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ABSTRACT

Multi-band speech recognition is an exploratory paradigm in
which each frequency region is treated as a distinct source of in-
formation and the streams are combined after each is processed
independently. A number of researchers have hypothesized that
it is advantageous to combine the sub-frequency information in
an asynchronous manner. This paper examines this hypothe-
sis, using two different approaches in relaxing synchrony con-
straints: HMM decomposition/recombination [19] and two-level
dynamic programming (DP) [16].

Drawing on this work and those of others [2, 18], we con-
clude that relaxing the synchrony constraints indiscriminately
for all phone-to-phone transitions does not consistently and sig-
nificantly reduce the word error rate. The optimal permissible
asynchrony must depend on both the phone-class transitions and
the training-data statistics.

1. INTRODUCTION

Multi-band approaches have generated a great deal of interest in
the automatic speech recognition (ASR) community [9, 2, 8].
In this paradigm, predetermined frequency sub-regions of the
speech signal are treated as distinct sources of information
that are processed independently and then combined to per-
form recognition (Figure 1). Motivations for the multi-band
paradigm include results from psycho-acoustic studies, robust-
ness to noise, and potential for parallel processing.

Sub-recognizer

Sub-recognizer

Sub-recognizer

Sub-recognizer

Time (Secs)

Fr
eq

ue
nc

y 
(H

z)

Spectogram for "She had your dark suit..."

0 0.2 0.4 0.6 0.8 1 1.2
0

1000

2000

3000

4000

5000

6000

7000

8000

Speech Signal

Merging

Sub-band Features Probabilities
Per-band Classification

"Recognized Words"  Unit

Figure 1: A simplified overview of multi-band.

In our earlier work [10], we had verified that phonetic transitions
in sub-bands do not necessarily occur synchronously. Moreover,
we observed that phonetic transitions patterns in sub-bands were
affected by conditions such as speaking rate and room reverber-
ation. In this paper, we try to answer the following question: can
we improve recognition accuracy by relaxing synchrony con-
straints when combining information from different bands?

Before proceeding, let us explain what we mean by “relaxing the
synchrony constraints.” Such a relaxation permits a phone-state
transition to occur later – or earlier – in one sub-band than an-
other when there are sufficient acoustic cues to warrant such a
decision. For example, if maximum evidence for phone transi-
tion � ! � is available in framet in sub-bandi, and the same
phone transition,� ! �, is best supported by the acoustic evi-
dence in framet+ � in sub-bandj, evidence from framet from
sub-bandi is combined with evidence from framet + � from
sub-bandj.

The first algorithm we considered was HMM-recombination,
which is better known as either Parallel Model Combination or
HMM-decomposition [19, 6]. Later, two-level dynamic pro-
gramming [16] was implemented for this task. Sections 3 and
4 discuss these two algorithms and their experimental results.
Section 5 includes discussion and conclusion. In the next sec-
tion, we will describe the database and the system.

2. DATABASE & SYSTEM DESCRIPTION

We used the Oregon Graduate Institute Numbers95 database
[4], which comprises continuous digits and numbers (total of
32 words, such as ”one”, ”sixteen”, ”forty”) recorded over the
telephone as a part of census data collection. The database is
phonetically hand-transcribed. For the purposes of this study,
we used what is known as the ”core subset”: approximately two
hours of the database for training and cross validation, and forty
minutes (with non-overlapping speakers) as a test set.

We used ICSI’s HMM/MLP based [3] system. For our multi-
band system, we divided the frequency range into four bands
of [216-778 Hz], [707-1631 Hz], [1506-2709 Hz], and [2121-
3769 Hz]1, which roughly correspond to the formant regions.
From the sub-bands, we derived [3rd, 3rd, 2nd, 2nd] order
RASTA-PLP [7] features, respectively, as well as energy and
delta RASTA-PLP and delta energy for every 25 ms window,
stepped every 10 ms. We trained four MLP phonetic probabil-
ity estimators on a nine-frame window of these features. The
multi-layer perceptrons (MLPs) were fully connected and had
[72, 72, 54, 54] inputs and [497, 497, 372, 372]2 hidden units
respectively. They each also had 56 outputs (one output for each

1Because we used telephone quality speech, frequencies below ap-
proximately 300Hz and above 3800 were disregarded.

2The number of hidden units were chosen proportional to the number
of input units for each net and also to make the total number of parame-
ters equal to that of a baseline full-band system of 1000 hidden units.



phone3), and were trained using backpropagation with softmax
normalization at the output layer. The system was trained on
hand-transcribed phone labels (without embedded realignment).
A multiple pronunciation lexicon (derived from the hand tran-
scriptions), a bigram language model, and a Viterbi decode, Y0,
were used for decoding.

3. HMM-RECOMBINATION

3.1. Algorithm Description

HMM-decomposition has traditionally been used for recogni-
tion in noisy conditions [19, 6]. Its main idea is to separate
speech and noise into two streams, assuming that each is pro-
duced by a separate model. Similarly, HMM-recombination can
combine several independent streams into a single model. An
intuitive way to think of the algorithm for multi-band purposes
is as follows. Consider a two-band system: if each sub-band
stream is decoded independently, the acoustic data in each sub-
band may best match different words. We can force both streams
to consider the same word model, with identical start and fin-
ish frames, yet allow freedom for each band to transition from
state to state within a word as warranted by the sub-band acous-
tic information. In the simple example of two uni-dimensional
models, two separate streams of data, one for each sub-band,
may be decoded independently using each model. Combining
the two models and clamping the enter and exit states (repre-
sented as black circles) creates a two-dimensional model (as in
Figure 2). The two-dimensional model could be expanded and
more clearly expressed, as shown in Figure 3, where each new
state is a product of two old states. In other words, assuming
independence between the two bands, we have:p(XjS1; Sa) =

p(X1jS1)p(X2jSa), whereX1;X2 andX are acoustic informa-
tion for band 1, band 2, and the full-band, respectively, andSi

is a state in the one-dimensional HMM. Or more generally, the
likelihood may be estimated as:

p(XjM) =

KY

k=1

p(XkjMk); (1)

whereX is the acoustic information, andM is the model.
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Figure 2: An unexpanded multi-dimensional HMM.
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Figure 3: An expanded multi-dimensional HMM.

3Some of the 56 phones did not occur in the Numbers95 database and
had zero priors.
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Figure 4: An expanded multi-dimensional HMM model, with
maximum asynchrony limit of one state.

As the reader might suspect, the size of these multi-dimensional
models can get prohibitively large as the number of sub-bands
increase, and as the word models become more complex. This
problem can be alleviated, to some extent, by enforcing a max-
imum number of states of asynchrony. For example, if a maxi-
mum asynchrony of three states is allowed, state1e is pruned. If
asynchrony is further limited to a maximum of two states, states
1d and2eare pruned. Finally, with a limit of one state,1c, 2d,
3eand5c are also pruned (Figure 4). The practical issue of the
explosion of number of states is discussed in Section 3.2.

3.2. Experimental Results

The implementation of HMM-recombination was performed in
the following way:

1. Multi-dimensional word models with a given maximum
asynchrony constraint were created.

2. The scaled likelihoods for each new state were calculated
by multiplying scaled likelihoods of the old states.

3. Viterbi decoding was run on the new multi-dimensional
model, given the newly generated data likelihoods.

As suggested in Section 3.1, an explosion in the size of the mod-
els proved to be a problem, especially for a four-band system
with its accompanying four-dimensional model, consistent with
a similar observation by Dupont at IDIAP [5]. We therefore de-
cided to use a two-band system where the size of the model was
more manageable.

The frequency ranges for the two-band system were [216-
1631 Hz] and [1506-3769 Hz]; each band of the two-band
system comprised two contiguous bands of the four-band sys-
tem. The 6th- and 3rd-order RASTA-PLP features, energy, delta
RASTA-PLP, and delta energy for the lower and higher sub-
bands were derived and MLPs with 820 and 470 hidden units
were trained for the sub-bands. For a baseline, two-band com-
parison, a simple merging of the two bands was performed by
simply adding the log likelihoods and the resulting stream was
decoded using the Y0 decoder. The word error rate was 9.0%.
The word error rates for HMM-recombination are listed in Ta-
ble 1. Experiments with reverberant speech were also conducted,
since we had earlier observed evidence for higher levels of asyn-
chrony in reverberation [10]. It was surmised that any gains to
be made for asynchronous decoding using this method would be
more pronounced with reverberant speech. The reverberant data
set was generated by convolving the clean set with an impulse re-
sponse measured in a room having a reverberation time of 0.5 s
and a direct-to-reverberant energy ratio of 0 dB. The results are
reported in Table 2.



HMM-Recombination on Clean Numbers95
Max. Asynchrony word error rate

None 9.0%
1 9.1%
2 9.5%
3 9.8%

Table 1: Word error rates for HMM-recombination asyn-
chronous merging algorithm on clean Numbers95 as the max-
imum states of asynchrony is increased for a two-band system.

HMM-Recombination on Reverberant Numbers95
Max. Asynchrony word error rate

None 35.4%
1 37.1%
2 37.0%

Table 2: Word error rates for HMM-recombination asyn-
chronous merging algorithm on reverberant Numbers95 test data
as the maximum states of asynchrony is increased for a two-band
system.

For both the original ”clean” speech and the reverberant speech,
increasing the maximum asynchrony constraint did not improve
the word recognition performance, and in fact, was slightly de-
graded. It may be that the synchrony requirement imposes use-
ful constraints that negate any benefits of utilizing asynchrony.
Furthermore, relaxing the synchrony requirement may increase
confusion because, even though we used a 2-band system, there
was still a large increase in the number of states. Also, the in-
creased number of parameters in the expanded model may not
be estimated accurately enough.

An alternative algorithm for asynchronous merging is two-level
dynamic programming, which, as a bonus, does not have pro-
hibitive space requirements, thus allowing us to experiment with
a four-band system as well.

4. TWO-LEVEL DYNAMIC PROGRAMMING

4.1. Algorithm Description

The main idea of the two-level dynamic programming [16, 15]
is to perform decoding in two stages: in the first stage (level
1), each individual word individual word (or some other unit)
model is matched against an arbitrary portion of the test string.
The second stage (level 2) of the computation pieces together the
individual reference pattern scores to minimize the overall accu-
mulated distance over the entire test string. In the case reported
here, the two-pass approach permitted an efficient implementa-
tion of the desired asynchronous merging.

4.2. Experimental Results

In our implementation of the two-level dynamic programming,
synchrony is enforced on the word level. In the first stage of the
algorithm, for every word and every sub-band, a distance matrix

Two-level Dynamic Programming on Numbers95
Condition Simple Merge WER 2-level DP WER

Clean, 4 bands 11.5% 11.1 %
Clean, 2 bands 9.0% 9.3%
Reverb, 4 bands 39.1% 45.9 %
Reverb, 2 bands 35.4% 37.7 %

Table 3: Word error rates (WER) for two-level dynamic pro-
gramming for clean and reverberant speech on the Numbers95
test set.

is calculated. Every entry(i; j) in the distance matrix signifies
how likely it is for the word to have been uttered, starting at
framei and ending at framej. Synchrony at the start and end of
the word unit is enforced by adding all the distance matrices for
the sub-bands for a given word. Next, word lattices are created
for each utterance. Finally, a search on the lattices4 [13, 12, 14]
is performed to generate the string with the least distance.

Without any pruning, the produced lattice can be unmanageably
large, since there would be an arc for every word for every start
and finish time. On-line garbage model pruning [1] was used.
This is a simple on-line pruning method that has proved as effec-
tive as some of the more sophisticated off-line approaches that
require training. Dynamically, the topn scores are averaged; the
scores above this threshold are kept, and the rest are pruned. Ex-
perimentally, it was determined thatn = 10 produced lattices of
reasonable size in an acceptable amount of time. The word error
rates are reported in Table 3.

Similar to the HMM-recombination algorithm, increasing the
asynchrony limit using two-level dynamic programming did not
improve the recognition results. Asynchronous merging does
not seem to have a significant effect on the word error rate. The
word error rates are very similar to when the streams are sim-
ply log linearly merged. It is not too surprising since, in both
methods, the probability streams are multiplied. If alternative
asynchronous paths are not exploited, the two methods of stream
merging are essentially equivalent, which would explain the re-
sults.

For reverberant speech, the phone-transitions in the sub-bands
are more temporally spread, as observed in the analysis in [10],
so asynchronous combination of the sub-bands should affect the
results more dramatically. We see in Table 3 that the results,
however, may depend on the size of the sub-band. If the sub-
bands are large enough to include sufficient acoustic cues, the
probability stream would be relatively accurate, and the freedom
to merge asynchronously hurts only slightly – analogous to the
clean speech case. However, if the sub-bands are too narrow,
in the presence of reverberation, acoustic cues would be gravely
degraded, and in combination with relaxed constraints, the word
error rate may increase significantly.

5. CONCLUSIONS

It was observed that relaxing the synchrony constraints when
merging the multi-band streams did not improve word recog-
nition accuracy. The results were consistent both for word-level

4A lattice, for the purposes of this work, is defined as a directed
acyclic graph where each edge corresponds to a word with a distance
score and each node corresponds to a point in time.



(in the case of two-level dynamic programming) and multiple
state-level (for HMM-recombination) relaxation of synchrony
constraints.

Tibrewala and Hermansky [17] had also observed differences in
optimal sub-band paths and conjectured that relaxing the tempo-
ral synchrony requirement among sub-bands would improve the
word error rate. The word error rate increased slightly (though,
not statistically significantly) when relaxing the synchrony re-
quirement over a word (using Viterbi decoding on each stream),
compared to enforcing synchrony at every state for an isolated
digit recognition task both for a four-band and a seven-band sys-
tem. In a similar experiment for isolated German word recogni-
tion, Bourlard and Dupont [2] observed no improvement when
the synchrony was relaxed from the frame level to the phone
level, and only a small (not statistically significant) improve-
ment when the merging was performed on the syllable level for
a three-band system using HMM-recombination. Finally, Tom-
linson et al. [18] have reported a slight improvement (p < 0:1)
when synchronization is performed on a three-state, instead of a
per-state, level for a two-band system, and no improvement for
a three-band system using HMM-recombination.

It may be that by disregarding the synchrony information, im-
portant information is being lost. As observed in [10], some
broad phone category transitions in some sub-bands occur sys-
tematically earlier or later than the full-band average. If at all,
synchrony requirement should perhaps be relaxed only for par-
ticular phone transitions, and not indiscriminately for all phone
transitions, as it has been done in previous work. Furthermore,
the amount of the permitted asynchrony may have to depend on
the phone-class transitions and the training-data statistics. Along
these lines, Morris and Pardo [11] have also observed that the
patterns of onsets or offsets of the phone transitions across fre-
quency bands tend to be quite stable for each transition, sug-
gesting that warping the sub-bands to align the transitions might
remove the potentially useful information that this characteristic
transition pattern could provide.

In summary, various reasons justify the observed results. The
transition constraint may be aiding the Viterbi search by reduc-
ing the number of potential paths and transition options. On the
other hand, it may be that there is a “gain” from relaxing the
synchrony assumptions, but only for a limited number of phone-
to-phone transitions, and that by allowing synchrony relaxation
for all transitions, this “gain” is lost. Also, we have dramatically
increased the size of the parameter space and are using a simple
technique (multiplying scaled likelihoods) for estimating these
parameters.

Based on the significantly higher computational costs and the
currently available evidence, we are forced to conclude that re-
laxing the synchrony constraint, in this form, is not advanta-
geous, and a more detailed set of constraints for multi-band asyn-
chronous merging is warranted, as opposed to the approaches
that we and others have so far explored.
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[3] Hervé Bourlard and Nelson Morgan.Connectionist Speech Recog-
nition – A Hybrid Approach. Kluwer Academic Press, 1994.

[4] Numbers corpus, release 1.0, 1995.

[5] Stéphane Dupont. Personal communication, 1996.

[6] M. J. F. Gales and S. J. Young. An improved approach to the hidden
Markov model decomposition of speech and noise. InICASSP,
pages 233–236, San Francisco, CA, March 1992.

[7] Hynek Hermansky and Nelson Morgan. RASTA processing of
speech. IEEE Transactions on Speech and Audio Processing,
2(4):578–589, October 1994.

[8] Hynek Hermansky, Sangita Tibrewala, and Misha Pavel. Towards
ASR on partially corrupted speech. InICSLP, pages 462 – 465,
Philadelphia, PA, USA, October 1996.

[9] Naghmeh Nikki Mirghafori.A Multi-Band Approach to Automatic
Speech Recognition. PhD thesis, University of California at Berke-
ley, Berkeley, CA, December 1998.

[10] Nikki Mirghafori and Nelson Morgan. Transmissions and transi-
tions: A study of two common assumptions in multi-band ASR. In
ICASSP, volume 2, pages 713–716, Seattle, WA, May 1998.

[11] A. C. Morris and J. M. Pardo. Phoneme transition detection and
broad classification using a simple model based on the function
of onset detector cells found in the cochlear nucleus. InEU-
ROSPEECH, pages 115–118, Madrid, Spain, 1995.

[12] H. Ney, R. Haeb-Umbach, B.-H. Tran, and M. Oerder. Improve-
ments in beam search for 10,000-word continuous speech recogni-
tion. In ICASSP, volume 1, pages 9–12, San Francisco, California,
March 1992. IEEE.

[13] Hermann Ney and Xavier Aubert. A word graph algorithm for
large vocabulary, continuous speech recognition. InICSLP, pages
1355–1358, Yokohama, Japan, September 1994.

[14] Martin Oerder and Hermann Ney. Word graphs: An efficient in-
terface between continuous-speech recognition and language un-
derstanding. InICASSP, volume 2, pages 119–122, Minneapolis,
Minnesota, April 1993. IEEE.

[15] Lawrence Rabiner and Biing-Hwang Juang.Fundamentals of
Speech Recognition. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[16] Hiroaki Sakoe. Two-level DP-matching– a dynamic programming-
based pattern matching algorithm for connected word recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing,
ASSP-27(6):588–595, December 1979.

[17] Sangita Tibrewala and Hynek Hermansky. Sub-band based recog-
nition of noisy speech. InICASSP, volume 2, pages 1255–1258,
May 1997.

[18] M. J. Tomlinson, M. J. Russell, R. K. Moore, A. P. Buckland, and
M. A. Fawley. Modelling asynchrony in speech using elementary
single-signal decomposition. InICASSP, volume 2, pages 1247–
1250, April 1997.

[19] A. P. Varga and R. K. Moore. Hidden Markov model decomposi-
tion of speech and noise. InICASSP, pages 845–848, 1990.


