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Abstract

This paper describes an automatic speech recognition front-
end that combines low-level robust ASR feature extraction tech-
niques, and higher-level linear and non-linear feature trans-
formations. The low-level algorithms use data-derived filters,
mean and variance normalization of the feature vectors, and
dropping of noise frames. The feature vectors are then linearly
transformed using Principal Components Analysis (PCA). An
Artificial Neural Network (ANN) is also used to compute fea-
tures that are useful for classification of speech sounds. It is
trained for phoneme probability estimation on a large corpus of
noisy speech. These transformations lead to two feature streams
whose vectors are concatenated and then used for speech recog-
nition.

This method was tested on the set of speech corpora used
for the “Aurora” evaluation. Using the feature stream generated
without the ANN vyields an overall 41% reduction of the error
rate over Mel-Frequency Cepstral Coefficients (MFCC) refer-
ence features. Adding the ANN stream further reduces the error
rate yielding a 46% reduction over the reference features.

1. Introduction

\Voice-enabled services are being deployed. These services
could be accessed through many kind of devices, including mo-
bile devices such as cellular phones. However, speech transmit-
ted on mobile channels can be significantly degraded. The con-
cept of Distributed Speech Recognition (DSR) was proposed to
address this issue by moving some ASR processing, like feature
extraction, onto the terminal side where the speech signal is free
of transmission channel degradation. These features can then be
transmitted (through the data channel of the mobile communi-
cation system) to a remote ASR server.

Sensing the need to ensure compatibility between the termi-
nal and server side ASR processing, a standartization initiative
called “Aurora” was initiated within European Telecommuni-
cations Standards Institute (ETSI). Several databases were pre-
pared and an ASR back-end based on HMM-based HTK toolkit
was defined for evaluation purposes [5]. This year’s “Aurora”
task consists of digit string recognition on six languages and
a range of noise conditions. the challenge involved is to de-
sign a front-end that gives a significant reduction in the WER
compared to a conventional front-end based on Mel-cepstrum
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(MFCC), within the limited computational resources and re-
stricted delay.

In this paper, we describe the front-end submitted by OGI-
ICSI-QUALCOMM consortium . The proposed feature extrac-
tion scheme is based on temporal and spectral processing and
uses a number of techniques, most of them being described ear-
lier in other papers, where they were independently shown to
yield improved noise robustness. First, robust MFCC-based
features are computed using data-derived temporal filters [7],
on-line mean and variance normalization [3] and voice activ-
ity detection. Previous work has also shown that Muli-Layer
Perceptron Neural Net (MLP) can be used effectively as fea-
ture post-processor to improve robutness in speech recogni-
tion [1, 6]. We adopt this tecnhnique and use Multi-Layered
Perceptrons. To limit the computations at the terminal-side, the
MLP is preferably applied at the server side. The next sections
will give more details on the processing using this preferred
split between terminal-side and server-side processing.

2. Terminal Feature Extraction

The speech samples (8 kHz sampling rate) are windowed
into overlapping 25 ms frames with a frame shift of 10 ms.
A 256 point FFT is used to compute the power spectrum that
is used in an emulated filter-bank composed of 23 triangular
weighting functions on a mel scale. The natural logarithm is
then applied to the 23 filter-bank energies.

At this point, two processes are performed. First, a Voice
Activity Detector (VAD) is used to detect non-speech regions.
The feature vectors are passed to an ANN trained to discrimi-
nate between speech and non-speech. The second process con-
sists of filtering the time trajectories of the log energies for
each of the 23 channels using RASTA-like filters that are op-
timized using Linear Discriminant Analysis (LDA) [7]. Due to
the band-pass nature of these LDA-RASTA filters, the filtered
signal is then downsampled by a factor 2 in time, without degra-
dation in performance [2].

Non-speech frames are then dropped using the decisions
provided by the VAD detector. Fifteen cepstral coefficients are
calculated using a Discrete Cosine Transform (DCT) on these
filtered log-energies, and finally, a mean and variance on-line
normalization algorithm is applied to partially compensate for
channel and noise distortions [3].

15 acoustic parameters are generated in this way at the ter-
minal side for each frame. A compression algorithm is applied



to reduce the bit-rate before transmission over the data channel.
Note that as we use the downsampled stream, the frame shift is
now 20 ms. This provides empty slots in the terminal-to-server
transmission increasing channel capacity. The empty slots can
be used by other applications or directly translate into higher
channel capacity.

This terminal side processes are described in some more
detail in the following sections.

2.1. Voice Activity Detector (VAD)

The VAD uses an MLP trained to discriminate between speech
and non-speech. The MLP is trained on multiple databases con-
taining clean and noisy speech. This MLP has 6 input units, 15
hidden units and 1 output. Three analysis frames are used as in-
put - the current frame and 2 adjacent frames. This architecture
is a compromise between VAD complexity and accuracy. The
output of the MLP is an estimation of the non-speech posterior
probability. This probability is thresholded to zero or one, and
then filtered using an 11 point median filter to remove spurious
spikes. The binary decision that is obtained for each frame is
later used to drop the frames that are more likely to be non-
speech.

2.2. LDA-based temporal RASTA filtering

Spectral features are sensitive to environment mismatches such
as background noise and channel distortion. This results in
rapid degradation in performance of speech recognizers in
adverse conditions. We address this problem by band-pass
filtering the time trajectories of log mel-frequency energies.
The filters are derived using the linear discriminant analysis
(LDA) [7]. Restaurant noise from Aurora database was added
to OGI-Stories at 10 dB SNR to simulate the environment mis-
match. The filters were derived foreach mel-frequency band
using 101 dimensional feature vectors. Each feature vector rep-
resented the current frame, 50 frames in the past and 50 frames
in the future.

To meet latency requirements defined by ETSI, we approx-
imated the filter responses by 41 tap symmetric FIR filters. The
filter derived on the second band was used to filter the first two
bands and the filter derived on the fourth band was used to filter
the remaining bands. Figure 1 shows the impulse and frequency
response of these two filters. The filter with 6 Hz cutoff is ap-
plied to Mel channels 1 and 2, and the filter with 16 Hz cutoff
is applied to channels 3 to 23.
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Figure 1: LDA filters impulse response and frequency response.

2.3. On-line Normalization (OLN)

Additive noise shifts the mean and reduces the variance of cep-
stral coefficients [3]. Therefore, online mean and variance nor-
malization is applied. The estimates of mean and variance are
initialized using the mean and variance of the first four frames
of all utterances in our training set. These estimates are updated
for each frame as follows.
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where z; is the cepstral coefficient and z; is the normalized
cepstral coefficient at time ¢. m; and o2 are the estimated mean
and the variance of z;. « is an adaptation constant less than
1 to guarantee positive estimate of the variance, and 6 is an
empirically determined variance floor. We use « = 0.1 and
6 =1.0.

3. Server Feature Vector Generation

In [6], several feature sets were evaluated on the earlier ver-
sion of the “Aurora” task. It was shown that after a MLP-
based non-linear discriminative transformation, various features
which were so far not well applicable, can be effectively used
in GMM-based recognition systems.

In the previous evaluation, only a single database was used
and both the MLP as well as the HTK back-end were trained
on the same data. In the current evaluation, the task of training
the MLP is harder because of the additional databases which
vary in language and noise conditions. Further complicating
our attempts to apply this tandem approach, the MLP cannot be
trained on the target task data because the front end has to be
independent of the target language, task, and noise condition.

We evaluated the tandem structure with MLPs trained
on various single-language as well as multi-lingual databases.
Training the MLP on the target language and task was shown to
yield the typical 40% error rate reduction but training on other
languages or on multi-lingual databases resulted in negligible
improvements in accuracy.

However, we observed that the MLP outputs could be effec-
tively used in conjunction with the non-transformed features.
Figure 2 gives a block diagram of this structure. First, the
derivatives and accelerations coefficients are computed. Then,
we concatenate both non-linearly transformed features (outputs
of the MLP followed by PCA, labeled 3 and 4 in Figure 2) as
well as linearly transformed features (outputs from PCA, la-
beled 2 in Figure 2). This can significantly improve the recogni-
tion performance, at the cost of additional processing, storage,
and algorithmic delay.

The speech corpus that we use to train the MLP and to com-
pute the PCA transformation matrices consist of a portion of the
Timit database downsampled to 8 kHz and artificially corrupted
by various types of noises at different signal to noise ratios. In
the following subsections we briefly describe the block diagram
of the server side feature vector generation process.

3.1. Contextual Principal Components Analysis

Contextual PCA allows us to add contextual information with-
out increasing the feature vector size by keeping only those
coefficients that explain most of the variance. Three consec-
utive frames of the features are stacked together to form a 135-
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Figure 2: Block diagram of the Server Feature Vector Genera-
tion. The size of the feature vectors is given along the arrows.

dimensional vector which is projected using the 45 directions
corresponding to the largest eigenvalues.

3.2. Non-Linear Transformation Using an Artificial Neural
Network

The MLP provides a nonlinear mapping between feature space
and phoneme posterior probability estimates. These probabil-
ity estimates typically have a highly non-Gaussian distribution.
However, the MLP outputs before the final nonlinearities are
quite gaussian and more suitable for Gaussian mixture model
in current HMM. These pre-nonlinearity outputs are then used
for the subsequent PCA which is applied to decorrelate the fea-
ture space and make it more compatible with the diagonal co-
variance model of the HTK back-end. Further, the PCA also
reduces the dimensionality of the final feature space.

Five consecutive feature frames (computed using the
terminal-side front-end algorithms described earlier) are
stacked together to yield a 225 dimensional input vector for the
MLP. The MLP has one hidden layer consisting of 500 units
with sigmoid activation functions, while the output layer con-
sists of 56 output units with softmax activation functions. The
MLP is trained on phonetic targets (56 context independent En-
glish phonemes) from the Timit database with added noise. The
PCA bases are pre-computed on the same data that is used for
training the MLP. As can be seen in Figure 2, The outputs after
the MLP and PCA are 28 features.

3.3. Concatenation and up-sampling

Combining information from different feature streams often im-
proves performance of recognition systems. The algorithms de-
scribed in Section 2 yield a stream containing spectral informa-
tion. The algorithm described in Section 3 amount to creating
a stream containing phonetic discrimination information. The
vectors from these two streams are concatenated to yield a 73-
dimensional feature vector.

The final step before the back-end is to upsample the feature
stream by two. Linear interpolation between successive frames
is used to go back to the 10 ms original frame shift.

4. Experimental Setup and Results

Experiments were performed on the entire set of digit strings
tasks defined by ETSI. They cover six different languages: En-
glish, Italian, Finnish, Spanish, German, and Danish.

The English task is based on a modified version of the TI-
Digits database. Different noises are added in a controlled way
at different signal-to-noise ratios (from clean to 0 dB). Two
training modes using the same set of utterances are defined:
“clean” uses only clean digits and “multicondition” uses 4 dif-
ferent noises. Three test sets are defined. “Set A” has the same
noises as the multicondition training, resulting in matched test
condition. “Set B” uses four different noises. In this case, there
is a mismatch between training and test data. In “Set C”, noisy
speech is filtered to simulate channel mismatch.

The other languages are taken from the corpora that
were recorded as part of the SpeechDat-Car European (SDC)
project [4]. These are real recordings made in cars with a
setup consisting of a close talking microphone and a hands-free
microphone. Three train/test configurations were defined: the
well-matched condition (WM), the medium mismatched (MM)
condition and the highly mismatched condition (HM). In the
WM case, 70% of the entire data is used for training and 30%
for testing. The training set contains all the variability that ap-
pear in the test set. In the MM case, only far microphone data
is used for both training and testing. For the HM case, training
data consists of close microphone recordings only while testing
is done on far microphone data.

4.1. Results

The performance of the proposed front-end is evaluated by com-
parison to standard MFCC features. The configuration of the
recognizer is fixed for all tasks. It uses the HTK toolkit (Gaus-
sian Mixtures Model-Hidden Markov Model - GMM-HMM)
recognizer where the models are words, each composed of 16
states, 3 mixture per state, and diagonal covariance matrices.

Results are presented in Table 1 for the terminal-side fea-
ture extraction algorithm (with additional derivatives and ac-
celerations coefficients) and in Table 2 when we also use the
server-side post-processing. These tables contain the absolute
performance for the different databases and test conditions as
well as the performance relative to the baseline MFCC.

For both systems, it can be seen that the reduction in WER
is consistent within TI-Digits and SDC. The only exception is
SDC-German, which is the noisiest of all SDC databases. The
difference in improvement between TIDIGITS and SDC is due
to multiple reasons. SDC is a realistic database and hence the
baseline performance deteriorates much faster with mismatch
compared to mismatch created by artificially adding noise to
clean speech. The long segments of silence before the onset
of speech in SDC cause a large number of insertion errors in
baseline system. We observed that the VAD alone improves
acuracy of the baseline on this Aurora task by more than 20%.

Let’s note finally that a coding scheme can be used before
transmission of the features through the mobile data channel. A
bit rate of 2400 bits/s is achievable without significant degra-
dation in the ASR performance. The algorithmic delay of the
first approach which is applied on the handset is below 250 ms,
the server side processing currently adds another 80 ms to the



SpeechDat-Car
Absolute performance

Noisy Tl Digits (Aurora 2)
Absolute performance

Training Mode Seen Database: Unseen Databases | Average Training Mode Set A Set B Set C Overall
Italian Finnish Spanlsh German | Danish Multicondition 89.51% | 89.40% | 90.13% | 89.59%

Well Matched 95.56% | 94.38% | 95.27% | 91.02% | 89.98% | 93.24% Clean Only 78.26% | 79.57% | 79.20% | 78.97%

Medium Mismatch 90.05% | 88.03% | 92.63% | 85.21% | 75.07% | 86.20% Average 83.88% | 84.48% | 84.66% 84.28%

High Mismatch 66.59% | 62.76% | 75.40% | 82.42% | 66.09% | 70.65%

0.4W+0.35M+0.25H | 86.39% | 84.25% [ 60.36% | 86.84% | 78.79%

Training Mode SetA Set B Set C Overall

Multicondition 13.89% | 22.76% | 39.15% | 23.49%

Training Mode Seen Databases Unseen Databases | Average Clean Only 43.76% | 53.83% | 38.55% | 47.34%
Italian Finnish | Spanish | German | Danish Average 28.83% | 38.30% | 38.85%

Well Matched 30.19% | 40.65% | 64.03% 4.67% 49.39% | 37.79%

Medium Mismatch | 44.66% | 56.47% | 71.93% | 29.37% | 48.95% | 50.28%

High Mismatch 44.46% | 46.53% | 57.42% | 31.65% | 49.34% | 45.88%

0.4W+0.35M+0 25H | 38.82% | 47.66% | 65.14% | 20.06% | 49.22% 4068%

Table 1: Terminal-side feature extraction. The absolute performance is a recognition accuracy (1 - recognition rate). The performance
relative to Mel-cepstrum is the relative error rate reduction over the MFCC baseline. Weighted averages according to the ETSI-defined
protocol are also provided. An overall performance improvement for the 6 different languages is also given: 40,68% reduction of the
error rate over the MFCC baseline. The definition of the different test conditions is given in the text of the paper.

SpeechDat-Car
Absolute performance

Noisy Tl Digits (Aurora 2)
Absolute performance

Training Mode Seen Databases Unseen Databases | Average Training Mode Set A Set B Set C Overall
Italian Finnish | Spanish | German | Danish Multicondition 89.72% | 89.95% | 90.49% | 89.96%
Well Matched 95.94% | 95.41% | 96.16% | 92.15% | 91.23% | 94.18% Clean Only. 84.05% | 83.98% | 85.08% | 84.23%
Medium Mismatch 88.21% | 88.78% | 93.24% | 85.51% | 77.28% | 86.60% Average 86.89% | 86.96% | 87.78% 87.10%
High Mismatch 69.08% | 63.57% | 77.02% | 84.27% | 67.37% | 72.26%
0.4W+0.35M+0.25H | 86.52% | 85.13% | 90.35% | 87.86% | 80.38% Performance relative to Mel-cepstrum
Training Mode Set A Set B Set C Overall
Mutticondition 15.64% | 26.78% | 41.37% | 26.27%
Training Mode Seen Databases Unseen Databases | Average Clean Only. 58.75% | 63.79% | 55.92% | 60.51%
Italian Finnish | Spanish | German | Danish Average 37.19% | 45.29% [ 48.65% EERLN
Well Matched 36.16% | 51.53% | 70.80% | 16.67% | 55.71% | 46.17%
Medium Mismatch 34.43% | 59.20% | 74.26% | 30.80% | 53.47% | 50.43% Overall recognition performance improvement:
High Mismatch 48.60% | 47.70% | 60.22% | 38.84% | 51.25% | 49.32%
0.4W+0.35M+0.25H | 38.67% | 53.26% | 69.36% | 27.16% | 53.81% 46.42%

Table 2: Terminal-side feature extraction + server-side post-processing.

overall algorithmic latency.

5. Conclusions

In this paper, we presented a robust front-end that combines sev-
eral approaches previously described in the literature. Spectral-
based features are first computed. Increased robustness is ob-
tained using data-derived temporal filters, on-line normaliza-
tion of the features and voice activity detection. Moreover, an
artificial neural network is used in a similar fashion than non-
linear discriminant analysis to obtain features that are relevant
to phoneme classification.

This method was tested on the set of speech corpora used
for the “Aurora” evaluation. Using the feature stream generated
without the ANN vyields an overall 41% reduction of the error
rate over Mel-Frequency Cepstral Coefficients (MFCC). The
complexity of the handset side processing is not much higher
than the complexity of the conventional MFCC. Adding the
ANN stream further reduces the error rate, yielding a 46% re-
duction over the reference features at the expense of additional
complexity and a slightly longer algorithmic latency.

Our approach could be used in tandem with conventional
noise supression techniques such as spectral subtraction and
Wiener filtering to further improve the performance.

6. Acknowledgments

This research was supported by DoD under MDA904-98-1-
0521, by NSF under IRI1-9712579, and by Qualcomm Inc.

7. References

[1] V. Fontaine, C. Ris, and J.M. Boite. Nonlinear discrim-
inant analysis for improved speech recognition. In EU-
ROSPEECH, volume 4, pages 2071-2974, Rhodes, 1997.

[2] Hynek Hermansky and Pratiba Jain. Down-sampling
speech representation in ASR. In EUROSPEECH, Bu-
dapest, 1999.

[3] P. Jain and H. Hermansky. Improved mean and variance
normalization for robust speech recognition. In ICASSP,
Salt Lake City, 2001.

[4] A. Moreno, B.Lindberg, C.Draxler, G.Richard, K.Choukri,
and J. Allen. Speechdat-car a large speech database for
automotive environments. In LREC (Language Resources
and Evaluation, Athens, 2000.

[5] David Pearce. Enabling new speech driven services for mo-
bile devices:an overview of the etsi standards activities for
distributes speech recognition front-ends. In AVIOS 2000:
The Speech Applications Conference, San Jose, CA, 2000.

[6] S. Sharma, D. Ellis, S. Kajarekar, P. Jain, and H. Her-
mansky. Feature extraction using no-linear transformation
for robust speech recognition on the aurora database. In
ICASSP, volume 2, pages 1117-1120, Istambul, 2000.

[7] S. van Vuuren and H. Hermansky. Data-driven design of
rasta-like filters. In EUROSPEECH, volume 1, pages 409-
412, Rhodes, 1997.



