 FIR filters (3 filters
per critical band) were replaced by 3 FIR filters (same filters
irrespective of the critical bands) by taking the mean of the



impulse response of each set of 15 filters. This approxima-
tion is possible since the different critical bands have similar
filters [14].
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Figure 2: Impulse responses of temporal LDA filters.

� The 3 FIR-filters show a band-pass frequency characteristic
with upper cut-off frequency around 12-16 Hz. This indi-
cates that the critical-band time-trajectories can be down-
sampled by a factor of 3 (original sampling frequency is
100Hz at 10ms frame-rate) [7]. In other words the time tra-
jectories are filtered for every third frame only, thus reducing
computation.

� The basis of the KL transform are quantized so as to be
accurate to the first decimal value. With such a quantization,
each of the (45 x 39) values in the KL transformation can
be stored in a single byte.

� The 9 frame input to the non-linear transformation MLP is
reduced to a 3 frame input (current frame, third frame in
the past and future which are actually consecutive frames
after downsampling). Further we reduce the size of the
hidden layer to 200 units. This scaling down results in
a transformation matrix of (39x3x200 + 200x24 + 200 +
24) 28,424 parameters as compared to the original size of
(39x9x500 + 500x24 + 500 + 24) 188,024 parameters. Thus
we obtain a reduction by a factor of 7 in the number of
parameters, each of which can be further quantized so as
be represented in a single byte. The additional latency
introduced by the 3 frame input is 30ms (total of 230ms)

� The downsampled features are then interpolated before recog-
nition [7].

From the Table 2 it is seen that the use of 3, 41-tap filters
(LDA41) results in only slight degradation in performance as com-
pared to the 45, 101-tap filters (LDA101 same as LDA-NN in
Table 1). Further scaling down this system as described above,
still yields in a 40% reduction in error as compared to the baseline
system.

5. CONCLUSION

Our results show that non-linear transformation of features can
significantly improve the ASR system performance. Further, com-
bining different non-linearly transformed feature sets, especially
complementary feature sets such as those based on spectral and
temporal processing, yields a further improvement in performance.
Finally, we show that it is possible to considerably scale down our
systems to meet practical constraints, while still maintaining no-
ticeable robustness in recognition performance.
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