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ABSTRACT

The performance of current automatic speech recognition
(ASR) systems is very sensitive to the presence of room re-
verberation in the incoming speech signal. We investigate
a family of front-end speech representations that focus on
slow changes in the the gross spectral structure of speech
for their ability to improve the robustness of ASR systems
to reverberation. A number of the front ends provide a
statistically significant improvement in performance over
established front ends such as PLP; however, the perfor-
mance of ASR systems on highly reverberant speech is
still disappointing when compared with the performance
of human listeners.

1. INTRODUCTION

The problem of reliably recognizing reverberant speech
is an important one for automatic speech recognition
systems. In wvirtually every application in which the
use of head-mounted, close-talking microphones is ex-
cluded, room reverberation can significantly alter incom-
ing speech. As earlier studies have shown (see below),
current recognizers cannot reliably recognize even slightly
reverberant speech. Theoretically, reverberation consti-
tutes a form of distortion that is distinct from both short-
time spectral coloration and additive noise. Although it
is a form of convolutional distortion, reverberation, un-
like short-time spectral coloration, is not multiplicative
in the short-time spectral domain because the duration of
room impulse responses is typically longer than the tem-
poral window used for spectral analysis of speech. Rever-
beration instead appears as a form of temporal smearing
in the time-frequency plane. Unlike additive noise, the
distortion imposed by room reverberation is completely
correlated with the speech signal.

These differences make it likely that conventional ap-
proaches to robust speech recognition, which have typi-
cally been developed on data corrupted by spectral col-
oration, additive noise, or both, will not be effective in
the presence of reverberation. For phone recognition on
TIMIT sentences, it is reported in [1] that the phone er-
ror rate of a recognizer using a mel-cepstral front end
increases from 27.1% on a clean test set to 81.3% on a
test set processed through a room reverberation simulator
with a reverberation time of roughly 250-300 ms. A recog-
nizer that uses an auditory-based front end that is robust
to additive noise, the ensemble interval histogram (EIH),
has a phone error rate of 36% on the clean test set and an
error rate of 82.7% on the reverberant test set. Recently,
we have compared the performance’ of ASR systems us-

11t should be noted that the recognition scores reported here
are slightly different from those reported in [2] and [3]. Since
the publication of these two papers, we discovered and cor-
rected a small systematic error in the scoring of our recognition
results. The numbers reported here are the correct recognition
scores.

clean | reverb.
error error
PLP 15.8% 70.1%
log-RASTA-PLP || 14.5% 72.7%
J-RASTA-PLP || 15.1% 77.3%
humans — 6.1%

Table 1. Word error rates for three different ASR
front ends and for human listeners. The task,
which is described in more detail in Section 3,
is word recognition on connected strings of num-
bers. The reverberant test set is generated by
convolving the clean test set with an impulse re-
sponse that has a roughly 2 s reverberation time
in the mid-frequencies. Differences of 2% word
error rate or greater are statistically significant
(p < 0.05). Note that the human listeners recog-
nize the reverberant speech more reliably than the
ASR systems recognize the clean speech.

ing the PLP [4], log-RASTA-PLP [5], and J-RASTA-PLP
[5] front ends with the performance of human listeners on
a highly reverberant test set [2]. The results of this study
are summarized in Table 1. Generally, the word error rate
for the ASR systems increases by a factor of four when
going from the clean test set to the reverberant test set,
and on the reverberant test set the ASR systems’ word er-
ror rate is roughly a factor of twelve higher than the word
error rate of human listeners. Clearly, while humans are
adept at recognizing even highly reverberant speech, ASR
systems are not.

How might ASR performance on reverberant speech be
improved? We believe that one important step is to use
a representation of speech that focuses on slow modula-
tions distributed across critical-band-like channels. In the
rest of this paper we justify the use of such a represen-
tation, describe the design of and results from a series
of experiments that explore the use of modulation-based
representations for ASR in reverberation, and discuss the
implications of these results.

2. THE IMPORTANCE OF SLOW
MODULATIONS FOR SPEECH
INTELLIGIBILITY

Ideally, a representation of speech used for recognition
should focus on those aspects of the speech signal that
encode phonetic information and should suppress those
aspects that do not. A considerable body of evidence
points to the importance of slow changes in the gross
speech spectrum, which appear as modulations of en-
ergy at rates of 2-16 Hz in roughly critical-band-wide
channels, for conveying the phonetic information in the
speech signal. As early as the late 1930’s, the develop-
ers of the vocoder found that they could synthesize high-



envelope | complex | global | output clean | reverb.
experiment norm. filter peak | thresh. error error

A X X X X 30.1% | 65.2%
B X X X 30.6% | 67.8%
C X X X 17.5% | 66.1%
D X X 13.6% 69.9%
E X 18.3% | 68.8%
F 16.1% | 73.5%

Table 2. Summary of the recognition results for different variants of the modulation spectrogram front
end. An “X” in a column indicates that the corresponding processing step was used in the front end.
Thus, the first line of the table is the baseline modulation spectrogram result. Differences of 2% word
error rate or greater are statistically significant (p < 0.05).

quality speech using a dynamic estimate of spectral shape
that was low-pass filtered at 25 Hz [6]. More recently,
the speech transmission index [7], a measure that sum-
marizes the low-frequency modulation transfer function
of a channel, has proven to be a powerful predictor of the
intelligibility of speech transmitted via a wide variety of
channels, including reverberant and noisy rooms [8]. Fi-
nally, in a recent set of experiments on the intelligibility
of temporally-smeared speech (which is very similar to re-
verberant speech), Drullman and colleagues have shown
that modulations at rates above 16 Hz are not required
for speech intelligibility [9].

We already have two front-end speech representations
that focus on slow modulations in speech, log-RASTA-
PLP and J-RASTA-PLP, that have been successfully used
to enhance the robustness of ASR systems to spectral col-
oration and (with J-RASTA-PLP) additive noise. Thus,
the results in Table 1 are surprising. Both log-RASTA-
PLP and J-RASTA-PLP are outperformed by PLP, a
front end that does no processing of modulations, on the
reverberant test set. If the principle of focusing on slow
modulations is correct, then there must be some detail
of the processing performed by the RASTA front ends,
the domain in which modulation filtering is performed,
for example, that makes them unsuitable for recognizing
reverberant speech.

We have developed a new representational format for
speech, the modulation spectrogram [3], that displays
the distribution of slow modulations across time and fre-
quency. To produce a modulation spectrogram, a speech
signal is processed through the following steps:

1. The speech signal, which in our application is sam-
pled at 8 kHz, is analyzed into critical-band-like sub-
bands. A fixed quarter-octave bandwidth is used in a
fifteen-channel FIR filter bank that covers 297-4000
Hz. The filter transfer functions are trapezoidal, with
minimal overlap between adjacent channels.

2. The amplitude envelope in each subband is computed
by full-wave rectification and low-pass filtering with
a cutoff frequency of 20 Hz. The envelope signal is
downsampled to 80 Hz.

3. In each subband, the average envelope level is com-
puted over an entire utterance, and the envelope sig-
nal is divided by this average level. This normaliza-
tion functions as a form of automatic gain control,
suppressing any spectral coloration of the speech sig-
nal and ensuring that the signals in all of the sub-
bands have roughly equal levels.

4. In each subband, a complex FIR filter is used to esti-
mate the spectral power of modulations between 0-8
Hz. The log (base ten) of the squared magnitude of
the filter output is taken.

5. The maximum modulation level for all bands over
an entire utterance is found, and then is subtracted

from all of the subband modulation signals. This step
also functions as a form of automatic gain control,
ensuring that the peak output level for any utterance

1s 0 dB.

6. Thresholding is applied to all of the modulation sig-
nals, so levels that are below -30 dB (referenced to
the global maximum level) are set to -30 dB. This
restricts the dynamic range of the representation to
30 dB, and suppresses lower-energy portions of the
signal.

It should be noted that the details of the processing used
in this paper are slightly different than the processing
described in [3]; however, these differences do not greatly
affect the final representation.

The modulation spectrogram was initially developed to
produce visual displays of speech that are stable in low
signal-to-noise ratio and in highly reverberant conditions,
and not as a representation of speech for ASR. We were
therefore interested in addressing a number of questions.
First, could the same processing that was used to pro-
duce the visual displays be used for reverberation-robust
ASR? Second, could the processing be better tuned for
use in ASR systems? Third, what steps in the process-
ing are most important for improving the robustness of
ASR systems to reverberation? Fourth, can we explain
the poor performance of the RASTA front ends on rever-
berant speech?

3. MATERIALS AND METHODS

We attempted to answer these questions by running ex-
periments in which an ASR system was trained on a
clean set of training utterances, using different variants
on the basic modulation spectrogram described above as
the front-end processing. The performance of the ASR
system, in terms of word error rate, was then measured
on clean and reverberant versions of a test set. The re-
sults for the clean test set indicate how well the front end
preserves phonetic information in the speech signal, while
the results for the reverberant test indicate how robust
the representation of phonetic information is to reverber-
ation.

All experiments were performed using material from
Numbers93, a subset of the Numbers corpus collected by
the Center for Speech and Language Understanding at
the Oregon Graduate Institute. Numbers is a collection of
spontaneous utterances collected over the telephone from
a diverse population of speakers. The utterances are dig-
itized at an 8 kHz sampling rate with a 16-bit A/D con-
verter. The vocabulary of the subset we used is restricted
to numbers (including confusable sets like “seven,” “sev-
enty,” and “seventeen”) and a few other words (e.g. “oh,”
“double,” and “and”). The training set contains 875 ut-
terances, while the test set contains 657 utterances.
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Figure 1. A comparison of the response of the
complex filter with the responses of its real and
imaginary components. The response of the com-
plex filter is computed as the square root of the
sum of the squares of the responses of the real and
imaginary components. Note that the response of
the complex filter is broader than that of either
the real or the imaginary component.

The reverberant test set was generated by digitally con-
volving the utterances in the clean test set with a hand-
designed impulse response that was intended to match the
characteristics of a hallway about 6.1 m long, 2.4 m high,
and 1.7 m wide, with concrete walls, floor, and ceiling.
The reverberation time of the hallway varies from a low
of 1.4 s in the 2-4 kHz band to a high of 3.1 s in the 0-250
Hz band. The ratio of direct to reverberant energy in the
impulse response is -16 dB. Details of the design of the
impulse response are presented in [2].

The ASR system used in the experiments is a
hybrid hidden Markov model/multilayer perceptron
(HMM/MLP) recognizer [10] that uses an MLP to esti-
mate phone probabilities from acoustic features and uses
Viterbi search for speech decoding. The modulation spec-
trogram front ends tested generate output frames at a rate
of 80 Hz, and usually generate fifteen output values per
frame. The MLP phone probability estimator takes the
current output of the front end, the previous seven frames,
and the next seven frames as input, and thus typically has
225 input units. The MLP has 56 output units, and typ-
ically 320 hidden units. The total number of weights in
the MLP was fixed at 89920, so for tests in which the front
end produced more that 15 outputs per frame, the num-
ber of units in the hidden layer is reduced to keep the total
number of weights constant. The speech decoder uses a
single-pronunciation lexicon and a class bigram grammar
language model. For recognizer training, an iterative pro-
cedure that trains a recognizer to an initial labeling of the
training set, then relabels the data via forced alignment
and trains a new recognizer on the new labels was used to
ensure a good match between the features and the word
models used for recognition.

4. EXPERIMENTS

In the first set of experiments, we tested the modulation
spectrogram as described above and variants in which dif-
ferent processing steps were omitted. Steps that were op-
tionally left out are the normalization of the subband en-
velope signals by the average envelope levels, the complex
filtering that measures modulation level in the 0-8 Hz
range, the normalization of the global peak to a level of 0
dB, and the thresholding of levels below -30 dB. Note that
if all of these steps are omitted, the output of the front

clean | reverb.

filter compression error error
complex log 17.8% | 63.8%
complex cube root 17.8% | 67.2%
real cube root 16.5% | 68.3%
imaginary cube root 17.3% | 64.3%
real and imag. cube root 14.7% | 63.5%

Table 3. Summary of the recognition results for
different modulation filters. Differences of 2%
word error rate or greater are statistically signifi-
cant (p < 0.05).

end is the log of the squared subband envelope signals.
Table 2 summarizes the results of these experiments.

A number of interesting patterns are evident in these
results:

e The basic modulation spectrogram features (experi-
ment A), which produce visual displays that are sta-
ble in low signal-to-noise ratio and in highly reverber-
ant conditions, are not adequate for use as an ASR
front end, at least for recognizing clean speech. The
performance on the reverberant test set is good com-
pared to the other front ends, although it is a factor of
ten worse than that of human listeners. It should be
noted that a recognizer that uses phone probabilities
from an MLP trained on these features in combina-
tion with probabilities from an MLP trained on PLP
features has a 13.6% word error rate on the clean test
set and a 64.1% word error rate on the reverberant
test set [2].

o If the results of experiments A and C are compared,
it is clear that the thresholding that is needed to pro-
duce stable visual displays causes problems for ASR
systems. It is likely that phonetic information carried
by low-energy segments is destroyed by the thresh-
olding. The recognizer trained in experiment C has
performance on the clean test set that is not signifi-
cantly different from the performance of a recognizer
trained on PLP features (see Table 1) and perfor-
mance on the reverberant test set that is not signif-
icantly different from the performance of the recog-
nizer in experiment A. It is possible that the use of a
lower threshold value, for example -60 dB instead of
-30 dB, would also give good results for clean speech.
It is also possible that thresholding, which does not
appear to be effective on the highly reverberant test
set we used, would be more useful on moderate levels
of reverberation. We have not yet investigated either
of these questions.

o If the results of pairs of experiments in which the
only difference in the front end is the presence or
absence of the complex filter (experiments A and B,
C and D, and E and F) are compared, it is apparent
that the filtering is an important factor for improving
recognition in reverberation. In all cases, omission of
the filter results in a statistically significant decrease
in recognition performance on the reverberant test
set.

e The best performance on the clean test set is obtained
in experiment D, where only the envelope normaliza-
tion and referencing of the output to the global peak
value are performed. It is likely that these steps sup-
press any channel effects in the data, which was col-
lected over telephone lines, and thus improve recog-
nition performance for the clean test set.

In a second set of experiments we examined the filter
used to detect slow modulations. While use of a complex



filter to estimate the spectral power of slow modulations
is convenient for a number of reasons (e.g. the magni-
tude of the output of the spectral filter is never negative,
so the output is convertible to dB), there are also some
drawbacks. The complex filter requires twice as much
computation as a real filter. Also, the temporal response
of the complex filter is broader than the response of ei-
ther the real or the imaginary component of the filter (see
Figure 1). We therefore investigated the possibility of re-
placing the complex filter with either its real or imaginary
component, or with both. Because the outputs of the real
and imaginary components may be negative, the log com-
pression on the modulation filter output was replaced with
a cube root. These features were computed without the
envelope signal normalization and without thresholding
of the output. Table 3 summarizes the results of these
experiments, and compares them to the performance of a
modulation spectrographic front end that uses the com-
plex filter with logarithmic compression of the output, no
envelope normalization, and no thresholding.

Changing the compression from logarithmic to cube
root causes a significant degradation in performance on
the reverberant test set when the complex filter is used.
This change in performance may be due to the lesser
amount of compression imposed by the cube root, com-
pared with the logarithm, at high signal levels. With the
cube root compression, there is no significant difference in
performance on the clean test set for either the complex
filter, its real component, or its imaginary component.
However, using the imaginary component provides a sig-
nificant performance improvement over the complex filter
or its real component on the reverberant speech. This im-
provement is probably due to the imaginary component’s
enhancement of changes in the envelope signal. Finally,
using both the real and imaginary components instead of
combining them into a single magnitude gives the best
overall performance. This case is analogous to using both
features and delta features, which are essentially orthog-
onal representations of the speech, for recognition. The
real component of the filter is a smoothing filter, while
the imaginary component is a differentiator.

5. DISCUSSION

Several of the representations derived from the basic mod-
ulation spectrogram perform as well as PLP on the clean
test set and significantly better than PLP on the reverber-
ant test set. The key processing step that produces this
robustness to reverberation is the modulation filtering.
By focusing the recognizer’s modeling power on the slow
modulations in speech, it is possible to improve perfor-
mance in reverberant conditions. Furthermore, it appears
that the domain in which this filtering is done may indeed
be important. While we are able to improve recognizer
performance with a front end that filters modulations in
the linear domain, filtering modulations in the logarith-
mic or linear-logarithmic domains, as in log-RASTA-PLP
and J-RASTA-PLP respectively, degrades recognizer per-
formance on reverberant speech.

The experiments which use the imaginary component of
the original complex modulation filter suggest that per-
formance in reverberation may be enhanced by using a
bandpass modulation filter instead of a lowpass filter. The
imaginary component of the complex filter is actually a
bandpass filter with a passband covering 1.5-8 Hz. This
result is consistent with the results in [11], where highpass
filtering of envelope signals was used to improve the re-
verberation robustness of an isolated-word dynamic-time-
warp recognizer.

Although we are able to improve the robustness of our
ASR system to reverberation by using a modulation-based
front end instead of PLP, the performance of the recog-
nizer is still disappointingly poor in comparison to the

performance of human listeners. Moreover, in [2] we found
that even when the training and testing conditions were
matched (the recognizer was trained on a reverberant ver-
sion of the training set then tested on the reverberant test
set), performance was still poor. A recognizer with a PLP
front end had a word error rate of 48.5% in this experi-
ment, while a recognizer with a modulation spectrogram
front end had a word error rate of 43.5%. This result
indicates that the performance of ASR systems in highly
reverberant conditions may be limited by more than sim-
ply the front-end signal processing [12].
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