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ABSTRACT

The performance of automatic speech recognizers (ASR)
typically degrades for test speakers with “outlier” char-
acteristics, for example, speakers with foreign accent and
fast speaking rate. In this work, we concentrate on the
latter. Consistent with other researchers, we have ob-
served that for speakers with exceptionally high speaking
rate, the word recognition error is significantly higher.
We have investigated two possible causes for this effect.
Inherent spectral differences may cause the extracted fea-
tures for these outliers to be significantly different from
that of normal speech. Also, due to phone omissions and
duration reduction, the normal word-models may not be
suitable for fast speech. Based on our exploratory ex-
periments on TIMIT and WSJ corpora, we believe the
spectral differences and duration reduction are both sig-
nificant sources of the increased error. By adapting our
MLP phonetic probability estimator to fast speech, and
employing fast speaker word-models, we have been able to
eliminate about 16% of the fast speaker word recognition
€rrors.

1. INTRODUCTION

In a recent NIST WSIJ evaluation (Nov 93) all participat-
ing systems had about 2-3 times higher word error rates
on the two fastest speakers [4] (see Figure 1). In an earlier
NIST Resource Management (RM) Sep 92 evaluation, this
strong effect was also observed, as all participating sys-
tems had 2-4 times more error on the fastest (and one of
the slowest') speakers [5]. This observation naturally in-
spires the following question: “why do the ASR systems
perform significantly worse on fast speakers?”.

We have considered two reasons for the higher error
rate of faster speakers. First, due to increased coarticula-
tion effects, the spectral features of fast speech are inher-
ently different from normal speech and these differences
are reflected in the extracted features (acoustic-phonetic
causes). Phonological causes are the second potential cul-
prit: the normal word models may be unsuitable for fast
speech because fast speakers often violate the phonemic
durational constraints of the word-models (durational er-
rors) or omit phones altogether (deletion errors). In the
following sections, we describe our investigation of these
two hypotheses using the TIMIT and WSJ corpora, and
suggest corrective measures which give us about 16% rel-
ative improvement for fast speech.

1 Although very slow speakers can also have high error rates,
in this work we have limited our investigation to fast speakers.
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Figure 1: Rate of speech vs. word error rate for all partic-
ipating cites in the WSJ0-93 Hub2 C1 evaluation. Each
point represents one of the ten evaluation speakers. For
WSJ0 training set gros = 13.24 and oros = 1.80.

In our experiments, we use ICSI’s hybrid HMM/MLP
speech recognition system, which participated in the WSJ
93 (5K bigram task) and RM 92 NIST evaluations. As ob-
served in Figure 1 and discussed in the work of Siegler [6],
similar rate of speech (ROS) effects have been observed
for mixture of Gaussian systems, so it is hoped that the
conclusions of our work are useful in those systems as well.

2. ANALYSIS

In the following two sections, we discuss our investigation
into the causes of higher error rate for fast speech.

2.1. SPECTRAL FEATURES

If shorter phoneme durations increase coarticulation ef-
fects, the spectral characteristics must be different for
each sound, and the difference should be reflected in
the extracted features. Therefore, we should be able
to train a classifier to distinguish between fast and slow
phones based on the extracted features. This form of
non-parametric hypothesis testing is useful for such multi-
dimensional investigations.

In order to eliminate any word model effects (due to
automatic labeling and alignment), we chose the hand-
labeled TIMIT database and calculated the ROS for 4620
training sentences. The ROS for a particular sentence was
calculated by dividing the number of non-silence tran-



scribed phones by the non-silence duration of the sen-
tence. For TIMIT training sentences, pros is 13.71
phones/second, and oros is 1.95 phones/second; the
spread approximates a Gaussian distribution very well
(Figure 2). For the female sentences pros = 13.43 and
ocros = 1.81; For male sentences gros = 13.83 and oros
= 1.99. Tt is very interesting to note that the 3% relative
difference in speaking rate between males and females is
significant at p < 0.001 level! 2
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Figure 2: Histogram of rate of speech for training speakers

of TIMIT.

We chose 400 sentences from the SX training
set, 100 for each combination of {fastest,slowest} *
{male, female}. Then we calculated the PLP12 & en-
ergy features and their deltas [1] (a total of 26 features)
for each 20 msec window of speech, overlapped every 10
msec. We trained a two-layer neural network (26 input,
50 hidden, and 2 output units) for each phone on fast
and slow speakers’ extracted features. To eliminate gen-
der variabilities, we trained one classifier on female and
one on male speakers for each phone. We extended our
limited data by using a jack-knifing approach, by training
on 90% of the data and testing on the remaining 10% for
each of the ten possible such splits.

The mean classification accuracy for all phones on the
tests was 73% (which is significantly higher than random)
for a total of 120K frames of data. For some phones, such
as fuw/, Juh/, fen/, ox/, faw/, [ux], [¥], [ac], Jow],
/hh/, and /ay/ (mostly diphthongs and glides) the classi-
fication score was between 80-90%. This makes particular
sense in the light of psycho-acoustical studies that suggest
diphthongs and glides are most affected by ROS variations
[3]. The most difficult phones for speed discrimination
were, unsurprisingly, the silence phones, closures, stops,
and some fricatives.

It is evident that features for fast and slow sounds
are different. The next question is whether this differ-
ence is causing the higher recognition error rate for fast
speakers. We tested this hypothesis by examining the
frame error of the MLP phonetic probability estimator.
In order to see whether there is any general correlation
between ROS and the errors of the MLP, we grouped the
sentences in ROS bins with size 0ros, and boundaries
[tros +noros, pros + (r+1)oros], and calculated the

2Whether the information content per second is higher for
male speakers is debatable, however.

average frame error for each bin (Figure 3). We see that
for sentences which lie outside pgros & oros, the frame
error is at least 2% higher. However, it is not clear how
this frame error translates into word recognition error.
We will attempt to answer this in section 3.1.
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Figure 3: Rate of speech vs. MLP frame error for TIMIT
test sentences. FEach point represents the average error
for a given ROS bin. The numbers on the graph denote
the number of sentences in each bin.

2.2. WORD MODELS

The next question is whether the higher error rate is due
to a mismatch with the word models. Our hypothesis
is that the durational models in our recognizer do not
match the durations used by fast speakers. We have ob-
served that fast speakers tend to favor shorter phone du-
rations and violate phonemic minimum duration require-
ments (durational errors), and also omit phones in their
pronunciations altogether (deletion errors).

We transcribed a total of 25 sentences for five fast
speakers in the WSJ-93 development and evaluation sets
by hand and compared their pronunciations with what
our single-pronunciation word models predict. We aligned
each transcribed word with its corresponding word-model
phonetic sequence, using dynamic programming with a
distance metric based on the number of phonetic features
(e.g., consonant, frontness, height) that differ between two
phones, producing a deletion error score.

As noted before, our word models (as with many other
systems) have a minimum duration constraint, which re-
quire that each phone be repeated for n states.® For the
five transcribed speakers, we also calculated a duration
error score which represents how often the transcribed
phones were shorter than the minimum duration in the
word model. We did not observe a strong correlation
between ROS and overall alignment error rate. There
were, however, weak correlations between ROS and ei-
ther of duration and deletion errors. When the two er-
ror sources were summed, we found a stronger correlation
with ROS. This suggests that both unusually short sounds
and deleted sounds are measurable sources of error in our
speech recognizer. However, since we had very limited

3The value of n in our system is calculated as half of
the backoff triphone context-dependent average duration of a
phone, estimated from the training data.



hand transcribed data, we repeated this experiment on
the TIMIT database. Similar to the analysis in 2.1, we
divided the sentences into ROS bins, each %G'ROS wide.
(Figure 4). There was almost no correlation between ROS
and deletion errors alone (corr. coef. = -0.07)*. The cor-
relation between ROS and durational errors was signifi-
cantly higher at 0.84. Combining the deletion and dura-

tion errors, the correlation increases to 0.93 (Figure 4).
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Figure 4: Rate of speech vs. average duration & deletion
errors for TIMIT training sentences. The integers on the
plot represent the number of sentences in each ROS bin.

From these observations we conclude that the combi-
nation of unusually short sounds and deleted sounds are
measurable sources of error in our speech recognizer. We
will suggest antidotes in section 3.2.

3. ANTIDOTES

In the following two sections, we discuss our experiments
in trying to alleviate the higher error rates of fast speech.

3.1. ADAPTING THE MLP

Based on our observations in section 2.1, we decided to
adapt our MLP phonetic estimator to fast speech. We
chose the 5% fastest sentences (a total of 367) from the
WSJ0 training corpus (C = ROS Cutoff = g + 1.650 =
16.17). We adapted our 4000 hidden unit MLP, which
was already trained on all of WSJ0, by retraining it on
these fast sentences for three more epochs.

We tested this adapted net on the WSJ0-93 evalua-
tion set. We looked at the word recognition error rate of
sentences with ROS > C (53 sentences) and ROS < C
(162 sentences). The “fast” sentences improved by 14%,
while the “slow” sentences degraded by 10% relative to
the baseline system.

3.2. CHANGING THE WORD MODELS

We have investigated methods of adjusting the durational
models of phones in order to compensate for ROS ef-
fects. Our current phone model, shown in Figure 5.a, re-
quires a minimal duration constraint. For phones that are
shorter than the minimum duration, this constraint will

4For calculating the correlation, we disregarded the bins
with less than five sentences.

sharply decrease the probability of the phone (and conse-
quently, the word which contains the phone) representing
the acoustic input. Our baseline WSJ0 recognizer® gives
16.1% word error for the WSJ0-93 evaluation set using

these models.
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Figure 5: Examples of word models for “at”

In Figure 5.b, we show models where we scaled the
probabilities of each HMM state to favor leaving rather
than staying in the state. We found that for the sentences
with ROS > C of WSJ0-93 evaluation set, the exit prob-
ability z could be scaled as high as 0.9, with 15% relative
improvement. The system overall performed best on all
sentences at ¢ = 0.7, giving 15.7% error, but assuming an
ideal ROS detector the system would have improved to
15.0% error. Such a detector could be approximated by
approaches discussed in [6], perhaps in combination with
local detectors as described earlier in section 2.1.

An alternative would be to simply reduce the min-
imum phone durations. We tried this in both phone-
independent (Figure 5.c) and phone-specific (Figure 5.d)
duration scaling experiments. For the phone-independent
models, experiments were conducted where 0.5 to 3 frames
were subtracted from the average backoff trigram context-
dependent duration of each phone. This resulted in an
average of 0.25 to 1.5 state deletions in the minimum du-
ration of phone models, causing a 5% relative decrease
in error for fast sentences. When we reduced durations
in a phone-specific manner by only reducing the average
context-dependent durations of the vowels, the word er-
ror rate of fast sentences improved by 7% relative to the
baseline system. In both cases, the overall recognition
suffered slightly due to increase in slow speaker error.

Finally, we have introduced alternate pronunciations
into our word models which represent the phone reduction
and deletion effects often seen in fast speech [8, 9, 10, 2].
These pronunciations were generated by twenty surface-
phonological rules applied to the base (single pronunci-
ation) lexicon. These rules provided an average of 2.41
pronunciations per word for the 5k WSJ test set lexicon.
The results of running with this lexicon and the adapted
net were insignificantly worse than the base system. How-
ever, when performing an error analysis on the results, we
noted that the difference in error rate on a sentence-by-
sentence basis between the two systems varied widely; for
some sentences the base lexicon did much better, and for
others, the deletion lexicon removed up to 75% of the er-
rors. We feel that a phonological-rule based system for
fast speech holds promise, and we plan to explore this
avenue further in the future.

5Qur baseline WSJO recognizer is a gender-independent sys-
tem, with context-independent and one state per phone word
models, and utilizes a 5K bigram grammar.



| Word Error Rate for WSJ0-93 Evaluation Sentences |

[[ROS<C ] ROS>C |

| Net | Lexicon
Base Base
Adapt Base

Base Scaled ExitProb

Base Scaled Dur

Base ScaledVowelDur

Adapt | ScaledExitProb

12.0 27.9

13.2 24.0 (14%)
13.6 23.7 (15%)
133 26.4 (5%)
135 25.9 (%)
14.8 23.3 (16%)

Table 1: The table shows all the results for the sentences with ROS above C' = y + 1.650 = 16.17 phones/sec and below
C'. The slow sentences’ scores suffer from all the “ROS antidotes”, while the fast sentences’ error rates decrease. Percent
improvement relative to the baseline system is shown in the parentheses. Base Net refers to our gender-independent,
ROS independent MLP phonetic probability estimator, which is part of our WSJ baseline system. Base Lexicon is a
context-independent with one state per phone lexicon of our WSJ baseline system. ScaledFxitProb refers to word models
with increased exit phone probability as discussed in section 3.2 and Figure 5.b. ScaledDur and Scaled VowelDur refer to
reducing the minimum phone durations for the word models for all phones and for vowels only, respectively. These are

also discussed in section 3.2 and shown in Figures 5.c and 5.d.

3.3. MERGING THE TWO SOLUTIONS

We combined the above approaches by using the phonetic
probabilities from the adapted net and the ROS-tuned
lexicon (Figure 5.b) for decoding (Table 1).

The merged system gives slight improvement (16%
relative) over the system with scaled probabilities in the
word models (15%) relative and the system with adapted
MLP (14%). It is likely that to some extent each of the
systems is compensating for similar variabilities of fast
speech.

4. CONCLUSIONS

We have conducted a number of exploratory experiments
to determine the likely sources of speech recognition errors
due to unusual rates of speech (in particular, fast speak-
ers). We believe the spectral features of fast and slow
sounds are different, since we have been able to train clas-
sifiers to discriminate the two classes with a high degree
( > 85% for some vowels) of accuracy. This spectral dif-
ference does seem to cause higher phonetic probability es-
timation error rates. Another observable association has
been between inappropriate word models for fast speech
(due to exceptionally short phone duration or deletion)
and recognition error rate.

We performed an adaptation of the MLP phonetic
probability estimator for fast speech. This adapted net,
reduced the error of the fast sentences by a relative 14%.
Increasing the exit probability of the word models, which
should alleviate duration errors, reduced the error on
fastest sentences by a relative 15%. The merged system
improved the word recognition error rate of fast speakers
(i.e., speakers with ROS > p +1.650) by 16% relative to
the baseline system. In all cases, the error of the slower
sentences was increased. Assuming an ideal ROS detector
(an approximation of which is discussed in [6]), the over-
all error of our system on WSJ-93 evaluation set would be
14.9%, which is an improvement over 16.1% of our base-
line system. More importantly, the ROS-tuned system is
more robust to fast speakers, for whom the system might
fail seriously. For example, for the fastest sentence in
WSJ0-93 evaluation set, our baseline system has a word
error of 40%. The merged ROS system, however, reduces
this error to 20%, effectively getting rid of 50% of the
word errors. Now we face the challenge of implementing
a reliable ROS detector and integrating it into our system.
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