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ABSTRACT

In this paper, we briefly describe REMAP, an approach
for the training and estimation of posterior probabilities,
and report its application to speech recognition. REMAP
is a recursive algorithm that is reminiscent of the EXPEC-
TATION MAXIMIZATION (EM) [5] algorithm for the esti-
mation of data likelihoods. Although very general, the
method is developed in the context of a statistical model
for transition-based speech recognition using ARTIFICIAL
NEURAL NETWORKS (ANN) to generate probabilities for
HIDDEN MARKOvV MoDELsS (HMMs). In the new ap-
proach, we use local conditional posterior probabilities
of transitions to estimate global posterior probabilities
of word sequences. As with earlier hybrid HMM/ANN
systems we have developed, ANNs are used to estimate
posterior probabilities. In the new approach, however,
the network is trained with targets that are themselves
estimates of local posterior probabilities. Initial experi-
mental results support the theory by showing an increase
in the estimates of posterior probabilities of the correct
sentences after REMAP iterations, and a decrease in er-
ror rate for an independent test set.

1. INTRODUCTION

Today, most speech recognition systems are trained ac-
cording to a maximum likelihood criterion that maxi-
mizes, in the parameter space, the likelihood of the data
given some model. In HIDDEN MARKOV MODELS (HMMs),
this likelihood can be represented as P(X|M, ©), in which
X ={z1,...,%n,..., TN} is a sequence of acoustic vec-
tors, M is a HMM, and © is the parameter set on which
optimization is performed. The goal of the recognition
process is to determine the most probable sequence of
words M given what has been uttered X. The optimal
solution to this problem is given by the MAXIMUM A POS-
TERIORI (MAP) criterion based on the MAP probability
P(M|X,0). Classically, the likelihood formulation of the
problem is obtained by applying Bayes’ rule:

P(X|M,0)P(M|©)

P(M|X,0) = P(X|0) (1)

For practical reasons, it is assumed that:

1. The parameters of P(X|M) (acoustic model) are
independent of the parameters of P(M) (language
model). Consequently, these probabilities are re-
spectively denoted P(M|X,0) and P(M|©*) and
are estimately independently of each other. The

full consequences of this assumption fall outside the
scope of this paper. However, it is clear that trained
acoustic probabilities will be affected by the prior
probability of sequences of linguistic units as repre-
sented in the acoustic training data.

2. The denominator P(X) does not depend on any of
the parameters © or ©*. This assumption is rea-
sonable during recognition. However, since P(X|0O)
can be expressed as a sum of joint acoustic and
model probabilities, the value of the denominator
of (1) will be modified during training, and ignor-
ing this will reduce discrimination between correct
and incorrect models.

In recent years there has been a significant body of
work, both theoretical and experimental, that has es-
tablished the viability of ARTIFICIAL NEURAL NETWORKS
(ANNs) as a useful technology for speech recognition.
In particular, we have shown that fairly simple layered
structures, which we lately have termed Bic DumB NEU-
RAL NETWORKS (BDNNSs), can be used to estimate local
probabilities for HMMs [3]. This approach is now usually
referred to as a HYBRID HMM /ANN sysTEM. Although
the theoretical architecture (which we have called the Dis-
CRIMINANT HMM) was initially developed for global pos-
terior probabilities P(M|X), theoretical as well as imple-
mentation problems led us to a simplified version of this
approach that was still based on a likelihood criterion dis-
criminantly trained at the local (HMM state) level. A
number of speech recognition systems based on this latter
approach have been proved, on controlled tests, to be to
be both effective in terms of accuracy (comparable or bet-
ter than equivalent state-of-the-art systems) and efficient
in terms of CPU and memory run-time requirements. Re-
cently, such a system has been evaluated under both the
North American ARPA program and the European LRE
SQALE project (20,000 word vocabulary, speaker inde-
pendent continuous speech recognition). In the prelim-
inary results of the SQALE evaluation (reported in [7])
the system was found to perform slightly better than any
other leading European system and required an order of
magnitude less CPU resources to complete the test.

The initial Discriminant HMM theory has recently
been extended to accommodate full MAP training of hy-
brid HMM/ANN systems. In this paper, we present this
new hybrid HMM/ANN approach that directly optimizes
the parameter set © according to the MAP criterion, i.e.,
maximizing P(M|X,©) where M is the correct HMM as-
sociated with X. In principle this approach should mini-
mize the error rate; cross-validation will be used to guar-



antee that minimization of the error rate happens not only
on the training data but also on an independent test set.
This algorithm, which we call REMAP (RECURSIVE Es-
TIMATION AND MAXIMIZATION OF A POSTERIORI PROB-
ABILITIES ), generates successive estimates of new (local)
posterior probabilities as targets for an ANN training step
to guarantee an iterative increase of the global posteriors.
We show in [2] that estimation of the new ANN targets
can be done using “forward” and “backward” recurrences
that are reminiscent of the EXPECTATION MAXIMIZATION
(EM) algorithm. In the experiments reported here, we
use a modified approach that only uses a “forward” re-
currence for both training and recognition.

Unlike most previous hybrid HMM/ANN systems that
we and others have developed, the new formulation de-
termines the most probable word sequence, rather than
the utterance corresponding to the most probable state
sequence. Also, in addition to using all possible state se-
quences, the proposed training algorithm uses posterior
probabilities at both local and global levels and is dis-
criminant in nature.

2. DISCRIMINANT HMM

In [3], summarizing earlier work (such as [4]), we showed
that it was possible to compute the global a posteriori
probability P(M|X,©) of a Discriminant HMM M given

an acoustic vector sequence X = {z1,...,Zn,..., TN} as:

P(M|X,0)=>_ P(M,q51,055, -

vT';

;qJ7N|X’®) (2)

in which “VI';” represents all possible (legal) state se-
quences in M, g; » the specific state visited at time n for
path T, with ¢;. € @ = {¢*,...,¢", ¢, ...,¢"}, the set
of all possible HMM states making up all possible models
M. Each term in (2) can further be decomposed into:

1 4;,N| X, ©) P(M;
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and, under the assumptions stated in [3], we have

N
P(QLLQ]Q;~~~;QJ7N|Xa®) = HP(QJ,HMJ,n—l;zn;@)

n=1 .
| (4)
The second factor in (3) can be considered independent
of the acoustic sequence X (since the state sequence is
given). As discussed in [2], depending on what we encode
into the acoustic models, this latter factor will represent
phonological, lexical and/or syntactical information.
Discriminant HMMs are thus described in terms of
CONDITIONAL TRANSITION PROBABILITIES P(g¢h|¢5_1, ¢,),
in which ¢¢ stands for the specific state ¢° of Q hypoth-
esized at time n. As with traditional hybrid HMM/ANN
systems, conditional transition probabilities can be esti-
mated by an ANN (in our case a multilayer perceptron)
with K output units and in which the acoustic input z,'
is complemented by a set of additional input units rep-
resenting the state ¢° hypothesized at the previous time
step n — 1. The conditional transition probabilities are
thus functions of ©, the ANN parameter set, and will be
written as P(g5|qh_1, zn, ©).

1 As done with previous hybrid HMM/ANN systems, z, will
usually be replaced by X:fg = {Zn—c,.- 1 Tn,...,Tntqd} to
take some acoustic context into account.

3. REMAP FOR DISCRIMINANT HMMS

3.1. MOTIVATIONS

Discriminant HMMs as described above use conditional
transition probabilities as the key building block for acous-
tic recognition. It is, however, well known that estimat-
ing transitions accurately is a difficult problem [6]. In our
previous hybrid systems, the targets used for ANN train-
ing are typically given by the best segmentation resulting
from a Viterbi alignment. This procedure thus yields rigid
transition targets, which may not be optimal in the case
of training (and testing!) of conditional transition proba-
bilities.

Additionally, for these conditional transition proba-
bilities, there is a disparity between the training input
space of the ANN and the input space that may be hy-
pothesized during recognition. For this case, the ANN
input space includes both the local acoustic vectors and
the previous state category. During training, the net-
work only processes input consisting of “correct” pairs
of acoustic vectors and correct previous state, while in
recognition the net should generalize to all possible com-
binations of acoustic vectors and previous states (since,
during dynamic programming, all transitions permitted
by the HMM topologies will be hypothesized for each
acoustic vector in X). However, some hypothesized in-
puts may correspond to an impossible condition that will
never have been observed, such as the acoustics of the
temporal center of a vowel in combination with a previ-
ous state that corresponds to a plosive. It is unfortunately
possible that the interpolative capabilities of the network
may not be sufficient to give these “impossible” pairs a
sufficiently low probability during recognition [2]. This
problem is can be viewed as a lack of negative examples
(i.e., impossible transitions for some given acoustic data).

One possible solution to these problems is to use a
“full” MAP algorithm taking all possible paths into ac-
count to estimate conditional transition probabilities. This
would lead to smooth estimates of ANN targets and (im-
plicitly) to more training examples (including “negative”
examples) since all the vectors of each training sentence
will be assigned, with different probabilities, to all possi-
ble transitions permitted by the associated HMM.

3.2. PROBLEM FORMULATION
Global MAP training of Discriminant HMMs should find

the optimal parameter set ©® maximizing
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in which M; represents the Markov model associated with
each training utterance X;, with 1 =1,... 1.

Although, in principle, we could use a generalized
back-propagation-like gradient procedure in © to maxi-
mize (5) (see, e.g., [1]), an EM-like algorithm should have
better convergence properties, and would preserve the sta-
tistical interpretation of the ANN outputs. In this case,
“full” MAP training of transition-based HMM/ANN hy-
brids requires a solution to the following problem: given a
trained ANN at iteration ¢ providing a parameter set ©°
and, consequently, estimates of P(g5|zn,qk_1,0"), how
can we determine new ANN targets that:

1. will be smooth estimates of conditional transition

probabilities, V possible (k, £) state transition pairs
in M and Vr € [1,n].



2. when training the ANN for iteration ¢+ 1, will lead
to new estimates of @' and P(gl|zn,qk_;, 01
that are guaranteed to incrementally increase (5)7?

In [2], we prove that a re-estimate of ANN targets that
guarantee convergence to a local maximum of (5) is given
by?:

P*(qn|Tn, an_1) = P(gn| X, q5_1,0", M) (6)

which means that the new ANN target associated with
z, and a specific transition ¢¥ — ¢* has to be calculated
as the probability of that specific transition CONDITIONED
ON THE WHOLE TRAINING SENTENCE X and the associated
model M.

In [2], we further prove that alternating ANN target
estimation (the “estimation” step) and ANN training (the
”maximization” step) is guaranteed to incrementally in-
crease (5) over 1.°

The remaining problem is to find an efficient algorithm
to express P(g5| X, qk_1, M) in terms of P(¢5|zn, qk_1, M).
This can be obtained by observing that:

p(qﬁ—lzqﬁa A/[ X)
Yo p(ak_y, qh, M|X)

The terms on the right hand side can be computed from o
(forward) or 3 (backward) EM-like recurrences using only
local conditional transition probabilities. For the experi-
ments reported in this paper, we used a forward recursion

only, in which ayn(k) = ErneM P(T,, q5| XT") can be ex-

pressed in terms of a,—1(k)’s (where ¢*’s are possible pre-
decessor states of ¢ in M) and local conditional transition
probabilities; T';, refers to the set of subsequences associ-
ated with the first n frames. For training, this recursion
is modified to only permit contributions from paths with
a particular transition (k,{) at time n in order to compute
the terms required for (7).

P(gnl X, gk _1, M) =

(7)

3.3. REMAP TRAINING ALGORITHM

The general scheme of the REMAP training of hybrid
HMM/ANN systems can finally be summarized as follow.
Starting from some initial net providing P(g%|zn, ¢f_1, ©%),
t =0, V possible (k, £)-pairs*:
1. Compute ANN targets P(qi|X;,qk_q,0% M) ac-
cording to (7), V possible (k, £) state transition pairs
in M and Vn € [1,n].

2. For all z,,’s in X, train the ANN to minimize the
relative entropy between the outputs and targets.
This provides us with a new set of parameters ©°,
fort=1t4+1.

3. Iterate from 1 until convergence.
This procedure is thus composed of two steps: an Esti-
mation (E) step, corresponding to step 1 above, and a

Maximization (M) step, corresponding to step 2. In this
regards, it is reminiscent of the EM algorithm. However,

?In the following, we consider only one particular training
sequence X associated with one particular model M. Tt is,
however, easy to see that all of our conclusions remain valid
for the case of several training sequences X;, t =1,...,1.

3Note here that one “iteration” does not stand for one itera-
tion of the ANN training but for one estimation-maximization
iteration for which a complete ANN training will be required.

4For instance, by training up such a net from a labeled

database like TIMIT.

EM is an iterative approach to maximum likelihood esti-
mation, while REMAP is an iterative approach to max-
imum a posteriori probability estimation. Also, in the
standard EM algorithm, the M step involves the actual
maximization of the likelihood function. In a related ap-
proach, usually referred to as GENERALIZED EM (GEM)
algorithm, the M step does not actually maximize the like-
lihood but simply increases it (by using, e.g., a gradient
procedure). Similarly, REMAP increases the global poste-
rior function during the M step (in the direction of targets
that actually maximize that global function), rather than
actually maximizing it.

Convergence of this training scheme can however be
proved [2]. As for the EM, the convergence proof relies on
the definition of an auxiliary function with the following
properties:

1. When increased, the global MAP is also guaranteed
to increase.

2. For a given (fixed) set of parameters ©°, cancelling
the partial derivative of that function with respect
to the conditional transition probabilities (i.e., ac-
tually maximizing the auxiliary function) yields new
targets (6).

3. Training the net with these new targets (which, of
course, won’t be precisely reached) guarantees an
increase of the auxiliary function and, consequently,
of the global posteriors.

4. EXPERIMENTS AND RESULTS

We have begun to test this theoretical formulation on
practical tasks. The speech recognition task we started
with is the Digits+ corpus in use at ICSI. It is composed
of 200 speakers saying the words “zero” through “nine”,
“oh”, “no”, and “yes”. Each word was recorded in iso-
lation over a clean telephone line at Bellcore. For the
additive noise in these experiments, we used automotive
sound that was recorded over a cellular telephone. Noise
was randomly selected from this source and then added
to the clean speech waveforms (10db S/N ratio). In our
pilot experiment, we use 1720 utterances for training, 230
for cross-validation and 650 (from 50 speakers) for testing.
All our nets have 214 inputs: 153 inputs for the acous-
tic features, and 61 to represent the previous state (one
unit for every possible previous state). The acoustic fea-
tures are combined from 9 frames with 17 features each
(RASTA-PLP8 + delta features + delta log gain) com-
puted with an analysis window of 25ms computed every
12.5 ms (overlapping windows) and the sampling rate was
8Khz. The nets have 200 hidden units and 61 outputs.

Results for the pilot test set are summarized in Table
1. Note that the row entitled “Classic Hybrid” refers to an
ANN trained on targets that are 1’s and 0’s that have been
obtained from a forced Viterbi procedure by our standard
HMM/ANN system as described in [3]; the row entitled
“Disc. HMM, pre-REMAP” means a Discriminant HMM
using the same training approach, with hard targets de-
termined by the first system, and additional inputs to
represent the previous state. The rightmost column gives
the average probability of the correct model over all test
words as determined during recognition.

As predicted by the theory, Table 1 shows an increase
of the posterior probability for each iteration, accompa-
nied by a decrease in error rate. Since the sum of all
possible model posteriors is equal to one (which is not
true for data likelihoods), an increase in posteriors for



System Error Rate | Posterior
Classical Hybrid 3.1% -
Disc. HMM, pre-REMAP 2.9% 0.108
1 REMAP iteration 2.3% 0.161
2 REMAP iterations 2.3% 0.175
3 REMAP iterations 2.2% 0.180

Table 1: Training and testing on noisy speech.

the correct class means that the posteriors for alternative
models decrease. Inspection of the posteriors for the in-
correct digit models show that REMAP does indeed de-
crease their probability while increasing the probability
of the correct models. For this case at least, a single
REMAP iteration appears to be sufficient to accomplish
this improvement.

5. DISCUSSION AND FUTURE WORK

A wide range of discriminant approaches (e.g., MMI, GPD)
to speech recognition have been studied by researchers. A
significant difficulty that has remained in applying these
approaches to continuous speech recognition has been the
requirement to run computationally intensive algorithms
on all of the rival sentences. Since this is not generally fea-
sible, compromises must always be made in practice. For
instance, estimates for all rival sentences can be derived
from a list of the “N-best” utterance hypotheses, or by
using an ergodic model containing all possible phonemes.
While thus far we have only applied REMAP to isolated
word recognition, for which all rival sentences can be con-
sidered, the techniques should also apply to continuous
speech without the need for such approximations.
To summarize our current results:

o We have a method for MAP training and estimation
of sequences.

e This can be used in a new form of hybrid system
using HMMs and an estimator of posterior prob-
abilities. A convenient estimator, which we have
used, is a neural network trained with back prop-
agation to minimize the relative entropy between
target distributions and network outputs. As with
the standard HMM/ANN hybrid approach, the es-
timated probabilities are local (conditioned on the
local acoustic signal, though also conditioned on
the previous state in the discriminant HMM case).
However, in the case of REMAP the network esti-
mators are trained with probabilistic targets that
are themselves estimates of posterior probabilities.

o Initial experiments actually show an increase in glo-
bal posteriors, accompanied (as expected) by a re-
duction in error rate for this process.

Much work is still required to optimize the practi-
cal heuristics for this method. While our results look
promising, their improvement over our older approach is
not statistically significant (at the p < .05 level, assum-
ing a normal approximation to the binomial distribution
for the error); this was a pilot experiment in which we
only had 650 test utterances. However, every measure
we examined (error rate, average posterior probability of
correct models, average posterior probabilities of incor-
rect models, number of words with increased posteriors

for the correct model) improved with each iteration and
was consistent with our expectations from the theory.
This result was obtained with a system in which we
have not yet optimized the new method for a number of
factors (e.g., the input window size) that have long been
optimized for the older hybrid system. We also have oc-
casionally made some simplifying assumptions in order to
implement this algorithm; we need to study the effect of
these choices. Once we have done these optimizations and
extended the evaluation to the full Digits+ task of 2600
utterances (using a jackknife approach so that we can test
on all utterances independently from the training set), we
will extend the current work to continuous speech recogni-
tion and explore the use of language models with REMAP.
The current status, as shown in this article, is that new
theoretical groundwork has been established, and that an
implementation does appear to improve recognition in at
least one small but nontrivial speech recognition task.
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