Using MLP Features in SRI's Conversational Speech Recognition System
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Abstract

We describe the development of a speech recognition system for

conversational telephone speech (CTS) that incorporates acous-

tic features estimated by multilayer perceptrons (MLP). The
acoustic features are based on frame-level phone posterior prob-
abilities, obtained by merging two different MLP estimators,

We have found that posteriors from MLPs focusing on infor-
mation derived from long time chunks of 500 ms can be effec-
tively combined with posteriors from MLPs focusing on short
time chunks of 200 ms. The MLP focusing on medium term
information takes nine consecutive frames of PLP features, as
well as their first and second deltas as inputs. We will hence-
forth denote this as PLP/MLP. To extract long-term information,

one based on PLP-Tandem features, the other based on hiddenye yse a variant of the Temporal Patterns (TRAPS) MLP archi-

activation TRAPs (HATs) features. This paper focuses on the
challenges arising when incorporating these nonstandard fea-
tures into a full-scale speech-to-text (STT) system, as used by
SRI in the Fall 2004 DARPA STT evaluations. First, we de-
veloped a series of time-saving techniques for training feature
MLPs on 1800 hours of speech. Second, we investigated which
components of a multipass, multi-front-end recognition system
are most profitably augmented with MLP features for best over-
all performance. The final system obtained achieved a 2% abso-
lute (10% relative) WER reduction over a comparable baseline
system that did not include Tandem/HATs MLP features.

1. Introduction

The goal of this work is to demonstrate that acoustic features
estimated discriminatively as phone-level posterior probabili-
ties can be used effectively to lower the error rate of large-
vocabulary, speech recognition systems, above and beyond a
host of state-of-the-art feature extraction and normalization
techniques and in the context of a multipass recognition system
using multiple model adaptation and system combination steps.
In previous work [1, 2] we had shown that posterior features
estimated by multilayer perceptrons can yield relative word er-
ror reductions ranging from 6% to 10%, but using less complex
systems and smaller amounts of training data than would typ-
ically be used in a state-of-the-art system. The challenge for
the present work was twofold. First, we had to scale up the
(computationally expensive) feature training to very large train-
ing corpora of almost 2000 hours of speech. Second, we had
to develop a system architecture that preserved (or increased)
the sizeable wins seen in smaller systems in conjunction with
an array of other techniques that could potentially diminish the
relative gains obtained with our augmented feature stream. In
fact, as we will show here, simply adding the additional fea-
tures uniformly to all components of a multi-front-end, multi-
pass recognition system does not yield the best results, and a
more selective use of the augmented feature stream is advanta-
geous.

2. MLP-based Frontend Features

We have been developing features based on multilayer percep-
tron (MLP) derived posteriors. Previous papers show the proce-
dure on feature extraction using MLPs [2]. MLPs are trained by

taking various snapshots of the time-frequency plane as input.

tecture [3] called Hidden Activation TRAPS (HATS) [4]. The
combined posterior goes through further transformation includ-
ing log, PCA, and truncation in the way described in [2], and is
then concatenated to the traditional features such as MFCC or
PLP to form the augmented feature vector, which is passed to a
GMM-HMM based speech recognition system. This approach
builds on the so-called TANDEM approach first proposed in [5].

3. Scaling Up to More Training Data

For the Fall 2004 Rich Transcription (RT) evaluation, a vast
amount of new training data became available in the form of the
Fisher corpus (about 2000 hours of conversational speech). The
challenge is how to effectively train neural nets on an order of
magnitude more data than we used to deal with. It was shown in
[6] that an optimal ratio of the total number of trainable parame-
ters in an MLP to the total number of training examples is about
1:20. So with more data, we should use larger MLPs. Thus,
the total amount of time for MLP training increases quadrati-
cally with the amount of training data, leading to an estimated
training time of over one year for the entire available data. To
speed up training time and yet keep the benefits of more data
and more parameters, we adopted several modifications to our
training recipe, as described in the next three sections.

3.1. Learning schedule modifications

We use an early stopping training schedule for our MLP train-
ing which prevents over-fitting. The basic procedure is to start
training using a relatively large learning rate for each epoch (one
epoch corresponds to processing every frame of the training set
once). until error reduction on an independent cross-validation
set drops below a fixed threshold. At this point, the learning rate
is halved before each subsequent epoch, and the training stops
when the error reduction on the cross-validation set drops below
that fixed threshold. When examining our previous net train-
ings, we found that there were inefficiencies in this approach.
First, we noticed that the epoch before the change of learning
rate (often the 4th epoch) was never significantly reducing the
error rate on the cross-validation set. That epoch only serves
to mark the start of halving the learning rate for the following
epochs. Second, we noticed that with more training data, fewer
epochs were needed for convergence. For example, using 32
hours of training data per gender and 500K trainable weights
per MLP (our initial configuration, known as “1x”), nine epochs



Table 1: Learning rate schedule and data rotation

Epoch Tandem/PLP| HATS Merger | Data
Number Learning Learning Used
Rate Rate
1 0.001 0.0005 4x
2 0.001 0.0005 4ax
3 0.001 0.0005 4ax
4 0.0005 0.00025 8x
5 0.00025 0.000125 8x
6 0.000125 0.0000625 16x

are needed for training, while eight epochs are needed for a “2x”
system which uses twice the training data and parameters, and
seven epochs for a “4x” system. To train the “16x” nets (our
final configuration), we also increase the training set size be-
tween epochs (see below), from 4x training data in the first few
epochs to 16x data in the last epoch. With this knowledge, we
roughly extrapolated that six epochs would be sufficient if we
were to train up a “16x” system.

For the six epochs of training 16x nets, we use the following
strategy and scheduling: The first three epochs are trained using
4x training data (128 hours per gender) with a higher learning
rate, followed by two epochs of training with 8x training data
(256 hours per gender) with half of the initial learning rate, fur-
ther followed by an epoch of training with 16x data (512 hours
per gender) with a quarter of the initial learning rate.

Furthermore, we noticed that the initial learning rate plays
an important role in the training, and as we train with more data,
smaller initial learning rates gave better results. By tuning with
1x, 2%, and 4x data and extrapolation on 16x data, we deter-
mined the initial learning rate for the Tandem/PLP net as 0.001,
compared with 0.008 for the 1x net. Similarly, the initial learn-
ing rate for HATS merger net is set to 0.0005.

The training schedule for Tandem/PLP and HATS merger
nets is summarized in the first three columns in Table 1.

3.2. Data rotation

Another modification to our training recipe was the use of
nonoverlapping subsets of increasing amounts of training data
for different epochs. From our experience, having better data
coverage gave better results. Usually in MLP training, the same
data are used in different epochs. When 16x data (512 hours per
gender) are used for training the 16x nets, only less than half of
the total available data (1200 hours per gender) are used. By
using nonoverlapping data in training, the total amount of used
training data can cover 4x + 8x + 16x of the data, thus compris-
ing the majority of the available training set. Again, this scheme
was first verified with 1x and 2x data. Since the HATS architec-
ture is trained up in two stages where the first stage is paralleliz-
able and relatively quick due to smaller critical band MLPs, we
trained these critical band MLPs on the union of the 4x, 8x, and
16x subsets. The second stage merger MLP is trained using the
schedule summarized in Table 1.

To create the training set, only the native speakers in the
Fisher corpus were used. Waveforms were randomly selected to
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Figure 1: SRI CTS recognition system. Rectangles represent decod-

ing steps. Parallelograms represent decoding output (lattices or 1-best
hypotheses). Solid arrows denote passing of hypotheses for adaptation
or output. Dashed lines denote generation or use of word lattices for de-
coding. Crossed ovals denote confusion network system combination.

The two decoding steps in light gray can be run by themselves to obtain

a “fast” system using about 3xRT runtime.

set.

3.3. Software improvements

Finally, we also took advantage of software improvements.
Chris Oei at ICSI optimized our MLP software, making use
of Basic Linear Algebra Subroutine (BLAS) libraries that had
been tuned for dual Intel 2.8 GHz Xeon hyperthreading CPUs.
This resulted in throughput of 1500 to 2000 million connection
updates per second (MCUPS), 3 to 4 times faster than before.
About half the speed-up comes from BLAS libraries and half
from hyperthreading. It still took 6 weeks on four computers
to train the four gender-dependent PLP and HATS nets. Fea-
ture generation speed was measured at 0.5 times real time on a
3.4 GHz CPU.

4. System Architecture Development

The baseline for our work is the SRI CTS system as used in
the Fall 2003 DARPA Rich Transcription evaluation and later
refined for the Fall 2004 evaluation, as depicted in Figure 1.
A detailed description of the system can be found in [7]; here
we highlight its key aspects as relevant to the incorporation of
MLP features. An “upper” (in the figure) tier of decoding steps
is based on MFCC and voicing features [8]; a parallel “lower”
tier of decoding steps uses PLP features [9]. The outputs from
these two tiers are combined twice using word confusion net-
works (denoted by crossed ovals in the figure). Except for the
initial decodings, the acoustic models are adapted to the output
of a previous step from the respective other tier using MLLR
(cross-adaptation). Lattices are generated initially to speed up
subsequent decoding steps. The lattices are regenerated once
later to improve their accuracy, after adapting to the outputs
of the first combination step. The lattice generation steps use
non-crossword (nonCW) triphone models, decoding from lat-
tices uses crossword (CW) models. The final output is the result
of a three-way system combination of MFCC-nonCW, MFCC-

make the nonoverlapping 4x, 8x, and 16x datasets. Because the CW, and PLP-CW models. The entire system runs in under 20

transcription quality of the Switchboard corpus is more reliable,
we decided to use all Switchboard data in the 16x training set,
half of it in the 8x training set, and a quarter in the 4x training
set, which means the actual training sets in different epochs are
not strictly non-overlapping. Still, the total coverage was 750
hours per gender for the combined Switchboard/Fisher training

times real time (20xRT). For many scenarios it is useful to use a
“fast” subset of the full system consisting of just two decoding
steps (the light-shaded boxes in the figure); this fast system runs
in 3XRT and exercises all the key elements of the full system ex-
cept for confusion network combination.

The baseline system structure is the result of a heuristic



optimization (which took place over several years) that aims
to obtain maximal benefit from system combination and cross-
adaptation, while staying within the 20xRT runtime constraint
imposed by the DARPA STT evaluation. It was not feasible to
redo this type of optimization from scratch using the new MLP
features. We therefore decided to keep the overall processing
structure and investigate systems that were obtained by replac-
ing the features (and associated acoustic models) in the various
decoding steps.

4.1. Data

For purposes of system optimization we used a version of the
system and training data as was available at the time of the
Fall 2003 RT evaluation. The corresponding baseline triphone
acoustic models were trained on about 200 hours per gender,
drawn from the LDC Switchboard and CallHome English cor-
pora. All models were gender-dependent and trained using the
minimum mutual information (MMI) criterion, on MFCC and
PLP features respectively, after processing with cepstral mean
and variance normalization, vocal tract length normalization
(VTLN), heteroscedastic linear discriminant analysis (HLDA),
and speaker-adaptive feature transformation (SAT, used in all
but the first decoding step). The language model (LM) was a
4-gram trained on CTS transcripts as well as Broadcast News
and conversational Web data [10], and was kept fixed for all
experiments. No Fisher data was used in training this system.

Since the system design experiments were carried out in
parallel with the development of large MLP training approaches
(described in the previous section), we chose the largest MLPs
available at the time for these experiments. These “4x” MLPs
were trained on a 120-hour male-speaker subset of the acoustic
CTS training set. A corresponding female MLP was not avail-
able, and thus all experiments were carried out on male-speaker
test subsets. For MLLR purposes, we used a block-diagonal
transform matrix that adapted the baseline and Tandem/HATs
portions of the feature vector independently.

4.2. Early results

We initially tested the “4x” MLP features with PLP base-
line models, using a single-stage bigram decoding and 4-gram
rescoring system. Adding MLP features reduced the WER on
the RT-02 test set from 30.5% to 28.4%, a 6.8% relative im-
provement.

In moving to a multistage, multi-front-end system, one of
the first questions is whether a modeling improvement should
be applied to all stages or just the final stage. The latter ap-

Table 2: Word error rate (WER) on RT-02 and RT-03 males

using fast and full CTS systems

System RT-02 | RT-03
3xRT baseline 26.1 26.3
3XRT w/MLP features 24.8 25.5
20xRT baseline 23.7 24.6
20XRT w/MLP features 23.0 23.9
40xRT baseline w/MLP feature$ 22.1 23.0
20xRT revised w/MLP features| 22.8 23.6

adaptation now occurs between two systems that share 40% of
their feature vectors, which, while reducing each system’s error
rate individually, also makes their errors more correlated.

4.3. Results with full systems

Based on the earlier results, we trained complete 20xRT CTS
systems that use the Tandem/HATs MLP features in all acoustic
models (MFCC and PLP, CW and nonCW), and compared per-
formance to the baseline system using only the standard MFCC
and PLP frontends. For completeness, the same comparison
was done for the fast (3xRT) versions of the two systems. Since
various parameters of the full system (such as the N-best rescor-
ing weights) had been tuned on a subset of the RT-02 data we
report results on both DARPA RT-02 and RT-03 evaluation sets
(male speakers only, comprising 72 and 69 conversations sides,
respectively).

The first four rows of Table 2 summarize the results from
these experiments. We see that adding MLP features, when
added to all models in the system, reduces WER by only about
2.8% relative, again showing diminishing returns as the system
becomes more complex. As in the cross-adaptation experiment,
we can attribute the loss in relative improvement to the fact that
the two subsystems (MFCC and PLP-based, respectively) be-
come more similar as both are augmented by the MLP features.
Both cross-adaptation and the confusion-network combination
in the full system would be negatively affected by this change.

To counteract the reduced effect of system combination
we consider a new strategy: combining systems with and
without MLP features, as well as those based on MFCC and
PLP features. In our present setup, this can be achieved
by running both the baseline system and the system with
MLP features, and carrying out a final 6-way confusion net-
work combination of all the models involved (MFCC-nonCW,
MFCC-CW, PLP-CW, MFCC+MLP-nonCW, MFCC+MLP-
CW, PLP+MLP-CW). The result is shown in the fifth row of
Table 2: a 0.6% absolute WER reduction over the all-MLP sys-

proach saves processing time, since the Gaussian computation tem, resulting in a 6.5% relative gain over the baseline. Note

is roughly proportional to the size of the feature vector, and our
MLP features add 25 components to the feature vector, a 64%
increase over the standard 39-dimensional baseline.

We tested the MLP features in various configurations in the
fast, two-stage CTS system consisting of MFCC-nonCW de-
coding followed by PLP-CW decoding, with a baseline WER
of 26.9%. When MLP features were used only at the PLP stage,
the WER was reduced to 26.2%. When MLP features were also

used to generate the adaptation hypotheses in the first stage,

the result was improved to 26.0%. Finally, with MLP features
added in the lattice generation run, the WER was 25.7%.

Not too surprisingly, it seems that it is important to incorpo-
rate MLP features early in the search to realize their full benefit.
Note, however, that even under the best scenario, the overall im-
provement from MLP features is only 4.5% relative, compared

that the relative improvement obtained is quite similar to that

in our initial one-pass system. This suggests that the improve-
ments from improved features can carry over to complex sys-
tems, provided that the system combination strategy embodied
in the baseline is properly “expanded” to include the new fea-

tures.

The drawback of the resulting system is of course that it no
longer runs in 20xRT, thereby exceeding the stipulations for the
DARPA RT-04F evaluation. Since we knew that a 3-way model
combination could be accommodated in 20xRT, we looked for
the best 3-way combination among the six subsystems avail-
able. This turned out to be the combination of MFCC+MLP-
nonCW, MFCC+MLP-CW, and PLP-CW subsystems. As per
Figure 1, this corresponds to a 20xRT system that uses MLP
features in all its MFCC-based decoding stages, and unmodified

to 6.9% in the one-stage system. This could be because cross- PLP features in all other stages. Such a system is also desirable



Table 3: Word error rate (WER) on RT-04F development and
evaluation sets

RT-04F Dev RT-04F Eval
System Male | Female| All Male | Female| All
Baseline 18.1 16.2 17.2 || 20.2 20.4 20.3
w/MLP feats. 16.8 14.2 15.5 || 19.0 17.7 18.3
Rel. change (%)| -7.2 -12.3 -9.9 -5.9 -13.2 -9.9

because MFCC+MLP features are used in the initial and final
lattice generation stages, thus ensuring the best possible lattice
accuracies. Overall results with the revised 20xRT system are
shown in the last row of Table 2. The absolute WER reduction
over the baseline is 1.0% on RT-03, or 4.1% relative. This was
the structure adopted for the final evaluation system.

5. Evaluation System

For the RT-04F evaluation all models were retrained on the full
set of available CTS training data. This included all data used
previously, plus about 2000 hours from the new Fisher collec-
tion. We excluded all nonnative speakers from acoustic training,
since the test set was known to contain only native speakers. To
reduce overall training time for HMMSs, the Fisher training set
was split into two complementary halves such that each half
contained data from all training conversations. MFCC and PLP
models were then trained on the complementary halves. Early
experiments showed that this incurred only a minimal perfor-
mance degradation on a single model’'s accuracy (0.2% abso-
lute), and the combined system was effectively trained on the
entire training set, while almost halving the required training
time.

Other general improvements to the baseline (and corre-
spondingly to the MLP-based system) were as follows. Acous-
tic models were trained using the minimum phone error (MPE)
criterion [11], rather than with MMI. Also, triphone models
were clustered using a decision-tree-based, top-down proce-
dure, rather than SRI's traditional bottom-up “genone” algo-
rithm. The nonCW models in the first PLP decoding step were
replaced by CW models, giving a small accuracy gain and elim-
inating one model set to be retrained. Finally, the language
model was also updated by incorporating Fisher transcripts and
new Web data in training.

Two systems were trained: a baseline using standard MFCC
(plus voicing) and PLP features, and a contrast system that used
MFCCs augmented with Tandem/HATs MLP features. The
MLP features were trained on 1800 hours of CTS data as de-
scribed in Section 3. The system with MLP features was also
the primary system fielded by SRI in the RT-04F evaluation
(modulo minor bug fixes). Both systems were tuned on the RT-
04F CTS development set (72 conversations) and then tested on
the RT-04F evaluation set (also 72 conversations).

Table 3 summarizes all results, split by gender. The overall
relative WER reduction on both testsets is identical, 9.9% (2.0%
absolute on the evaluation set). This improvement is consider-
ably greater than those reported in Section 4, and can be at-
tributed to the fact that the amount of MLP training data is now
commensurate with the HMM training data. (Previous experi-
ments used MLPs trained on only a portion of the HMM data.)
However, we also observe that the improvement is almost twice
as big for female speakers than for males. This imbalance needs
further investigation and points to a possible improvement of the
system (by improving accuracy specifically on male speakers.)

6. Conclusions

We have shown that Tandem/HAT s features when added to stan-
dard MFCC and PLP frontends in evaluation-style STT systems
can yield considerable accuracy improvements, giving about
10% relative WER reduction. Since the MLP training is not
easily parallelized, we developed a number of engineering tech-
niques to enable training on 1800 hours of speech in a reason-
able time frame (about 6 weeks). Furthermore, our experiments
showed that simply adding the features to all models in a multi-
pass, multi-front-end recognition system gave only meager im-
provements. We found that it is critical to use the improved
features in early recognition passes for generating lattices and
adaptation hypotheses. On the other hand, it is better to not use
the MLP features in at least some of the system components to
maintain diversity for purposes of system combination.
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