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1 Introduction

The following master’s thesis documents a 15-month research project at the In-
ternational Computer Science Institute in the field of word-level recognition and
confidence estimation for automatic speech recognition (ASR). Among the pri-
mary objectives of this research are 1) to derive an effective means of computing
confidence scores for competing word-level hypotheses based on phoneme-level
probability estimates and 2) to obtain more accurate word and sentence-level
scores by combining scores from various ASR systems. Both of these efforts
have focused on developing new techniques for processing and applying acoustic-
based information extracted from hybrid ASR systems (i.e. systems that employ
artificial neural networks (ANNs) in a hidden-Markov model (HMM) recognition
system). The research described in this report is therefore primarily directed at
the field of acoustic modeling. Some of the specific topics and themes covered
include posterior vs. scaled-likelihood-based confidence estimation, computa-
tion of scaled likelihoods using adaptive vs. static state priors, soft-target vs.
hard-target ANN training, and forward-backward reestimation of state posteri-
ors.

Although the original goal of this research was to develop ASR technology
for conversational speech, most of the early experiments described in this re-
port focus on “noisy digits” tasks (i.e. digit strings spoken in the presence of
various types of background noise). As described in section 3, these experi-
ments address the issue of how to convert posterior state probability estimates
(i-e. p(g; | )) where g; is some phone state and z is the input acoustics) into
scaled likelihoods of the form, p(z | ¢;)/p(z), or equivalently, p(g; | z)/p(q:)-
Based on performance tests of confidence scores computed from scaled likeli-
hood estimates, the experiments demonstrate the utility of adapting state priors
(i-e. estimates of p(g;)) to the test data of the current speaker and the current
noise environment. The experiments of section 3 also point to the superiority
of scaled-likelihood-based confidence measures over confidence measures based
solely on state posteriors.



These early results on digit-strings helped lay the groundwork for subsequent
experiments on conversational speech, which comprise the bulk of this thesis.
One of the more interesting early results on conversational speech demonstrates
the utility of using forward-backward recursions to reestimate local state prob-
ability estimates prior to computing word and sentence-level scores (this topic
is discussed in detail in section 4).

In accordance with the stated goals of this research, various realizations of
the ICSI system were later integrated with a likelihood-based system provided
courtesy of SRI International. These experiments ultimately produced an inte-
grated ASR system that achieved a word error rate of 33.7% on the Switchboard
task. Note that these test results constitute an absolute improvement of approx-
imately 0.7% over the best performance recorded by either system in isolation.
Further information on these experiments may be found in section 5.

2 The ICSI Speech Recognition System

In most contemporary ASR systems, the process of recognizing speech can be
broken down into the following three stages:

1. feature extraction
2. phone classification

3. decoding

2.1 Feature Extraction

The purpose of the first stage is to extract a set of features from the speech
signal that capture information about the signal’s phonetic content. Typically,
these features are computed in the form of n-dimensional vectors, where each
vector corresponds to a given frame (i.e. a short-time, fixed-length segment of
the speech signal). In the ideal case, these feature vectors provide a compact,
coherent representation of all of the relevant speech information contained in
the signal, while filtering out non-speech information. Feature extraction may
thus be viewed as a form of signal compression, where the interest is in retaining
speech information, not in maintaining the audio quality of the original signal.

The feature sets used in this research were obtained by means of an analysis
technique called “RASTA Perceptual Linear Prediction” (i.e. RASTA-PLP).
As with most feature extraction paradigms in speech recognition, RASTA-PLP
involves applying short-time cepstral analysis to the incoming speech signal.
The technique also involves various filtering steps. Further details on RASTA-
PLP can be found in [2].

2.2 Phone Classification

After extracting a set of n features for each frame of speech data, the recognition
process moves on to the phone classification stage, where the input acoustics



are either mapped into acoustic state likelihoods (i.e. estimates of p(z | ¢;) or
state posteriors of the form, p(g; \ z). In the former case, a gaussian mixture
model (GMM) system is typically used to produce estimates of the state likeli-
hoods. These likelihoods are then applied to an HMM-based decoding system
which determines the most probable word hypotheses for a given utterance. Al-
ternatively, some ASR systems employ discriminative models such as artificial
neural networks (ANNSs) to compute estimates of p(g; | ). These estimates are
then converted into “scaled likelihoods” of the form p(g; | ) /p(q) prior to being
processed in a similar manner by an HMM-based decoder.

As indicated earlier, the ICSI system uses an ANN to establish a mapping be-
tween input feature vectors and estimates of the posterior probabilities for each
state. Since these probability estimates are “conditioned” on the input features,
we typically refer to the outputs of the ANN as posterior state probabilities or
simply as posteriors. For this report, we will use the notation, p(¢p | "), to
represent the posterior probability of state g occuring at time n, conditioned
on the input acoustics (i.e. the input feature vector z at frame n).

Note that the various states, ¢i,92,---,qn, defined by the ICSI acoustic
model represent linguistic units called phones.! These phones correspond to
particular sub-word speech sounds (e.g. /k/, /ae/, and /t/ as in the word,
“cat”). A total of 56 phone classes are defined by the ICSI system, although not
every phone is used in every speech task. Most digit-string tasks, for instance,
require only 26 phones.

The architecture used for all ANN estimators described in this thesis consists
of three layers of nodes: an input layer, a hidden layer, and an output layer. The
input layer accepts a total of CW x M input values, where M is the length of
each feature vector, and CW is the given “context window” (i.e. the number of
consecutive feature vectors applied to the ANN). These input values are mapped
through a fully-connected system of non-linearities to the hidden layer, which
is similarly mapped to 56 output nodes representing the output posteriors for
each state. At the hidden and output layers, the value of a given node, j, is
computed as f(wo;+ >, wi;jTij), where €15, 25, . .., £n; represents the set of all
nodes that are connected to the input of j and wg;, wyj, waj, ..., wn; represents
a corresponding set of weights. A smooth nonlinearity such as a sigmoid or
softmax function is typically chosen for f(-). To train the network, an error
criterion (e.g. the mean squared error of the output posteriors with respect to
the training labels) is differentiated with respect to the internal weights, and
the weights are updated accordingly. After each update, the frame accuracy
of the ANN is tested on a held-out corpus of cross-validation data to prevent
overtraining. This simply involves determining the percentage of the phone
labels that match the top ranked phone for each frame (as determined by the
outputs of the ANN). Once the gains in frame accuracy begin to level off or
decrease, the step-size of each weight update is reduced until the training process
is ultimately stopped. Further details on the training and design of ANNs can
be found in [4] and [3].

1Many speech recognition systems define multiple states for each phone.



2.3 Decoding

Once the input features have been mapped into posterior probabilities by the
ANN, the recognition process moves on to the decoding stage, where the in-
put speech is matched with various possible word hypotheses. In most ASR
systems, the decoding process is performed by using a set of hidden Markov
models (HMMs) to determine the likelihoods of various word and sentence-level
hypotheses given the outputs of the acoustic model. The purpose of these HMMs
is to model the a priori probabilities of state transitions through an utterance
based on observations made from actual speech. For instance, an HMM might
be trained to encode the probability that phone state /ae/ transitions to /t/,
conditioned on the duration of /ae/ and on the fact that the previous phone
state was /b/. Given a sufficiently rich set of transition probabilities, an HMM
may be used to estimate a priori probabilities of the form p(Q | Mp), where
Q= a5 qZ+1, . qlN represents an entire state sequence or “path” through an
utterance, and M}, represents the given HMM. These a priori path likelihoods
are then used in conjunction with other statistics, including language models
and the outputs of the acoustic model to arrive at the probability p(W | X, M)
of a word sequence W given the input acoustics, X, and the overall ASR sys-
tem, M. Many of the specifics of this procedure will be revealed in the coming
sections—many others, however, are beyond the scope of this research, and will
only be mentioned in passing. For now, we will limit the discussion by simply
assuming that a means exists for estimating p(W | X, M) for any word sequence
W. For further details on decoding, the reader is referred to [6] and [1].

Note that in practice, it may not always be possible to conduct an exhaus-
tive search of the word hypothesis space, particularly for unconstrained, large-
vocabulary speech tasks where there are thousands of competing sentence-level
hypotheses. For large tasks such as these, a number of pruning techniques are
often employed to limit the search process (more details on search may be found
in [6] and [1]).

2.4 Additional Background: The Forward and Backward

Recursions

In this section, we introduce some basic theory related to 1st-order hidden
Markov models. Assuming that state transitions in a given model follow a

Markov process (i.e. a process where p(q;‘:_ll | q,’;",q,’::_ll,.. . ql?,,__JYv ) = p(q}c‘:;l1 |
gz ) for any N), we may define the following two recursions:

an(f) = p(XT,q})
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k

and,
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Here, X represents the set of all observations from frame n to frame N. The
above equations define the basic statistical properties of an HMM system. Given
a set of local state likelihood estimates (i.e. p(z™ | ¢"*)) and a corresponding set
of a priori state transition probabilities (i.e. p(¢} | ¢¢~")), we can efficiently dis-
tribute information throughout a given model by means of a forward recursion
(represented by the a terms shown above), and an analogous backward recur-
sion which is represented by 8. The a and (8 terms may also be combined to
obtain “global” posterior estimates of the form, p(q} | X{V), as shown in the
following equation (note that the term, “forward-backward posterior” is also
used throughout this thesis to describe p(q} | X{V)).

(X1, q¢)
p(X7)
an(k)Bn (k)

2o an(£)Bn(l)

Since the computation of p(gf | X{¥) is invariant to any scaling at the frame-
level, we note that the p(z | ¢;) terms in the forward and backward recursions
may be replaced with scaled likelihoods of the form p(g; | z)/p(g;). Thus, the
forward and backward recursions allow us to convert local posterior estimates
obtained from an ANN into global posteriors of the form p(q? | X{¥). This ap-
proach to reestimating state posteriors forms the basis for much of the research
described in the following sections.

p(gp | X)) =

3 Experiments on the Aurora Noisy Digits Task

As stated in the preceding introduction, many of the early experiments in this
project were performed on the Aurora corpus—a speech task consisting of digit-
strings spoken in the presence of noise. The purpose of these experiments was to
compare different methods of applying state posteriors computed by the ANN to
the task of estimating word-level confidence. More specifically, the experiments
investigated different methods of estimating state priors (i.e. p(g;)) for the
purposes of converting posteriors into scaled likelihoods (i.e. p(g; | z)/p(g:)).
An existing model for estimating acoustic-based confidence was then used to
transform these scaled likelihoods into word-level confidence scores, which were
later tested and compared.

The methodology used in the Aurora experiments for computing acoustic-
based confidence measures follows directly from the work of Williams et al.
in [7]. Given an ANN-based recognition system that produces estimates of
p(gp | ™), where g} represents the occupation of state (i.e. phone) k at time n
and z" represents the corresponding input acoustics, Williams et al. define the



following phone-level acoustic confidence measure:

nPP(q) Z log(p(qr, | =) (1)

nns

Here, ns; and n. denote the start and end times of phone ¢; according to a
particular word-level or phone-level hypothesis, and D represents the hypothe-
sized phone duration. The above expression thus computes the logarithm of the
normalized posterior probability (i.e. nPP(-)) of phone g given a hypothesized
start and end time.

To obtain confidence scores at the word-level, the phone-level confidence
scores for each phone in a word hypothesis may be combined according to

nPP(wy) ZnPP k), (2)

where L denotes the number of phones in word wy, and gg,, ks, - - - , @k, denotes
the hypothesized phone sequence. To justify the basic form of this model, we
appeal to the intuition that the sum of a group of N consecutive log posteriors
in a phone or word-level hypothesis will tend to bear a direct relationship to
the correctness of the given hypothesis. We should note, however, that this
intuition assumes that the posteriors themselves provide reasonably informative
estimates of the relative correctness of a given frame—that is, we assume that
the posteriors provide meaningful probability estimates. One caveat to this
approach, however, is that the sum of a sequence of log posteriors decreases
with increasing N (note that this results from the fact that each log posterior
is negative). Thus, to allow for comparisons between hypotheses of differing
lengths, the resulting confidence measures must be normalized with respect to
duration, as is done in equations 1 and 2.

3.0.1 The Aurora Corpus

As with most speech corpora, the Aurora corpus is divided into 2 data sets: one
for training and one for testing, each recorded by a disjoint group of speakers.
Both data sets consist of strings of 1 to 7 randomly-selected digits read in
the presence of 1 of 4 different noise types: hall, babble, car, and train. The
recording conditions for the data sets are further categorized by 1 of 7 noise levels
including “clean” and every decibel level ranging from 20 to -5 (in decrements
of 5 dB). Thus, a total of 28 different noise types and levels are represented in
the Aurora corpus. Each of the 28 noise type/level subcategories accounts for
1001 test utterances and 300 training utterances—the complete training and
test sets therefore comprise a total 8440 and 28028 utterances, respectively.

3.0.2 Acoustic Model Training

To train an acoustic model for the Aurora task, a set of 9 RASTA-PLP features
were computed for each 16 millisecond frame of training data. An ANN system



WER (%)
experiment Hall | Babble | Train | Car
Clean 3.7 3.9 3.1 3.4
SNR20 5.0 5.7 4.1 4.6
SNR15 7.7 | 10.0 5.5 6.0
SNR10 15.8 | 24.2 11.0 9.0
SNR5 43.8 | 51.7 25.4 29.2
SNRO 86.7 | 75.7 56.0 65.9
SNR-5 93.0 | 88.7 86.7 87.0

Table 1: Recognition Results for the Aurora Noisy Digits Task

consisting of 81 input units, 480 hidden units, and 56 output units was then
trained to the corresponding phone labels (i.e. hard targets) of a random order-
ing of the 1st 7640 utterances of the training set. The remaining 800 utterances
were reserved to provide a cross-validation corpus for the ANN training process.

Using the resulting ANN system, state posterior estimates were computed
for each frame of the test corpus. A decoding was then performed on the full
test-set, yielding a single “best-guess” hypothesis and corresponding phone-level
time-alignment for each utterance. The word-error rates (WERs) computed for
each of the test sets are summarized in table 1. Note that the average WER
over 20 test sets (all test sets with the exception of “clean” and -5 dB) for this
system is 27.2%.2

3.0.3 Experimental Procedure

Given the decoded list of word-hypotheses, the posterior estimates of the ANN,
and estimated phone alignments corresponding to each word hypothesis, the
formulae given in equations 1 and 2 were used to compute confidence scores
for each word hypothesis. The effectiveness of the resulting confidence scores
was then evaluated by dividing the word hypotheses into two groups: correct
words and incorrect words, and then computing a detection error tradeoff (DET)
curve as shown in figure 1. The DET curve simply provides an indication of
how separable the correct and incorrect hypotheses are based on their confidence
scores. To resolve a single point on the DET curve, we set an arbitrary threshold
7 and assume that every word having a confidence score greater than 7 will
be “retained,” while every word having a confidence score less than 7 will be
“rejected.” Thus, for every threshold 7, we can compute percentages for the
two types of errors encountered in confidence estimation—the percentage of
correct words rejected and the percentage of incorrect words retained. If we
vary the threshold over the entire range of confidence scores, we can form a
complete DET curve like the one shown in figure 1. In the field of confidence
estimation, the hope is, of course, that the percentages of correct words rejected

2This is considerably worse than the state-of-the-art for the Aurora task—in [5], Sharma
et al report a system that performs at an average WER of roughly 6%.



and incorrect words retained will tend to be low for most points on the DET
curve. Thus, given the axes shown in figure 1, the better-performing confidence
measures will have DET curves that are closer to the lower left-hand corner of
the figure where the percentages of errors approach zero.

To provide a quantitative means of comparing different confidence measures,
it is often useful to evaluate error rates at specific points on a DET curve rather
than trying to interpret an entire graph. For this thesis, we will be particularly
concerned with the equal-error rates (EERs) of DET curves. The EER of a
DET curve is simply defined as the error rate at which the percentage of correct
words rejected is equal to the percentage of incorrect words retained.

3.0.4 Model Derivation

In the process of experimenting with various methods of computing confidence
scores, it was discovered that a significant reduction in equal-error rate (EER)
could be achieved by replacing the posterior terms (i.e. p(gf | ™)) in equation 1
with scaled likelihoods of the form = -p(qp | £™)/p(gx). Here, the constant a,
normalizes all of the scaled hkehhoods within frame n to sum to one. Equations
3 and 4 summarize the modified confidence model:

nPP(qy) 21 ( M) (3)

p(qr)
_ = Ppleg | =)
o= ; p(ax) @

We can build a theoretical basis for this model by referring to the HMM
theory developed in section 2.4. Let us first assume that the prior probability
p(Q) of any path @ = qkl,q,’:jl, ..., qp, within an M-state model is equal to
¥, where ¢ = 1/M. Thus, all state priors, p(gx), and all state transition prob-
abilities, p(q; H . | i), are uniform, and the prior probability of any path @ is
dependent only on its duration, N. Based on this assumption, let us now com-
pute the joint probability, p(Q;*"™, X""), where Q"™ = q;.* ,qZ‘H, e Qs
represents a given state sequence and X ™' represents the input acoustics from
frame n, to frame n..

p(QZs sTMe , X’ns yNe )

p@™) (X7 | Q™)
ne
— ,(l]ne_ns"{'l . H p(wn | ql::ln)

n—mnm;g
N N W U AL
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Here, k simply accounts for the scaling of the likelihood terms. Next, we com-
pute p(X™ ") by summing p(Q} """, X" ") over all paths that start at n,
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Figure 1: DET Curves for the Aurora Noisy Digits Task (complete test set)



and end at ne:
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Note that the terms at the right side of the above equation sum to 1. Thus,
p(X ™) reduces to

p(an,ne) — k,¢ne—ns+1

The log of p(Q}°" | X™ ™) for a particular phone-level hypothesis Q; =
g, g™, ..., g may then be computed as

logp(Q*"™ | X™™) = logp(Qpe™, X™™) — logp(X™")

SR

n=ns

At this point, we’ve computed the desired log posterior, log p(Qy*"" | X™*™<),
which we use as a basis for computing confidence scores for phone-level hypothe-
ses. However, since the value of logp(Q} " | X"+ ™) will tend to be lower for
longer hypotheses, we are still left with the problem of maintaining compara-
bility between confidence scores for phone hypotheses of different lengths. To
correct for biases introduced by differences in duration, we simply normalize
log p(Q},°"™ | X™") with respect to D:

1 1 e 1 n | pn

n=ns

Note that this gives us the same expression shown in equation 3. Thus, for the
case where all state priors and all state transition probabilities are assumed to
be uniform, we have shown that the phone-level confidence model of equations
3 and 4 (prior to duration normalization) follows directly from the framework
of HMM theory.

A comparison between the performance of the original and the modified con-
fidence estimation models is provided in figure 1. Here, the baseline DET curve
corresponding to the original posterior-based confidence model of equation 1 is
shown under the “raw postrs” label. The other curves in the figure correspond
to confidence measures obtained from the scaled-likelihood model of equation 3.
Each of these curves employs a different estimate of the state prior, p(qz), for
the computation of word-level confidence. The estimate of p(qx) corresponding
to the “scaled likelihoods, priors trained on hard targets” curve is simply com-
puted as the average frequency of each phone class based on the hard targets of

10



the training data. Thus, we compute p(gx) as

1 N
pla) = > 1(gp) (5)
n=1

where 1(g}) is either one or zero, depending on whether or not state g is
occupied at time n. This “hard targets” curve is particularly significant because
it employs the method by which priors are typically computed in ANN-based
speech recognition systems. The most compelling justification for this method of
estimating priors has to do with the fact that virtually every aspect of embedded
ASR training may ultimately be traced back to the original phone labels assigned
to the training data. Hence, it is often argued that the hard labels provide the
most appropriate source of “ground truth” for estimating state priors.

On the other hand, one might argue that if a posterior estimator, p(q; | ™)
is assumed to be accurate, then p(qx) should be consistent with that estimator.
Based on this reasoning, we could try computing p(qx) as the time-average of
p(gp | ™) over some set of N frames, as shown below:

1 N
pla) = 5 Yo plak | 2") (6)

n=1

To provide a theoretical basis for this model, we can begin by expressing p(gx)
as a marginal probability:

plge) = / Pk | 2)p(e)de (1)

Since p(g | ) is a function of the random variable, z, equation 7 simply states
that p(qr) = E[p(gx | z)]. Thus, a natural estimate for p(gx) can be obtained
by time-averaging p(qx | ), as long as the group of posteriors over which we
are averaging is adequately representative of the true distribution of p(gx). In
this paper, we will not concern ourselves with formally testing whether or not
the latter condition is satisfied for any specific group of posteriors. However, we
acknowledge that equation 6 should only be used in cases where the group of
sample posteriors can reasonably by assumed to represent p(gx)-

This alternative formulation introduces additional questions about which
data set(s) to use for averaging state posteriors. One possible source for the
posteriors in equation 6 is the cross validation data. This is the data source
used to train priors for the “scaled likelihoods, priors trained on cv data” curve
in figure 1. We note, however, that equation 6 also allows for the adaptation
of p(qx) to posteriors taken from the test data itself. In the Aurora corpus,
the test sets are divided into 28 subsets—4 noise types multiplied by 7 noise
levels. Thus, it’s natural to train priors on posteriors that match the given noise
conditions. Given that we are also provided knowledge of speaker identities, the
Aurora task allows for the training of a set of priors, p(gk,s,n,e), On posteriors
obtained from the test data of a particular speaker, s, a given noise type, n,

11



experiment EER (%)
raw postrs 14.86
scaled likelihoods, priors trained on hard targets | 12.90
scaled likelihoods, priors trained on cv data 11.64
scaled likelihoods, priors trained on test data

for given speaker and noise 9.60

Table 2: Confidence Estimation Results for the Aurora Noisy Digits Task

and a given noise level, . When we apply the resulting priors, p(gk,sn.¢), t0
equation 6 to compute confidence scores for speaker, s, under noise conditions,
n and £, we obtain the DET curve labeled “scaled likelihoods, priors trained on
test data for given speaker and noise” in figure 1.

3.0.5 Results

The corresponding EER for each of the four curves is shown in table 2. As
shown in figure 1 and table 2, all three of the curves computed from the modified
confidence model of equations 3 and 4 outperform the curve computed from the
original posterior-based model. Using the “raw postrs” curve as a baseline,
the scaled likelihood-based curves yield relative reductions in EER of 13.19%,
21.67%, and 35.40%, respectively.

As for the performance of the various estimates of p(gx) used in the exper-
iment, figure 1 and table 2 show that the cross-validation priors outclass the
hard target priors by a margin of 9.77%, in terms of relative EER. The best
showing, however, is put forth by the adaptive priors which outperform the pri-
ors obtained from hard targets and cross validation data by relative margins of
25.58% and 17.53%, respectively. These results lend credence to the estimation
paradigm of equation 6, where state priors are computed as the time average
of posterior estimates obtained from the ANN. Moreover, the results point to
the utility of adapting priors to the particular conditions of the input speech,
including adapting to the current speaker and the current noise environment.

To put these results in the proper context, we should note, however, that
real world speech tasks do not always allow us to make assumptions about the
identity of the current speaker or noise environment. Thus, the results obtained
from the adaptive priors for the Aurora task might be viewed as adaptation
under ideal (or at least favorable) conditions. For the purposes of implementing
real world adaptive ASR systems, it’s encouraging to note, however, that the
adaptive priors were trained on relatively small lengths of test data. In the
Aurora test set, only 9 or 10 utterances are recorded for each speaker in each of
the 28 noise conditions. Given that these utterances tend to be no longer than
6 seconds in length, we might conclude that for limited vocabulary tasks like
Aurora, effective adaptation of prior state probabilities may be possible on time
scales of no longer than one minute.

12



4 Experiments on the Switchboard Task

Following the Aurora experiments, a set of tests were conducted on the Switch-
board corpus, which consists of conversational speech recorded over telephone
lines. The primary objective of these experiments was to apply the forward-
backward recursion outlined in section 2.4 to the task of reestimating the raw
state posteriors produced by the ANN. To recap the procedure, the forward-
backward recursion uses prior state transition probabilities of the form p(q,’e1Jr1 |
q}) in conjunction with scaled likelihoods (i.e. p(z™ | gf)) to compute path
probabilities through an utterance. By summing the likelihoods of all paths
that arrive at a given state, g, at a given time, n, the recursion produces esti-
mates of the so-called “global” or “forward-backward” posterior, p(qp | X, M).
Normally, forward-backward posteriors are only used to determine soft time-
alignments for the purposes of embedded training (more on these topics can be
found in [6] and [1]). However, one might imagine that a posterior of the form
p(qp | X, M) might be useful in other applications as well, such as the estima-
tion of word-level confidence. Indeed, it’s worth noting that forward-backward
posteriors are “conditioned” on more information than raw posterior estimates
(i.e. p(gp | ™))—thus, it seems reasonable to assume that confidence estimates
computed from forward-backward posteriors may yield improved performance
over estimates computed directly from the outputs of the ANN. In the following
report, we describe several experiments that support this intuition.

4.0.6 HMDM Specifications

To build an HMM architecture for the forward-backward procedure, we trained
a set of first-order phone transition probabilities from the pronunciations and
unigram probabilities of each word contained in a 32000 word lexicon. Transition
probabilities derived in this way may be represented as p(qj | qffl, dy) where g}
denotes the event of g, not being occupied at time n (in other words, (q}‘_l, a;)
denotes an exit out of state gy at time n). We also trained duration models for
each phone from the labels of the training data. Each duration model consists of
a simple left-to-right architecture of N states, gk, , @k, - - - , Qky, Where if n < N,
qr, can either exit or transition to the next state, gx,,,,- Only the last state, gz,
is permitted to have a non-zero self-loop probability. Given this architecture,
the duration models are trained by associating g, where n < N with the nth
consecutive frame of phone g in a forced Viterbi alignment. The final state, gz,
is associated with each consecutive frame of phone ¢ in the forced alignment
that follows ¢, . Using this procedure, any distribution of phone durations
derived from the cross-validation data can be precisely modelled given that N
is sufficiently large.

Once derived, the duration models and first-order phone transitions were
merged into a single HMM by applying Bayes rule:

n—1 -n

plap | ) =p(af | ap ™ ) xp(@ | ¢4 )

Here, the two terms on the right-hand side of the equation are obtained from
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the phone transition models and from the phone duration models, respectively.

For the switchboard experiments, the number of substates per phone in each
duration model was set to N = 5. We also defined two parameters, ¢ and p,
that were used to smooth the probabilities of each state transition defined by
the HMM:

plap, 1Y) = (e, |ap t) +e)f (8)
Here, p represents a probability after smoothing is applied. Since these smoothed
values do not necessarily retain the usual properties of probability estimates
(e.g. they do not necessarily sum to one), we will refer to quantities of the
form, p(qy, | q?m_l), as transition likelihoods. Although these transition like-
lihoods do not form a consistent set of conditional probabilities, we may still
use the p(qg, | qz:l) terms to estimate path probabilties by renormalizing the
likelihoods of all possible paths, Q1,@Q2,...,Qn, so that >, p(Q;) = 1. Note,
however, that the forward-backward recursion performs this renormalization
implicitly—thus, no further consideration must be given to computing path
probabilties from the (g | g;'~"') terms.

Given the model described above for the transition likelihoods of the HMM
system, the forward-backward recursion was performed on state posteriors to
produce estimates of p(q? | X{, M). These forward-backward posteriors were
then substituted into the confidence models of section 3 to compute confidence
measures for a corresponding set of word-level hypotheses. For each of the
Switchboard experiments, these hypotheses were obtained from an independent
ASR system provided by SRI International. Note that the WER of the SRI
system was measured to be 29.71% on the final Switchboard test corpus. Prior
to actually testing the performance of confidence measures derived from forward-
backward posteriors, the smoothing parameters, ¢ and p, were optimized on a
held-out corpus of 1143 cross-validation utterances. For each confidence model
tested in this section, the optimal values of the smoothing parameters were
found to be approximately the following: € = 0.01 and p = 0.55. Note, however,
that smoothing was only applied to state transitions that are permitted by the
architecture of the duration model (i.e. no smoothing was applied to undefined
transitions, such as p(qg, | q?a_l)). Thus, the probability of all undefined state
transitions remains zero in the smoothed probability model.

4.0.7 System Training and Experimental Setup

The ANN system used in the forward-backward experiments consists of two
separate ANNs—one trained on 68903 utterances of female speech and the other
trained on 57067 utterances of male speech. Both the male and the female
ANN were trained to hard targets using 13 PLP features computed for every 10
millisecond frame of speech data. A context window of 17 frames was employed
on the nets—thus, a total of 17 x 13 = 221 input units were used for training.
Both of the ANN systems were implemented with a hidden layer of 8000 units
and an output layer of 56 units (one for every phone state).

To compute frame-level posteriors, the male and the female ANNs were used
individually to produce 2 sets of posterior estimates for each utterance. A simple
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form of gender detection was then performed by comparing the relative entropies
of the resulting male and female posteriors (more on this subject can be found
in [6]). The gender having the lower of the two entropy statistics was then
chosen as the gender hypothesis for the given utterance, and the corresponding
posteriors were retained for further use. Thus, if a set of male posteriors for a
given utterance have a lower entropy than a set female posteriors for the same
utterance, only the male posteriors will be used for the purposes of computing
confidence scores, performing recognition, etc.

As for the speech corpora used in these experiments, the Switchboard De-
vtest 2000 set was used to tune the € and p parameters listed above, while the
Switchboard Eval2000 set was used for testing. These corpora consist of 1143
and 4466 utterances, respectively, each comprised of between 100 and 2000
frames of conversational speech recorded by a single speaker. As with the Au-
rora task, each utterance is indexed with a label corresponding to the current
speaker’s identity. Thus, the Switchboard task allows for the computation of
speaker-specific priors of the form, p(qx,s), where k is the state label and s is
the current speaker.

4.0.8 Results

Figure 2 shows DET curves corresponding to various models of word-level confi-
dence computed from either raw posteriors or forward-backward posteriors. The
various curves are computed from either the posterior or the scaled-likelihood
based models of equations 1 and 3, and are labeled accordingly. As implied by
the legend of figure 2, the curves are further distinguished by the prior esti-
mates used in the computation of the forward-backward posteriors. In all cases,
the priors are either estimated from the raw posteriors or from the forward-
backward posteriors of the test data for the given speaker. Thus, each of the
prior estimates is of the form p(gx,s), where k is the state label and s is the
current speaker. A fourth distinction between the curves involves the particular
forced alignment procedure used to compute the optimal path of each word and
phone-level hypothesis. For each of the curves, the state paths are computed
from a forced Viterbi alignment using one of two possible estimates of the scaled
likelihoods, p(gp | ™)/p(qx) (more information on forced Viterbi alignment can
be found in [6] and [1]). In the “align I” case, these scaled likelihoods are com-
puted from raw posteriors, while forward-backward posteriors are used in “align
II.” Note that both align I and the align IT employ priors estimated from the
hard-targets of the training data, as in equation 5.

The corresponding EER for each DET curve is listed in table 3. As ex-
pected, the results in table 3 obtained from the scaled-likelihood-based confi-
dence model of equation 3 outperform those obtained from the posterior-based
model of equation 1 (when holding constant for alignment). These results agree
with the findings of the Aurora experiments and further support the effective-
ness of confidence models based on scaled-likelihoods. The EERs of table 3
also suggest that raw posteriors are a better source for computing priors than
forward-backward posteriors. This is an interesting result, since the best overall
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Figure 2: DET Curves for the Switchboard Task. Here, “SL” represents “scaled
likelihoods.” “align I” and “align II” refer to alignments computed from two
different estimates of the scaled likelihoods. In the “align I” case, the scaled
likelihoods are computed from raw posteriors while forward-backward posteriors
are used for “align IT” (note that both sets of scaled likelihoods are computed
by dividing the given posteriors by priors obtained from the hard-targets of the
training data). “raw priors” refers to adaptive priors computed from the raw
posteriors, and “fwd-bckwd priors” refers to adaptive priors computed from the
forward-backward posteriors.
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ezperiment EER (%)
raw postrs, align I 37.52
SL computed from raw postrs and raw priors, align I 36.64
fwd-bckwd postrs, align II 35.57
SL computed from fwd-bckwd postrs and fwd-bckwd priors, align IT | 35.47
SL computed from raw postrs and raw priors, align IT 35.14
SL computed from fwd-bckwd postrs and raw priors, align 1T 34.68

Table 3: Confidence Estimation Results for the Switchboard Task. Here, “SL”
represents “scaled likelihoods.” “align I” and “align II” refer to alignments
computed from two different estimates of the scaled likelihoods. In the “align
I” case, the scaled likelihoods are computed from raw posteriors while forward-
backward posteriors are used for “align II” (note that both sets of scaled like-
lihoods are computed by dividing the given posteriors by priors obtained from
the hard-targets of the training data). “raw priors” refers to adaptive priors
computed from the raw posteriors, and “fwd-bckwd priors” refers to adaptive
priors computed from the forward-backward posteriors.

EER of 34.68% is actually obtained by using raw priors and forward-backward
posteriors to compute scaled likelihoods. The “SL computed from fwd-bckwd
postrs and fwd-bckwd priors” curve, by comparison, performs worse by an ab-
solute margin of 0.79%. Thus, it appears that while the forward-backward
recursion may yield improved posterior estimates, these posteriors do not lend
themselves to computing state priors. One might conclude that the posteriors
obtained from the forward-backward recursion are biased in some way. Indeed,
the state transition probabilities used to derive the forward-backward posteriors
are themselves biased by the smoothing parameters, ¢ and p. The possibility
that the forward-backward posteriors are also biased is therefore not unexpected.

Based on a comparison of the results obtained for the “align I” and the “align
II” curves, we note that much of the gain obtained from computing forward-
backward posteriors may actually be attributed to improved time-alignments.
In particular, we note that “SL computed from raw posteriors and raw priors”
performs significantly better with the “align II” scheme than with “align 1.”
Although a thorough investigation into time-alignment is beyond the scope of
this paper, it is important to point out that much of the discrepancy between
align I and align IT has to do with the number of “empty” alignments (i.e.
utterances for which no alignment was found) for the two schemes. In the align
I case, 5028 out of a total of 38652 words in the test set were designated as
empty alignments, whereas only 662 words were left empty for align II. Each
of the words corresponding to an “empty” alignment were simply assigned the
lowest confidence score of any word in the entire corpus. Thus, the number of
empty words in an alignment has a significant impact on confidence estimation.
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5 System Combination Experiments on the Switch-
board Task

As described in section 1, one of the primary thrusts of this project is to com-
bine components of independently trained ASR systems to improve recognition
performance and confidence estimation. The previous section describes a set of
experiments along this vein (recall that the word hypotheses in the preceding
section were obtained from the SRI system). In this section, we extend this
line of research by incorporating the ICSI recognizer into the process of ranking
competing sentence-level hypotheses. This approach differs from that of the pre-
ceding section in that the ICSI recognizer actually factors into the recognition
process. Thus, the goal in this section is not only to yield improved confidence
estimates for existing word hypotheses, but also to improve the accuracy of the
word hypotheses themselves. As in previous sections, we will ignore the details
of the decoding process (i.e. the process of actually determining an “n-best list”
of the most likely sentence-level hypotheses for a given utterance). Instead, we
will focus on the task of computing scores for each competing sentence among
an n-best list of the top candidates. The following section will show how these
scores can then be applied to the following two tasks: 1) extracting the most
likely sentence-level hypothesis and 2) computing confidence measures for each
hypothesized word.

5.0.9 Model Definition

To derive a model for evaluating the relative likelihoods of the top N sentence-
level hypotheses for a given utterance, we begin by computing the probability
of sentence S conditioned on the input acoustics X:

S| My)p(X | S, Ma)
p(X [ M)

p(S | X, M) = 2

Here, we define M = {M,, M, } where M, represents a given language model and
M, represents a given acoustic model. The terms p(S | M) and p(X | S, M,)
shown above represent probability estimates or “scores” obtained from the lan-
guage and acoustic models, respectively. For the purposes of this discussion,
we will again ignore the details of how these scores are computed and simply
assume that they are available.

In the above equation, we note that p(X | M) is the same for each sentence-
level hypothesis, S, for the given utterance. Since we are only interested in the
likelihood of S relative to the other sentences in the n-best list, we can ignore
the p(X | M) term and simply compute sentence-level scores in terms of the
joint probability p(S, X | M). After applying smoothing parameters to both
the acoustic and language model terms in the above equation and taking the
logarithm of p(S, X | M), we arrive at the following linear model for scoring a
sentence-level hypothesis, S:

PP(S) =logp(S, X | M) = pglogp(S | My) + pologp(X | S, M,)
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Here, the p; and p, terms are fixed smoothing parameters that weight the
contributions of the language and acoustic model terms. For the experiments
described in this section, the above model is extended to include log probability
scores obtained from multiple sources. More specifically, we adopt a model
that employs acoustic model scores obtained from a GMM system supplied by
SRI international and from the ANN system of ICSI. Both acoustic scores are
computed by summing log likelihoods for each frame in a forced alignment to
the given sentence, S. Since the GMM system directly estimates likelihoods of
the form p(z™ | ¢), the acoustic model score AMgnm(S) can be computed as
follows:

N
AMagum(S) = Zlogp(:z:" | a..) 9)

Here, qg,; Qkss- - - » Gy represents a “best path” through the utterance for the
given hypothesis, S.

As shown in the previous sections, the likelihoods obtained from the ANN
system are composed of separate posterior and prior terms. Thus, the acoustic
model score for the ANN system can be broken down into two separate scores,
AMANN,post(S) and AMANN,priar:

N
AMANN post(S) = Z logp(gx, | ") (10)
n=1
N
AMANN,prior(S) = Z Ing(an) (11)
n=1
Again, gk, ,qk,,- --,qky represents the most likely state sequence for the given

sentence, S. Note that the GMM system and the ANN use different states—
thus, each system must compute its own best path. Given these scores, the
complete sentence-level log likelihood, PP(S), is computed as follows:

PP(S) = pa,GMMAMGMM(S)+plLM(S)+ppost1'AMpost1' (S)_ppriorAMpriar (S)

(12)
The sentences contained in each n-best list are then ranked according to their
sentence-level scores, and the top-ranking sentence is chosen as the final hy-
pothesis.

5.0.10 Experiment I

In the following discussion, we describe several experiments that test the word
recognition performance of the combined ASR system defined by equation 12.
The goal of the first of these experiments, labeled “Experiment I” is to com-
pare the performance of various estimators of p(g;) for the purposes of com-
puting AMp,i0r(S). As was done in section 3, the priors are computed by
time-averaging one of the following three sources: the posteriors of the cross-
validation data, the hard targets of the training data, and the posteriors of the
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ezperiment WER (%) Pa,GMM Pe Ppostr Pprior
HT priors 34.0 1 10.45 | 0.135 | 0.195
CV priors 33.7 1 12.75 | 0.11 0.175
adaptive priors | 34.0 1 9.55 | 0.09 0.14

Table 4: WER Results for Experiment I (all scores)

ewpem’ment WER (%) Ppostr | Pprior |
HT priors 424 1 2.49
CV priors 42.1 1 2.481
adaptive priors | 42.1 1 1.974

Table 5: WER Results for Experiment I (ANN only)

given speaker’s test data. In each case, the posteriors are derived from the same
hard-target trained ANN used in section 4. After computing the various acous-
tic and language model scores of equation 12, the smoothing parameters for each
of these scores were tuned on the cross-validation corpus to yield an optimized
WER. Thus, for each setting of the tuning parameters, each n-best list in the
cross validation corpus was rescored according to the model of equation 12. A
WER score for the given parameterization was then determined based on the
correctness of the top sentence-level hypotheses.

For “experiment I,” two separate parameterizations were tested. In the first
of these, which we will call “all scores,” the language model weight, p, was
tuned to a resolution of 0.05, while pprior and ppostr Were tuned to resolutions
of 0.005. Meanwhile, p, garas was held constant at 1. Note that all parameters
were tuned so as to allow for every possible combination of values within the
given tuning resolution. In the second parameterization, which we will call
“ANN only,” po,amm and p; were set to 0, and ppostr and pprior were tuned
to resolutions of 0.001. The following table summarizes the final WER test
results obtained from these experiments. Note that the baseline WER. of the
SRI system is 34.4%.

As shown in table 4, the inclusion of the posterior and prior scores from the
ANN system yields up to a 0.7% absolute improvement over the 34.4% baseline
of the the SRI system. Based on these results, we may infer that the information
provided by the two probability estimators—the GMM and the ANN—is at
least somewhat complimentary. Whether or not this complimentary nature is
inherent to the two models in general is uncertain. However, the above results
provide a great deal of support for the concept of using integrated ANN and
GMM estimators to rescore sentence-level hypotheses.

Table 4 also underscores the primary theme of the previous sections—namely,
that priors computed by time-averaging posteriors tend to outperform the stan-
dard hard-target priors used in most ANN systems. However, contrary to the
results found on Aurora, table 4 shows that the CV priors actually outperform
the adaptive priors on the “all scores” test. Although the difference in perfor-
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mance here is significant (0.3%), we note that subsequent results obtained in
the following section show adaptive priors performing at the same WER as CV
priors. A similar equivalence in performance between adaptive and CV priors
was also predicted by the results of the tuning corpus. Thus, we consider the rel-
atively lackluster showing of the adaptive priors in table 4 to be an unexpected
(and possibly anomalous) test result.

Regardless of what factors may have contributed to the WER scores shown
above, we note that in general, the adaptive priors appear to be much more
effective for the Aurora task than for Switchboard. This discrepancy in gains
may be partially attributed to the difficulty of the Switchboard task—in gen-
eral, performance improvements obtained on Switchboard tend to fairly small.
However, it’s also possible that adaptive priors tend to be particulary useful
for speech tasks that involve various types of background noise (as is the case
with Aurora). Indeed, it’s worth noting that in the Aurora experiments, the
priors were not only adapted to the given speaker but also to the given noise
environment. Given the largely uniform acoustic conditions under which the
Switchboard corpus was recorded, the experiments of this section do not lend
themselves to the same sort of noise-specific adaptation performed on Aurora.

5.0.11 Experiment II

The second experiment of this section involved further testing the performance
of AMpostr(S) and AMppior(S) based on various new parameterizations and
probability estimators. In particular, experiment II involves testing a new
smoothing parameter, p,p, which is incorporated into the estimation of the
adaptive priors. The revised model for estimating these adaptive priors is de-

fined below:
7L | m pPP
Z | .’l:" )ppp (13)

Here, the p,, parameter simply smooths the individual posterior estimates used
to compute the adaptive prior, p(g;). A significant feature of this revised model
is that the smoothed posteriors are renormalized to sum to one. The above
model is therefore consistent with the original adaptive model of equation 6
insofar as the renormalized, smoothed posteriors can themselves be thought of
as posterior estimates.

“Experiment II” also provides a comparison between the original hard-target
trained ANN used in Experiment I and a new ANN system trained on soft-
targets. This “soft-target ANN” is trained on a “soft-alignment” of the scaled
likelihoods of the training data (i.e. estimates of p(¢* | ™)/p(g;)) with the refer-
ence phone sequence. To derive the soft-alignments, we simply use the duration
models of section 4 to compute forward-backward posteriors at each frame while
conditioning on the phone sequence of the reference transcript. These forward-
backward posteriors are then used as targets to train a “soft-target ANN” hav-
ing the same general architecture and specifications of the original hard-target
ANN. The only significant differences in training between the two ANNs (other
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than the training targets) involves the choice of network non-linearities and error
criteria. While the hard-target ANN was trained using softmax non-linearities,
sigmoidal non-linearities were employed along with a cross-entropy error crite-
rion for the soft-target ANN to ensure stability in training (we note that using
softmax on the soft-target ANN resulted in training errors). Given that ANN
training is a topic of secondary concern to this project, we will leave out any
further discussion of why the softmax criterion failed to admit a training for the
soft-target ANN. Suffice it to say that the reasons for this failure are unknown
and may well lie with a fault in the software.

For “experiment IL,” the p,, parameter was tuned from 1.0 to 0.5 by decre-
ments of 0.1 for both the posteriors obtained from the hard-target ANN and
the posteriors obtained from the soft-target ANN (i.e. the HT-ANN posteri-
ors and the ST-ANN posteriors). These experiments generally showed some
improvement in WER on the cross-validation set when p,, was tuned below
1.0.

Two different alignments were derived for each sentence-level hypothesis to
compute the acoustic model scores. These included the “HT-ANN alignment”
obtained from scaled likelihoods computed from HT-ANN posteriors and the
“ST-ANN alignment” computed similarly from the ST-ANN system. Thus, a
total of 8 tests were performed on each combination of the following categories:
“all scores” vs. “ANN only,” “HT-ANN posteriors” vs. “ST-ANN posteriors,”
and “HT-ANN alignment” vs. “ST-ANN alignment.” For the “ANN only”
test, each posterior set performed best on the cross-validation corpus when
used with its corresponding alignment. However, on the “all scores” test, the
ST posteriors yielded a slightly lower WER when the ST-ANN alignment was
replaced with the HT-ANN alignment to compute AMp,s¢,(S) (note, however,
that a similar improvement was not observed when the HT-ANN posteriors were
used in conjunction with the ST-ANN alignment). Given these tuning results,
one might suppose that further gains can be achieved by incorporating scores
from both posterior sets into the combined GMM + ANN system.

As a final experiment, the “all scores” test was conducted using forward-
backward posteriors (i.e. p(g; | XJ')) of the same form used in section 4 to
compute AMpo4:,(S). As before, the raw posteriors from the ANN were used to
compute the adaptive priors. Given the best value of p,, found in the previous
tuning, the forward-backward smoothing parameter, p, was raised from 0 to 0.5
by increments of 0.1 while ¢ was fixed at 0.1. For each experiment, the WER
was found to go up slightly as p was raised above 0. Thus, the best results for
the forward-backward posteriors are obtained when the transition values of the
forward-backward recursions are completely smoothed (i.e. p = 0). We note
that this corresponds to the special case where the forward-backward posteriors
are equal to the raw posteriors. To rationalize these results, we might postulate
that in the combined ANN + GMM system, forward-backward reestimation
obscures much of the novel information contained in the ANN posteriors.

A list of selected test results for the “HT-ANN alignment” of “experiment I1”
is provided in tables 6, and 7, along with the corresponding optimized parameter
values.
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experiment WER (%) | ppp | Pa,cmm Pt | Ppostr | Pprior
HT-ANN posteriors | 33.7 0.80 1 11.85 | 0.095 | 0.65
ST-ANN posteriors | 33.7 0.90 1 12.1 | 0.08 0.135

Table 6: WER Results for Experiment IT (all scores)

experiment WER (%) | pop | Ppostr | Pprior
HT-ANN posteriors | 42.1 0.80 1 2.337
ST-ANN posteriors | 42.8 0.40 1 2.75

Table 7: WER Results for Experiment IT (ANN only)

As shown above, optimization of the p,, parameter improves the WER of
the HT-ANN posteriors (using adaptive priors) from 34.0% to 33.7% for the
“All scores” test. This result matches the WER recorded for the CV priors in
“experiment I.” However, it’s interesting to note that optimizing p,, resulted in
only small improvements on the tuning corpus (usually on the order of 0.05% or
less)—thus, it seems unlikely that the p,, parameter should yield an improve-
ment as large as 0.3% on a test set for which it was not optimized. Given the
peculiarity of these findings, we should again stress that the above results may
be more indicative of anomalies in the test data than in any underlying improve-
ment in our scoring system. Note that this hypothesis is also supported by table
7, which shows that optimizing p,, results in no significant improvement on the
“ANN only” test.

As for the experiments involving the soft target ANN, no significant change
in WER is observed when the HT-ANN posteriors are replaced with ST-ANN
posteriors for the “all scores” test. However, on the “ANN only” test, exchang-
ing HT-ANN posteriors with ST-ANN posteriors actually degrades the recogni-
tion performance by 0.7%. In response to these findings, we should again em-
phasize that the soft-target training software used in this experiment behaved in
a somewhat suspect manner, possibly due to an underlying fault. Given these
circumstances, the ST-ANN results should be viewed as inconclusive.

5.0.12 Experiment III

Following the recognition experiments outlined in the previous sections, an addi-
tional experiment was conducted to test the confidence estimation performance
of the combined ANN + GMM system. In this experiment, a standard dynamic
progamming technique was used to group the individual word-level hypotheses
of an n-best list into sets of competing hypotheses based on their position within
the given sentence. For instance, given the sentences:

Only a few sections left!
No lonely Texans slept.

The word “Only” might be grouped with “No” or with “lonely” given that each
of these words comes up at approximately the same time in the hypothesized
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experiment EER (%)

baseline (GMM only) 25.66
ANN + GMM system, HT priors 25.66
ANN + GMM system, CV priors 25.47

ANN + GMM system, adaptive priors without smoothing | 25.52
ANN + GMM system, adaptive priors with smoothing 25.35

Table 8: Confidence Results for ANN + GMM System. Here, the baseline
represents the case where only the acoustic model and the language model scores
from the GMM-based system are used to perform sentence-level scoring. The
“adaptive priors with smoothing” curve represents results obtained when the p,,
parameter is set at its optimized value of 0.8. In the “adaptive priors without
smoothing” case, ppp is set to 1.

sentences. Presumably, the word “left” would be grouped with “slept,” since
both of these words occur at the ends of the hypotheses. Thus, we consider
“left” and “slept” to be competing words in the given n-best list. Assuming
that we can sort each word-level hypothesis contained in a given n-best list into
1 of M competing groups (further details on this approach can be found in [8]),
we may compute the word-level posterior, p(w¥ | X{¥), for a given word w;
occuring in group k as follows:

k N > i ezp(PP(S;))
plw | X7') = 14
i | 25) = S ean(PP(5,)) (1)
Here, $ = S1,S5,...,SL represents the set of all sentences that contain w; in
group k, while S = S1,55,..., SN represents the complete set of all sentences

contained in the n-best list. Given this formulation, a set of word-level posteriors
was computed for the sentence-level scores obtained from the combined ANN
+ GMM system in “experiment I.” An additional set of word posteriors was
also derived from the “adaptive priors” scores of “experiment II” where the pyp
parameter was set to its optimized value of 0.8. We will refer to this latter
case as “adaptive priors with smoothing.” Note that word-level posteriors were
only computed for the top sentence-level hypotheses of the n-best lists given the
original sentence ranking (i.e. prior to performing any rescoring). Thus, each
of the DET curves obtained in this experiment are taken from the same set of
word-level hypotheses. The results are shown in figure 3 and in table 8.

Note that we have included a baseline corresponding to the “GMM only”
case (i.e. the case where only the AM(S)gum and LM (S)emum knowledge
sources are used). As shown in table 8, the performance of the various curves
follows a trend similar to that observed in the recognition experiments of the
previous section. We note, however, that the best performance is obtained from
the “adaptive priors with smoothing” curve, which outperforms the baseline by
an absolute margin of 0.31%. Based on these results, it appears that the pp,
parameter may, indeed, be of some significance in improving the estimation of
the state priors—at least for the purposes of computing word-level confidence.
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Figure 3: DET Curves for the Switchboard Task. Here, the baseline repre-
sents the case where only the acoustic-model and the language-model scores
from the GMM-based system are used to perform sentence-level scoring. The
“adaptive priors with smoothing” curve represents results obtained when the p,,
parameter is set at its optimized value of 0.8. In the “adaptive priors without
smoothing” case, ppp is set to 1.
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6 Extensions

In this section, we reexamine some of the theoretical results uncovered in section
3 and outline a direction for future work in the area of speaker/noise adaptation.
In particular, we will review the adaptive prior model of equation 6 and discuss
how adaptive priors might be employed in a likelihood-based system (such as the
GMM-based classifier used in the previous section). Before going into possible
extensions of this work, let us briefly review the theory of section 3: Given a
joint probability, p(g;,z) = p(q; | )p(x), we can compute the prior probability
of state ¢; by marginalizing over all z. Thus, the prior can be expressed as:

mi = / p(g: | 2)p(z)de (15)

Here, we use m; to denote p(g;). Since p(g; | z) is a function of the random
variable, z, it follows from equation 15 that m; = E[p(g; | z)]. Thus, a natu-
ral estimate for m; can be obtained by time-averaging p(g; | ) (assuming, of
course, that the group of posteriors over which we are averaging is adequately
representative of 7;). We therefore arrive at the following model for estimating
the state priors:

1 N
™= NHZZIP(% | ™) (16)

As demonstrated in section 3, the model of equation 16 allows for the adap-
tation of state priors to a given speaker or noise environment. Given the success
of this approach, particularly in experiments performed on the Aurora task (see
section 3), one might wonder how the concept of adaptive priors can be incor-
porated into a likelihood-based system (i.e. a system that directly estimates
p(z | g;) without first computing state posteriors). For such a system, we can
express equation 16 in the following form:

7sz n|q1)
i NZZ m;p(z™ | qF) (a7)

Here, we have simply substituted p(¢® | z™) = % into the former

model (note that this representation of p(¢?* | «") follows from Bayes rule).
Unlike equation 16, the preceding model does not admit a unique solution for
m;. To verify this fact, we can easily show that for any set of likelihoods in an
M-dimensional state space, the preceding model has M trivial solutions of the
form: m; = 1(¢ = j) for some j. Other solutions with fewer zeros may also
exist—however, in general, we are not guaranteed a solution where 7; > 0 V
1. This fact should be somewhat disconcerting, particularly is we espouse the
view that a “reasonable” solution for the priors should always exist (preferably
a solution where all state-priors are non-zero). To ameliorate this concern,
and to allow for speaker/noise adaptiation similar to that performed on the
ANN system, we propose the following procedure: Given some best estimate,
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w* = (nf,75,..., ), of the state priors, we can weight the likelihoods for the

various states to ensure consistency between the weighted likelihoods and 7*.
That is, given 7*, we weight p(z™ | ¢7*) for all n by some constant, ;. These
constants are chosen such that 7* is consistent with our weighted likelihoods
(note that by “consistency,” we mean that «* forms a solution to equation 17
for the given set of likelihoods). Using this approach, we arrive at the following
model for computing o = (ay, s, ..., an):

Z naip(a” | g7) )

ajpw"|q)

The above model is identical to that of equation 17, except that the likelihoods
have been weighted by ;. As previously stated, our goal in introducing this
model is to ensure consistency between a given set of likelihoods and our best
estimate of the state priors. However, we are left with a number of questions:
How do we find a “best estimate” of the priors? Given these priors, how do
we solve for a? Does a solution for a always exist, and if so, is it unique? On
the latter point, we can show that a solution for a does exist given any 7*
and that this solution is unique when #} > 0 V ¢. A proof of this result can
be found in Appendix A. Given that we are guaranteed a unique solution for
any “reasonable” 7* (i.e. any w* where none of the prior state probabilities
are zero), we may employ any standard iterative approach to solving for a (e.g.
gradient descent or Newton-Raphson). Thus, we will simply assume that a
solution for a exists and that this solution can be readily obtained. As for the
question of how to determine a “best estimate” of the priors, we will leave this
question open—however, the experiments described in this section should shed
some light on this problem.

6.1 Experiments

To test the model of equation 18, we essentially repeated the Aurora confidence
experiments of section 3 for various sets of scaled likelihoods. These scaled
likelihoods were computed from three different estimates of the state priors,
including HT priors (i.e. priors trained on the hard targets of the training data)
and a set of “uniform priors” where 7; = % V i. To test the effectiveness of the
a terms when a “bad” estimate of the priors is chosen, we computed a third
set of priors by inverting the HT priors and then renormalizing. These “inverse
HT priors” are defined as follows:

—1
;i

E 7THT, j

Here, mgr,; denotes an HT prior and 7, m7,; denotes an inverse HT prior.

As was done in section 3, scaled likelihoods were computed for each type
of prior. The set of scaled likelihoods for a given speaker and a given noise
environment were then adapted to the particular prior by computing aas defined

TinvHT,i = (19)
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EER (%) EER (%)
experiment without a terms with a terms
inverse HT priors 18.44 11.19
uniform priors 14.86 10.29
HT priors 12.90 9.73

Table 9: Confidence Results for the Aurora Noisy Digits Task. Here, “alphas”
represents the inclusion of the @ parameters of equation 18 to weight the like-
lihood terms.

in equation 18. We then computed confidence measures for the scaled likelihoods
for each of the three priors with and without their corresponding a terms.
Thus, confidence measures were computed for a total of 6 different sets of scaled
likelihoods. The resulting DET curves and EERs for each of these experiments
are shown in figure 4 and table 9, respectively.

Note from table 9 that the inclusion of the o terms vastly improves the
performance of each type of scaled likelihood. In the case of scaled likelihoods
computed from HT priors, the EER obtained with the « terms is 9.73%—only
0.13% worse than the EER recorded in section 3 for scaled likelihoods computed
from adaptive priors. We also note that the latter set of scaled likelihoods (i.e.
those computed from adaptive priors) implicitly satisfies equation 17. Thus,
each of the best EER results obtained on Aurora have come from scaled likeli-
hoods that are consistent with a particular “non-trivial” set of priors (i.e. a set
of priors having no zero elements).

These findings lend support to the notion of establishing consistency between
a given set of likelihoods and our best estimate of the state priors. However,
the results of table 9 are still rather inconclusive, as we have not shown the
consistency criterion of equation 17 to be significant in the general case. That
is, these results do not preclude the possibility that a given likelihood estimator
might yield outstanding test results without abiding by equation 17 for any
non-trivial set of priors. We have also yet to explore the extent to which the
notion of consistency is satisfied in existing likelihood estimators (i.e. do certain
estimators implicitly define some non-trivial set of priors according to equation
17?)

What we have established, however, is a starting point for an interesting and
potentially fruitful new area of research. Some of the more obvious applications
of this notion of ensuring consistency between likelihoods and priors have already
been discussed—namely speaker and noise adaptation. However, one might also
imagine employing the theory of this section to extract new and potentially
useful statistics for use in ASR systems. For instance, we might try using
equations 17 or 18 to factor a given set of likelihoods into uniquely specified
posterior and prior terms. These posteriors and priors could then be used as
separate knowledge sources to perform sentence-level rescoring, as demonstrated
in section 5. Here, the hope would be, of course, that improved WER results can
be obtained when one of these statistics—either the posteriors or the priors—are
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weighted more heavily than the other. Whether or not this or other techniques
will lend themselves to improvements in recognition or confidence performance
remains to be seen. However, we feel that the results obtained in this section
are encouraging enough to warrant the continued investigation of these topics.

7 Conclusions

The findings of this thesis are largely summarized by the following three themes:

1. With few exceptions, we have shown that adaptive priors computed from
the test data itself tend to outclass static prior estimates in evaluations
of both recognition and confidence estimation. This adaptive estimation
paradigm appears to work particularly well on noisy tasks such as Aurora,
where the potential exists to not only adapt priors to the current speaker,
but also to the current noise environment.

2. For the purposes of word-level confidence estimation, we have found that
local posterior estimates obtained from an ANN can be improved by means
of forward-backward reestimation. However, we have not shown this tech-
nique to yield any benefit on systems that employ both GMM-based and
ANN-based acoustic models.

3. We have demonstrated the utility of combining sentence-level scores ob-
tained from an ANN-based acoustic model with acoustic and language
model scores obtained from a GMM-based system for the purposes of
rescoring n-best lists. This technique has been shown to yield significant
improvements on conversational speech tasks in evaluations of both word-
level recognition and confidence estimation.
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9 Appendix

Theorem 1 Given a set of likelihoods of the form, p(z™ | ¢), and a set of
priors, ® = (mo,m1,...,mm—1)7, where p(z™ | g*) > 0V (i,n), >;m = 1,
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and w; > 0V i, the following set of equations admits a unique solution for
a = (ag,a1,...,ay1)T under the constraint, Yoi=1:

N
1 miap(z™ | qF)
T = ——= 20
N XS mase | ) (20)

proof To prove that « is uniquely specified by w (under the above stated
conditions), we begin by showing that at least one solution for a exists given
any valid 7 vector. To prove this, we will first show that =, as defined above, is
a continuous function of . Using the shorthand, p? = p(z™ | ¢F*), we compute
the full derivative of the model as follows:

N
=3 prda;  cup? X [aypidm; + mipjday] (21)
=1 20 05D} (X2; miap})?

Let us tempoarily relax the constraint that > ,a; = 1. If we assume that
doy.j2; = 0, and that do; is finite and non-zero, then the preceding expression

reduces to:
a D} Py :
do; — 2t o ="t =
v Z Zj ﬂjajp;.l o (ZJ Wjajp;?)

n=1
X aip} Y aphd;
Z )2 (22)
— (X mam})

Let us now assume that one or more elements of dm are infinite, and hence,
that 7 is not a continuous function of . Then the right-hand side of the
above equation must be equal to either co or 0. However, we note that the
bracketed expression on the left-hand side of the above equation must always
be strictly positive (this follows from close inspection). Given that do; is finite
and non-zero, the entire left-hand side must therefore also be finite and non-
zero, which contradicts our previous assumption that one or more elements of
dr are infinite. Thus, we have shown that all elements of dmw must be finite
under the given conditions, which implies that & is a continuous function of a.

Given this result, we assert the following: If at least one solution for a =

(cg, 01, ...,anr—1)7 exists given any ® = (mg,71,...,mar—1)7, then at least
one solution for a = (ao,al,...,aM,l,aM)T must exist given any w =
(7o, m1y+ -, mar—1,7ar) Y. This follows from the fact that the sets of valid

vectors for all state-spaces of dimensionality M — 1 form the endpoints of the
set of all valid M-dimensional 7 vectors. To illustrate this point, consider a
3-dimensional state-space where w = (7r0,7r1,7r2)T. The set of all 7 vectors
where . m; = 1 and m; > 0 V ¢ forms a simplex in R3 whose endpoints lie
along the lines, 7y + 71 = 1, m; + 72 = 1, and wy + m2 = 1. These lines define
the set of all valid « in any 2-dimensional state-space (assuming that all ; are
constrained to be non-negative). Similarly, it can be shown that the sets of
all valid 7 vectors of dimesionality M — 1 form the endpoints for the set of all
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valid M-dimensional 7t vectors. Since 7 is a continuous function of «, it follows
that if at least one solution for a exists given any = in an (M — 1)-dimensional
state-space, then at least one solution for o must exist given any # in an M-
dimensional state-space. We can therefore prove the existence of a solution for
a given any valid 7w vector by induction: Let us examine the special case where
the state-space is one-dimensional. In this case, 7 is a scalar whose only valid
value is # = 1. It can easily be shown that a = 1 provides a solution for this
prior. Thus, we have shown that a solution for a exists for any valid # in a
1-dimensional state-space. By induction, it therefore follows that at least one
solution for a can be found for any valid 7w vector of dimensionality M > 0.
To prove that the solution for a given any valid 7 vector is unique, we begin

by defining the parameter vector, ¢ = (09,01,...,00m_1)T, where 0; = m;a;.
Substituting into our original model gives us:
Z %p (zn | qJ)

We will now argue that the mapping between 7 and o is one-to-one under the
constraint that >, o; = 1. Once we establish this, it is straightforward to show
that a unique solution exists for a.

From previous arguments, we know that at least one solution exists for a,
and hence, for o, given any valid 7 vector. Assuming that o is defined on the
same space as 7 (which it is, given that ) .o; = 1), we can prove that the
mapping between 7 and o is one-to-one by showing that d7w” do must be either
strictly positive or strictly negative if do; # 0 for some i. Thus, let us begin by
taking the full derivative of #:

- 1 N doip?z o;pi — Uip?zj do;py (24)
=
N &~ (225 0ip})?

The preceding equation can be simplified by substituting p? for %. Mul-

oip}
tiplying by do; and summing over all ¢ then yields the following exjpression for
dnTdo:

N
dﬂ_Tdo_:%Z Z dO'z o de Z o » (25)

n=1 %

Note from lemma 1 that the bracketed term in the above expression must be
strictly positive if do; # 0 for some i. Thus, we have shown that a one-to-one
mapping exists between 7w and o when we apply the constraint: ), 0y = 1.
Moreover, since each 7 specifies a unique o, each w must also specify a unique
a. Thus, we have proved the desired result.

Lemma 1 Given p = (p1,p2,---,pm)%, 0 = (01,02,...,00)T, and a =
(1, 02,...,anm)T, where Y, pi =1, p; > 0V i, and a; > 0V i, the following
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inequality must hold for all o where o; # 0 for some 1.

2 .
J = E %pz’ - E oip; E %Pi >0 (26)
i ¢ i i

proof Taking the second derivative of J with respect to p, we obtain:
2
aﬁaz = —o(0./a) - (0./a)o" (27)

Here, we have employed the ./ operator to signify element-by-element division.
We may now pre-multiply and post-multiply the above expression by p to yield:
dpop™

P p=-2pTo(0./a)Tp (28)
For the moment, let us constrain all elements of & to be strictly non-negative.
Clearly, pT‘.,g:,%p < 0 in this case—assuming that o; 7# 0 for some i. Thus, J
must be concave in p if o; > 0V ¢ and o; # 0 for some 4. Since J is a concave
function (under the given conditions), the upper contour set, S, of J evaluated
at J = 0 forms a convex set in p. Moreover, since pTaﬁﬁp <0, J >0 for
all points contained in S. We can easily show that J = 0 when evaluated at
the “corners” of the valid p space (i.e. J = 0 when p; = 1(¢ = j) for some j).
Thus, all points in the p space must lie within S. But, since J is concave in p,
it follows that J > 0 for all p where p; > 0 V ¢ (assuming all elements of o are
non-negative).

We can now show that J > 0 in the general case by making the following
observation: If we change the sign of 1 or more non-zero elements of o from
positive to negative, the value of J must increase (this can be verified by in-
spection). Thus, J > 0V o where o; # 0 for some i, which completes our
proof.

Theorem 2 Given a set of likelihoods, p(z™ | q'), where p(z™ | ¢?*) > 0V (i,7n),
and given the model,

N
1 mioip(z™ | qF)
T = ==

N o ¥jmiap(et | ¢f)’

we can prove the following: If and only if c;p(z™ | q}') # a;p(z™ | q}) for some
i, j, and n, there exists no more than one non-trivial solution (i.e. a vector solu-
tion containing no zero elements) for the state priors, ™ = (mo,T1,...,Tpr—1)7,
given any parameter vector, a = (g, ay,...,ap_1)T, where a; > 0V i.

proof To prove the preceding theorem, we will first examine under which
conditions da; = 0 V 4 when the state-space is 2-dimensional (that is, when
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a = (a,1)T and w = (m,m1)T). We begin by defining the shorthand, p?* =
p(z™ | ¢*). Taking the full derivative of the model yields:

(1)

Zj mj05P5 (ZJ ”jajpy)z

Let us now assume the state-space to be 2-dimensional. If we set dag and doy
to 0, equation 1 reduces to,

n=1

N 7 7 7
0= Z l pido; a;p; Ej [O‘J'Pj dmj + TiP; daj]

Adm =0, 2)

where,

[ A1 Ajp ]
| A21 Az

2
N @opg N aopg a1p?
= Lin—1 (E, ﬂjajp;-‘> 2= (D, mieip})? ,
N agpy a1p7 N a1p?
2in=1 (2, miain})? Lin=1 (E, Wjajp;-‘>
Since ), dm; = 0, equation 2 requires 1 of the following conditions to be true if
da,- =0V 1) dﬂ'i =0V i, or 2) A1,1 = A1,2 and A2’1 = Ag,g. By setting

the various elements of A equal to one-another, we can show that the latter
condition is equivalent to the following;:

N Py 2 N a1 pt ? N aogplog pt
DY (R R Y Y. B S . .
>, TP} 205 TPy = (2o miop])?

n=1 n=1

Note that the preceding expression can only be solved if agp§ = a1p} V n. Thus,
for a 2-dimensional state-space, we have shown that all elements of da will be
0 if and only if 1) all elements of dr are 0 or 2) agp§ = a1p? V¥ n. Equivalently,
it follows that agpf # a1p} for some n is a necessary condition for establishing
the uniqueness of any non-trivial solution of 7 given a.

To complete the proof for the 2-dimensional case, it will suffice to show that
for any constant dm vector having at least one non-zero element, at least one
element of da will be strictly positive or strictly negative. We will demonstrate
this by first taking the full derivative of equation 1. This yields,

a; o?

N A ~
N N 2 _ Z Py Z P} D}
—d o — (daz) = — ~ ﬂ_—%dﬂ'i . 7['_Jd7r'1 + a—]da, +

AT

N . An ~n An
Dy P » p; 2, Pip p; 2
Z_ZZ ﬂ_jd mj = 3 (dm;) +a_,~d aj = —5(day),
n=1 7 J J

coiph
where we define the parameter, p? = %. If we assume all elements
. TjQ;5p
J J

of dm to be constant and finite, and if we constrain all elements of w and o
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to be greater than 0, then it follows from equation 1 that all elements of da
must be finite. Under these conditions, —oo < d?a; < oo V i. Thus, do must
be continuous if dmr is constant. For the case of a 2-dimensional state-space,
we have already shown that if the elements of dmw are non-zero, the elements
of da cannot be zero unless agpf = aipt V n. It therefore follows that if
oopgy # aipt for some n, one of the elements of doa must always be strictly
positive and the other must always be strictly negative if the elements of dmw
are constant and non-zero. Thus, we have shown that for a 2-dimensional state-
space, aopg 7 a1p} for some n is a necessary and a sufficient condition for
ensuring the uniqueness of any non-trivial solution of 7 given a.

For a state-space of size M > 2, we note that two or more states may always
be combined into a single state having a single set of likelihoods and a single
7 and a term. Thus, any state-space of size M > 2 may be converted into
1 or more state-spaces of size M = 2. For every possible 2-dimensional state-
space, the same rules as before must hold to ensure the uniqueness of non-trivial
solutions. Namely, aopf§ # aqp? for some n. By applying these rules to every
possible 2-dimensional state space derived from a state space of size M > 2, it
can easily be shown that a;p} # a;p} for some i, j, and n is a necessary and
a sufficient condition for ensuring that no more than one non-trivial solution
exists for 7 given a (assuming, of course, that a; > 0 V ¢). This completes our
proof.
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