Does Active Learning Help Automatic Dialog Act Tagging in Meeting Data?
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Abstract

Knowledge of Dialog Acts (DAs) is important for the auto-
matic understanding and summarization of meetings. Curren
approaches rely on a lot of hand labeled data to train automat
taggers. One approach that has been successful in redbeing t
amount of training data in other areas of NLP is active leayni
We ask if active learning with lexical cues can help for tlisk

and this domain. To better address this question, we explore
active learning for two different types of DA models — hidden
Markov models (HMMs) and maximum entropy (maxent).

1. Introduction

Annotating conversational dialog act (DA) units for DAs is
an errorprone and time-consuming process. Previous werk at
tempted to train automatic DA taggers from substantial amsou

of manually tagged data [1, 2, 3] and at striking a compromise
between the amount of human-tagged data and the overal accu
racy of an automatic tagger using partially superviseadhimngi
methods [4, 5]. This latter work proposed that the automatic
DA tagger would initially be trained (bootstrapped) withrazl
amount of manually tagged DA data and subsequently refined
in an iterative process. Active learning seems to be oneeof th
most appropriate methods to guide the selection of the rapts
data.

We report on active learning experiments using two dif-
ferent classification paradigms. The first is an extensiod (a
adaptation for active learning) of previous work using tedd
Markov model (HMM) based DA taggers. The second is based
upon the maximum entropy (maxent) classification principle
In either paradigm, we classify by generating posteriotridis
butions over the DAs. To evaluate classification accurag&s
assume that the DA with the highest posterior probabilithés
selected one. To measure classification uncertainty, waeden
the distribution over all the DAs and calculate its entroRg-
sults are presented of both an exclusively active learréoh-t
nigue and a hybrid technique involving active and partially
pervised learning.

2. Previous Work
2.1. Active Learning

Active learning was initially proposed as a way to reduce the
number of training examples required to achieve a given de-
gree of performance [6]. It is best described by quoting Cohn
et al. [6]: “A learner may proceed by examining the informa-
tion already given and determiningregion of uncertaintyan
area in the domain where it believes misclassification it sti

possible. The learner then asks for examples exclusiveiy fr
that region.” A number of applications of this basic teclugq
have surfaced since its introduction, including its apgdlan in
speech recognition for selecting data to train acoustiaptio
models [7, 8]. In all of the approaches the underlying princi
ple is common — one or more bootstrap models are trained us-
ing some minimal set of hand-labeled instances; these toapts
models are then used to classify a large number of unlabeled i
stances from whiclincertain classificationare identified. An
oracle (or a human annotator) is then queried for the trueldab
of these particular instances, which are used to supplethent
training data before retraining the classifiers.

2.2. HMM-based DA tagging

The HMM-based DA tagger works by assuming that each ses-
sion (conversation or meeting) is generated by an HMM in
which the various DAs are the states of the HMM. The indi-
vidual DA units (utterancesy) are considered to be the ob-
servations emanating from these states. The likelihoodseof
utterances at each state are the probabilities that theypean
produced using language models specific to the DA modeled
by that state. The transition probabilities are obtainedfia
language model (which we call the DA grammar) trained from
sequences of DAs obtained from the training data. Based-on in
tial experiments on the current corpus, we chose 6-grantedor
DA grammar and 3-grams for the DA specific language models
and Witten-Bell-smoothing [9] for both.

We adopted the so-called deictic representation of the data
where, in addition to the DAs themselves, the HMM is assumed
to also have two special states indicating speaker changmer
change. Although the speaker nonchange flag is admittedly re
dundant, we included it for the sake of generality and symynet
Every utterance is followed by a transition into and out oéon
of these states. During the decoding process with HMMs, each
session is aligned to a specific path within the HMM and the
probability, P(DA |« ), that a particular DA state was visited at
the time of emission of the DA unit; is calculated using the
forward-backward algorithm. The entropy of this distribatis
indicative of the amount of uncertainty in its classificatio

2.3. Maxent DA tagging

The maxent DA tagger works by assuming that each individ-
ual utterancey;, is characterized by a finite set of featurés,
which may nor may not include context information (the clas-
sification of the previous and next feature set). The pasteri
probability of the DA tag given these features is estimated u



Table 1: Data statistics. The number of DA units is averaged
over each of the 10 random cuts of data.

Batch size  Number of sessions  Avg. DA Units
Boot 5 7786

Train 50 70316
Validation 10 15149

Test 10 15579

ing the exponential model:
627:1 Aj95(Fi,DA)

P(DA|F)) = =

where they; are the indicator functions correponding to the fea-
tures, the); are the learned feature weights angdis a normal-
ization term.

The maxent model provides an elegant framework to model
many correlated features and also capture features thaaede
to model using a generative modeling approach. In our maxent
classifier, we use the following lexical features: the léngt
the unit, the identity of the first two words, the identity bkt
last two words, a bigram of the first two words, the identity of
the first word of the next DA unit and a flag indicating whether
or not the speaker of the current DA unit is the same as that of
the preceding one.

2.4. Data selection for partial supervision

Partially supervised DA tagging as introduced in [4] insdv
the selection of a small subset of data to manually tag artd wit
which to train bootstrap models. Subsequently, these brapts
models are used to automatically tag the whole remaining un-
labeled data. The automatically obtained tags for the whéab

DA units are then treated as though they were referenceteps a
the tagging model is now reestimated based on the entirethgg
set. The procedure is iterated a number of times during which
the training error typically decreases.

3. Data

We chose data from the ICSI Meeting Corpus, which contains
human-annotated dialog act labels for 75 naturally-odogrr
meetings. Dialog act annotations and associated infoomati
are available to the public via the Meeting Recorder Dialat) A
(MRDA) corpus[10]. This collection of meetings presentaleh
lenges for dialog act modeling, due to its multiple partifs,
naturalness, high degree of overlap, and different meétjpes
included. Meetings are roughly an hour in length, and awerag
about 6 participants. DA units were manually classifiedgigin
fine grained set of tags and for the purposes of this expetimen
grouped into 5 broad intuitve classes along the lines of [3] —
Backchannels (B), Disruptions (D), Fillers (F), Questi¢@3

and Statements (S), with the prior distribution 13.33%0 &%,
7.19%, 6.42% and 59.00% respectively.

We divided the 75 annotated sessions into the following
classes, each with a specific number of randomly selected ses
sions as shown in Table 1. The validation set was not used in
this set of experiments, but was set aside neverthelessue se
as a basis for continuing experiments on active learning aug
mented with the partially supervised iterative trainingqgedure
discussed in [4].

4. Method

The idea was to train models initially using reference tagmf

the bootstrap data, and iteratively retrain by supplemeritie
bootstrap data with up to about 15% of the DA units from the re-
maining training data. We simulate active learning by igmpr

the DA tag information for the training DA units until the ref
erence tags for selected units were specifically requegttueb
active learner. The bootstrap sessions are critical to theat)
tagging procedure because any contextual dialog infoomati
we may decide to use is determined solely by them — since the
supplemental DA units are chosen on the basis of their eptrop
there is no guarantee that any set of subsequently addesd unit
will constitute a contiguous sequence in the session tlest th
came from.

The active learning procedure begins by using the bootstrap
data set{ DA units). Training the maxent model is straightfor-
ward. Features are generated for each of igits and the max-
ent parameters are estimated using the EM algorithm from the
values of the feature vectors and their desired (targetsifiaa-
tion. The DA-grammar for the HMM tagger is likewise trained
by extracting sequences of DAs from each of the five bootstrap
sessions. The DA specificlanguage models were trained by bin
ning each utterance into its respective DA and then traifiugg
DA specific language models, one for each DA. We then use
these initial models to generate fast probabilistic cfasgions
for each of the unlabeled unitsand calculate the entropy over
DAS,

H(DAJu) = > —P(DA;|u)log P(DA|u)

DA;

whereDA; ranges over the set of all DAs. The DA units are
sorted in descending order of entropy and we request referen
tags for the topm most entropic units. The training corpus
is augmented with these selected units and the classifiers ar
retrained. The entire process (except the bootstrappénigg:-i
peatedn times, at the end of which a total af» units would
have been added to the training set. The final classifieiiieila
onb+nm DA units, wherewm units are actively selected by the
learner. We also ran a baseline experiment in which the tagge
DA grammar is trained using the same bootstrap sen(ts),

but the DA specific language models were trained using and ad-
ditional nm randomly selected supplemental units. We always
ensured thatm = 10000, and experimented with procedures
that usedr € {10, 100, 1000, 10000} units.

In the extension of this procedure to incorporate the par-
tially supervised learning method of [4], we also augmest th
training data at each iteration with the unseleded =: units
and their hypothesized tags, whéfeis the total amount of
training data and the iteration number. By uniting the actively
selected data with its complement, we create a traininghset t
is complete up to DA sequences, and could thus be used to also
reestimate the DA grammar where necessary. In contrast with
the approach in [4], we stop iterating once all of the acyivel
selected data has been added into the training corpus. ke or
inal approach [4] involved a number of tagging and reesionat
steps over the whole data.

Finally, since some stochasticity is involved in all the pro
cedures we have described (the datasets are randomly ¢hosen
each experiment was repeated 10 times using various differe
cutsof the data into bootstrap, training and test sets. The re-
ported numbers are the averaged accuracies from the 10 sepa-
rate experiments.



4.1. Subtleties specific to the incremental HMM tagger

During the active learning procedure, supplemental ugits t
ically move from the unlabeled to the labeled category. It is
simple to make this transition with the maxent classifiecsin
their removal from the unlabeled set does not affect the-clas
sification of the other units in this set during subsequenait
tions. With the incremental HMM tagger, however, this is not
possible, since every unit is classified only in the contéxiso
preceding units. We addressed this problem by leaving tite un
in the unlabeled set despite simultaneously adding theoniliet
labeled set. A further subtlety regarding the HMM taggehat t
since supplemental units are picked according to theiopgir
although they may be grouped by the sessions they came from,
they may not necessarily be in sequence within these sassion
We therefore train the DA grammar only with the bootstramdat
and leave it fixed from that point on. Only the DA specific lan-
guage models are retrained during iteration. In the pbrtai-
pervised extension to the active learning procedure, hewev
the DA grammar is also reestimated since the unselectedsdata
also added into the training set with their hypothesized &yfst

5. Results and Discussion

We found that experiments with 1000 iterations=£ 1000) did

not provide any significant benefits over and above those with
n = 100. However, then 100 experiments did perform
significantly better than those with = 10. Since the higher
value ofn involved a greater number of reestimation steps, we
restricted the experiments with the partially supervised e
sion to only usen 100. Furthermore, the results reported
herein are restricted to the set of experiments witk= 100

in all cases. The following are the experiments on which we
report:

1. ACeiling experiment in which models are trained using
the entire available tagged data (approximately 78000
manually tagged units).

2. A Baselineexperiment in which we randomly pick
10000 manually tagged units to supplementthe boot data
set.

3. Abatch active learning experiment in which 20000 man-
ually tagged units are picked at once on the basis of their
high entropy when classified using boot models.

4. An incremental version of the batch active learning ex-
periment, in which 10000 units are added in 100 batches
of 100 units each, with model reestimation at each step

5. A partially supervised extension of the incremental ac-
tive learning experiment in which the actively selected
dataset is supplemented with its complement using hy-
pothesized DA tags.

Each of the above experiments was carried out in both the
HMM and maxent frameworks. Further, we also report on a
version of the incremental active learning experiment incivh
DA units that repeatedly present with high entropy still cbu
towardsm even though they have already been added in a pre-
vious iteration.

Table 2 shows the final accuracy at the end of the active
learning process with the HMM- and maxent-based tagging pro
cedures. We find that the HMM-based tagger does not benefit
from the active learning procedure at all — picking 1000Qsuni
at random consistently performs better than either batdh-or
cremental active learning. We discuss possible reasorhifor

Table 2: Final tagging accuracies with the maxent and HMM-
based taggers after all 10000 DA units have been added into
the training data in batches of size The baseline accuracies
were obtained by supplementing the bootstrap set with 10000
randomly selected utterances. Training data was itetpatbue-
plemented in batches of siz6000/» for » iterations.

Batch size Maxent HMM
Baseline 78.40 74.65
n=1 78.69 74.41
n =10 78.93 74.42
n =100 79.06 74.47
n =1000 79.04 74.46
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Figure 1: Plot of tagging accuracy with the maxent tagger ver
sus amount of training data.

below. In contrast, as Figure 1 shows, we find a significant and
consistent gain from the batch active learning procedutle wi
the maxent tagger. Furthermore the gain was modestly ampli-
fied by going from batch mode to online processing. We ran
experiments to try and isolate or rank the maxent features by
usefulness, but found neither redundancies nor severardisp
ties among the usefulness of the features we had selected.

In Figure 1, the baseline represents the case when the sup-
plemental training data was both randomly chosen and added
in a single step. “Tom” indicates that at each iteration, the
most entropic units were added with their reference tagstire
training set. lter indicates the number of iterations oftthéch-
incremental learning procedure. The partially superveseen-
sion to the active learning procedure is “Top 100 + Rest” olhi
represents the case when the training data is supplemeitted w
both the top 100 most entropic units with reference tags and
the rest of the training data with hypothesized tags. Evatg d
point represents an average over 10 independent runs afthe e
periment to factor out effects stemming from any one palicu
data division into bootstrap, training and test sets. Oud-fin
ings indicate that the maxent tagging procedure benefits fro
both active data selection and incremental model traintg,
not from the partially supervised extension to active leayn
In the no free retaggingrersion of our experiment, a supple-



Table 3: Confusion matrix forecalcitrantDA units that are
repeatedly present with high DA entropy even after being in-
cluded in the training data. Probabilities are the distiins
over manual annotations from the entire hand-tagged trgini
data set. For comparison,lew entropy is typically less than
about 1e-25. For reference, B = Backchannel, D = Disruption,
S = Statement, F = Filler and Q = Question. H() is the entropy
of the distribution over the DAs.

Unit P(B) P(D) P(S) P(F) P@Q) H()
ah 018 010 068 054 0 0.95
but 0 039 0 061 0 0.69

imean 0 063 0 037 0 0.66

mm-hmm 088 004 008 O 0 0.46
no 001 003 085 002 009 059
ok 018 003 067 007 005 101
right 039 001 030 003 028 124
well 002 044 001 053 0 0.82

yeah 056 003 034 007 001 1.02
youknow 001 007 022 026 045 126

mental unit that is added into the training set is also lefftibe

in the unlabeled set and could potentially be repicked at lat
iterations if it presents repeatedly with high entropy. \&arfd
that this procedure typically converged prematurely (sft¢o

10 iterations). This happens when the training set conefsts
at leastn utterances that are resistant to further retraining. We
were especially intrigued by this observation since oneldou
normally expect at least those units that are part of the-trai
ing data to be classified with high certainty. We thus repkate
the experiment, this time taking care to preservedoalcitrant
units. Closer examination of these units showed them to-be al
most exclusively single word utterances that were intcialy
ambiguous in the absence of prosodic information. Typigal e
amples of such utterances are “right” and “yeah”, whichsi i
lation, could be construed as either answers or questiams. |
Table 3, we list the confusion matrix for thesealcitrantunits
over the whole human-tagged data. Surprisingly, we fouatl th
classification of these units was exceedingly hard evenen th
presence of automatically determined lexical DA context. |
cases like these, we believe that the addition of prosodis cu
[5, 11] would help greatly.

Our findings suggest that partially supervised adaptation i
addition to the active incremental learning procedure dugs
contribute significantly to either the HMM- or maxent-based
technique. We suspect that the reason for this is twofold: Pr
vious work [4] in partially supervised learning for DA taggi
had reported significant gains from iterating, but we diditot
erate over and above what was required to add just the activel
selected data. Second, [4] also claimed that allowing b@ot D
tags to drift during the partially supervised learning mdare
was beneficial, or indeed that it was detrimental to anchemth
to the boottags. Again, we did not do this, as it would be incom
patible with the active learning procedure that added eefes
units at each step. We surmise from this that the partiajpesu
vised learning effort is best decoupled from the activereeay
phase and allowed to run its course in the normal fashion afte
the active data selection has completed.

6. Summary

We have described a framework for implementing active data
selection for training automatic DA taggers. We also préesen

a way to couple active learning with partially superviseatie

ing and found that the benefits of this coupling were marginal
at best. We reported on experiments using both maxent- and
HMM-based DA taggers in the active learning framework and
found modest gains with the maxent tagger and no gains with
the HMM tagger. Interestingly part of the problem seems to
be related tarecalcitrant DAs, which are inherently ambigu-
ous from text alone, even in the presence of context info. We
conclude by suggesting that we may stand to gain by focusing
our attention on these inherently ambiguous units and gigdy
ways to effectively classify them, for example using prdsod
and semantic cues in addition to the information already ex-
ploited.
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