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ABSTRACT
Current-generation speech recognition systems seek

to identify words via analysis of their underlying
phonological constituents. Although this stratagem
works well for carefully enunciated speech emanating
from a pristine acoustic environment, it has fared less
well for recognizing speech spoken under more realistic
conditions, such as
(1) moderate to high levels of background noise
(2) moderately reverberant acoustic environments
(3) spontaneous, informal conversation

Under such "real-world" conditions the acoustic
properties of speech make it difficult to partition the
acoustic stream into readily definable phonological units,
thus rendering the process of word recognition highly
vulnerable to departures from "canonical" patterns.

Analysis of informal, spontaneous speech indicates
that the stability of linguistic representation is more
likely to reside on the syllabic and phrasal levels than on
the phonological. In consequence, attempts to represent
words merely as sequences of phones, and to derive
meaning from simple chains of lexical entities, are
unlikely to yield high levels of recognition performance
under such real-world conditions.

A multi-tiered representation of speech is proposed,
one in which only partial information from each of many
levels of linguistic abstraction is required for sufficient
identification of lexical and phrasal elements. Such tiers
of linguistic abstraction are unified through a
hierarchically organized process of temporal binding and
are, in principle, highly tolerant of the sorts of
"distortions" imposed on speech in the real world.

1.  INTRODUCTION

Human listeners are capable of understanding speech
spoken under an exceedingly broad range of acoustic
environmental conditions [8, 28]. Such sources of
acoustic interference as telephones ringing, computer fan
noise, jack hammering and background conversation
rarely impede our ability to successfully decode the
speech signal.

To date, such environmental versatility has eluded
the grasp of automatic speech recognition (ASR)
systems. Typically, the performance of ASR systems
degrades quite dramatically in the presence of even
moderate amounts of background interference. It is not
unusual for a system which achieves ca. 85-95% word
recognition accuracy for speech spoken under pristine
acoustic conditions to recognize only 20-50% of the
same material when presented in tandem with either
background noise or reverberation [25].

The following report from a recent article [21] on the
computerized butler, "Alexander," suggests just how far

speech recognition has to go before becoming
commonplace in the household:

'Alexander is a voice-recognition system built into a
small metal box in the entry way [of the Century Plaza's
"Cyber Suite"]. He will, in response to a verbal command,
perform a number of menial tasks. Say "Alexander, good
night," as you leave, and a robotic voice will bid you
adieu as he closes the drapes, turns out the lights and
shuts the door behind you. The system also recognizes
"good morning," "let's do business," "romance mode" and
"party time," and adjusts the ambiance accordingly.

The problem with Alexander is that he's a little too
eager to please. The system picks up ambient noise.  So if
you're carrying on a normal conversation across the room
you are prone to hear, out of the blue, "Very well,
Master," from the British-accented electronic valet.
Alexander once interpreted an offhand remark as a
command to prepare the room for party mode. There was
no stopping him:

"Alexander, NO!!"
"It will be done."
With that, the drapes closed, the lights brightened

and disco music on the state-of-the-art Bang and Olufsen
stereo system began blasting ...'

1 . 1 The Central Challenge

Most efforts to improve ASR performance under
realistic environmental conditions have focused on ways
of enhancing the signal representation through noise
suppression [1, 31, 41], echo cancellation [12], and
dereveberation [3]. Although these signal processing
techniques unquestionably improve recognition
performance, the end result still falls far short of human
capabilities.

And though continuing efforts to counteract the
deleterious effects of background interference will
undoubtedly yield some further degree of improvement in
recognition performance, it is unlikely that such signal
processing techniques, by themselves, will provide the
"magic bullet" required to solve the recognition problem.

Such skepticism of current approaches is motivated
by several lines of evidence. The history of ASR research
over the past two decades is largely one of training
systems to effectively handle specific corpora of speech
materials. The research effort typically begins by
developing acoustic, phonological and grammatical
models for a specific body of data, ranging from read
sentences (TIMIT), read newspaper text (Wall Street
Journal), single digits (Bellcore Digits), street addresses
and phone numbers (OGI Numbers), to flight reservations
(ATIS) and naval maneuvers (Resource Management).
After several years of intensive and costly effort, an ASR
system emerges, capable of achieving relatively high
levels of performance (85-98% word accuracy), though
rarely at the human level for comparable material. Then
this system is turned loose on a different corpus and the



results are typically discouraging. Years of further effort
are expended, developing a new system to handle the
current corpus of interest, until such time as the criterial
level of performance is achieved.

The wisdom of this "corpus hopping" strategy has
recently been called into question by the results of
recognition efforts focused on the Switchboard corpus.
This corpus comprises spontaneous, informal dialogs
recorded over the telephone, between individuals talking
about such topics as international politics, vacations,
dress codes at work, etc. [14]. After four years of
intensive effort the word recognition performance for
Switchboard is only ca. 60% correct, on par with ASR
performance for simpler speech corpora presented in
tandem with background interference.

But the Switchboard corpus is relatively noise and
reverberation free. What accounts for the poor ASR
performance on this corpus? And might not some of the
same factors which conspire to retard performance on the
noise-degraded corpora also contribute to the poor results
on Switchboard?

1 . 2 What is Language?
The richness and versatility of human language has

so far eluded the most inspired efforts to adequately
describe. Edward Sapir perhaps came closest when he
characterized language as analogous to an electrical
generator sufficiently powerful to run an elevator, but
most often used to power a doorbell [34]. This simple
analogy captures one of language's most important
characteristics - its potentially infinite capacity for
expression within a highly restricted domain of
abstraction.

Linguistic theory has capitalized on this insight by
building elaborate descriptive frameworks for the
articulatory-acoustic (phonetic features, phones),
phonological (phonemes), grammatical (morphemes,
syntactic elements) and semantic (lexical elements,
sememes) tiers of organizational abstraction [27]. Each
tier is typically treated as an independent level derived
from an abstraction of lower organizational levels. Words
are thus characterizable as sequences of phonemes
analogous to a lexical entry in a dictionary, while
phonemes in turn are broken down into their constituent
phonetic features and elements. By extension, meaning is
derived from a knowledge of the linear sequence of lexical
items and the grammatical operations performed on these
elements. Many years ago, Charles Hockett warned
against characterizing language as merely a sequence of
"beads on a string," given its complexity, depth and
diversity [23]. Yet his admonition has yet to exert a
significant impact on the design of ASR systems.

Current-generation ASR systems typically model a
word as a linear sequence of phones [33]. The intent is to
recognize as accurately as possible all of the phone
elements in the speech signal as a means of increasing
word recognition performance. Accurate identification of
the entire phone sequence would, in principle, assure
perfect performance at the word level as well. In practice,
the recognition of lexical elements does not require
perfect phone identification, since hidden Markov models
(HMMs) are designed, in concert with Viterbi-based
techniques, to systematically prune the array of lexical
possibilities given imperfect knowledge of the phone
constituents.

This approach works well as long as the speech
signal conforms to certain assumptions made by the
underlying models. In practice, such models have been
tuned primarily on the sort of speech characteristic of

formal speaking conditions. But the speech typical of
real-world conditions rarely conforms to such an orderly
structure. Phone segments are typically transformed or
deleted entirely in natural speech, requiring the
customization of multiple-pronunciation dictionaries to
handle the diverse set of possibilities. Predictably, there
are many instances of "unusual" phone sequences that the
dictionary is not prepared to accept.

 And yet such imperfections in the acoustic stream do
not hinder human listeners in their quest to successfully
decode the speech signal. What is different?

ASR systems focus on identification of individual
elements, be they phones, words or sentences. Humans do
not. Indeed, the best ASR systems consistently
outperform humans when the latter are restricted to
listening to these elements in isolation [10, 16]. How
can this be if ASR systems do so much more poorly on
recognizing speech within a larger context?

One of the salient properties of human language is
its capability of being represented on many
organizational tiers concurrently. Traditional linguistic
theory implicitly assumes that these tiers are largely
autonomous and rarely interact to a significant degree.
Sentences are composed of phrases which, in turn, are
composed of words, which are formed by syllables, which
are broken down into phones, which are themselves
decomposable into acoustic-articulatory features.
Although this paradigmatic approach is likely to act in
concert with syntagmatic factors governing the temporal
relations among linguistic elements, the consequences of
this complementarity have yet to be systematically
explored within the framework of ASR systems.

Such concerns become clearly manifest when human
listeners are asked to identify linguistic elements excised
from their original sentential context. Even experienced
listeners are rarely capable of identifying more than 60%
of the phonetic segments (phones) presented in isolation
[16, 42] and trained phonetic transcribers typically listen
to an entire utterance before attempting to identify the
individual phonetic constituents [18]. Listeners typically
have trouble identifying even entire words excised from
their natural context in spontaneous speech [10]. These
observations reinforce the intuition that speech can not
adequately be described as a linear sequence of phones or
words (or any other linguistic unit, for that matter).

This non-sequential property of language is clearly
observed in the reading process. The pattern of foveal
scans for experienced readers (of a romanized
orthography) is not strictly left-to-right, but rather
"dances" around elements of sentence and paragraph
length in a highly choreographed fashion [39], focusing
on specific "pivot" words around which the surrounding
lexical items assume their shape and substance. And
though the process of reading certainly differs from that
of understanding spoken language, this non-sequential
decoding process is likely to be common to both.

Current-generation ASR systems implicitly assume
that all words are equally important for the decoding
process, and that all phones figure importantly in the
extraction of lexical entities. But our everyday listening
experience calls these assumptions into question as a
model for human speech processing. Most listeners
experience difficulty repeating the specific sequence of
words recently spoken, particularly if the number of
lexical elements exceeds the limits of short-term memory
[30].

How then do human listeners extract meaning from
the speech stream, and what implications does this



process hold for the design of future-generation ASR
systems?

The precise mechanisms by which humans process
speech are, of course, largely unknown. However, a
growing body of evidence suggests that the decoding
process is governed by two different types of procedures,
neither of which has yet to be substantially incorporated
into speech-recognition-system design.

The first entails a coarse segmentation of the speech
stream, probably at the syllabic and phrasal levels.
Although segmentation at the phone and word level is
explicitly built into current-generation ASR systems,
there is little evidence to suggest that human listeners
segment on these levels, as the observations described
above so fully attest. Listeners appear far more sensitive
to syllabic [35] and phrasal [4] boundaries than to those
imposed by lexical and phonological criteria.

The second procedure involves a dynamic linkage of
the representational tiers of language enabling listeners
to effectively translate cues and features at one level of
analysis into those characteristic of another. Detailed
analysis of spontaneous speech illustrates how this is
accomplished at the phonetic level. In informal speech
many of the spectro-temporal cues (i.e., the formant
patterns) for specific phonetic segments are either
significantly transformed or altogether missing [18].
However, listeners make sense of speech because such
canonical features have either been replaced by other cues
(such as temporally appropriate amplitude modulation) or
compensated for by a broader phonetic pattern that
contains sufficient cues as to pass for a reasonable
facsimile of the intended lexico-grammatical element
[18]. Speakers appear to have an intuitive understanding
of the relationship between cues of different
representational tiers and exploit this linkage often.

This implicit knowledge of the relationship between
representational tiers is likely to be a key factor in the
listener's capability of inferring the linguistic message
from partial information. If detailed information
pertaining to the phonetic sequence is absent,
comparable information is likely to be obtained from
analysis of the syllabic and prosodic components of the
speech signal. Amplitude modulation, durational
information, and pitch contours all function to prune the
roster of likely candidates to a manageable number
sufficient for unambiguous coding, given some form of
prior semantic framework. At present, little of this
information is directly encoded into ASR systems, nor is
the linkage among the tiers explicitly retrievable.

2.  STATISTICAL PROPERTIES
    OF SPOKEN ENGLISH

The dynamic linkage among the linguistic tiers
would not be nearly so useful for decoding the speech
stream, were it not for the statistical regularities that
characterize each organizational level. These regularities
provide an interpretative framework with which to
characterize the speech signal and relate these to other
representational tiers. Although the statistical patterns
observed on any signal level are not in and of themselves
definitive, they can serve as a powerful pruning device
when combined with statistical knowledge of other
organizational levels and the mapping relations which
bind them together.

It is possible to characterize such statistical patterns
through quantitative analysis of spontaneous speech,
such as that contained within the Switchboard corpus. The
analyses presented here are intended to serve as a

representative sample and do not begin to exhaust the
range of organizational levels which exhibit statistically
regular trends.

2 . 1 Word Frequency and
Pronunciation Variability

Since the days of Dewey [9] and Zipf [45] it has been
known that words differ greatly in terms of their frequency
of occurrence in written language. French and colleagues
[13] have demonstrated a comparable pattern for spoken
discourse.

A frequency analysis of the Switchboard corpus
illustrates the magnitude of this effect. The most common
words occur much more frequently (by at least several
orders of magnitude) than the least common (Figure 1).
The frequency plot conforms approximately to a 1/f
distribution, which has several interesting implications
for linguistic decoding (Section 4). The ten most common
words account for approximately 25% of all the lexical
instances in the corpus. One hundred words account for
fully 66% of the individual tokens (Figure 2). A perusal of
these most frequently occurring words (Table 1) indicates
that most come from the so-called "closed" or "function"
class words such as pronouns, articles, conjunctions and
modal/auxiliary verbs. Most of the remainder stem from
just a few basic nominal, adjectival or verbal forms.
Clearly, mastery of these 100 most common words goes a
long way towards facilitating comprehension of spoken
discourse, a fact intuitively sensed by many non-native
speakers seeking to learn English (or any other foreign
language), but which is not directly incorporated into
most current-generation ASR systems. Clearly, the
perceptual criteria for recognizing these common words
are very different from those associated with the
infrequently occurring lexical elements.
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Figure 1.  The frequency of occurrence for the 10,000
most frequent words in the Switchboard corpus, organized
in rank order of frequency. Total number of distinct words
in the corpus is 25,923.

_________________

2 . 2 Syllable Structure and
its Relation to the Lexicon

Although such a list of common words does not
provide sufficient data to interpret the speech stream by
itself, it can be used in conjunction with other knowledge



Word N # P r .

M o s t
Common

Pronuncat ion
%

T o t
1 Ê I 6 4 9 Ê 5 3 Ê ay  53Ê
2 Ê and 5 2 1 Ê 8 7 Ê ae n  16Ê
3 Ê the 4 7 5 ÊÊ 7 6 Êdh ax  27Ê
4 Ê you 4 0 6 Ê 6 8 Ê y ix  20Ê
5 Ê that 3 2 8 Ê1 1 7 Ê dh ae  11Ê
6 Ê a 3 1 9 Ê 2 8 Ê ax  64Ê
7 Ê to 2 8 8 Ê 6 6 Ê tcl t uw  14Ê
8 Ê know 2 4 9 Ê 3 4 Ê n ow  56Ê
9 Ê of 2 4 2 Ê 4 4 Ê ax v  21Ê

1 0 Ê i t 2 4 0 Ê 4 9 Ê ih  22Ê
1 1 Ê yeah 2 0 3 Ê 4 8 Ê y ae  43Ê
1 2 Ê in 1 7 8 Ê 2 2 Ê ih n  45Ê
1 3 Ê they 1 5 2 Ê 2 8 Ê dh ey  60Ê
1 4 Ê do 1 3 1 Ê 3 0 Ê dcl d uw  54Ê
1 5 Ê so 1 3 0 Ê 1 4 Ê s ow  74Ê
1 6 Ê but 1 2 3 Ê 4 5 Ê bcl b ah tcl t  12Ê
1 7 Ê is 1 2 0 Ê 2 4 Ê ih z  50Ê
1 8 Ê like 1 1 9 Ê 1 9 Ê l ay kcl k  46Ê
1 9 Ê have 1 1 6 Ê 2 2 Ê hh ae v  54Ê
2 0 Ê was 1 1 1 Ê 2 4 Ê w ah z  23Ê
2 1 Ê we 1 0 8 Ê 1 3 Ê w iy  83Ê
2 2 Ê it's 1 0 1 Ê 1 4 Ê ih tcl s  20Ê
2 3 Ê just 1 0 1 Ê 3 4 Ê jh ix s  17Ê
2 4 Ê on 9 8 Ê 1 8 Ê aa n  49Ê
2 5 Ê or 9 4 Ê 2 3 Ê er  36Ê
2 6 Ê not 9 2 Ê 2 4 Ê m aa q  24Ê
2 7 Ê think 9 2 Ê 2 3 Ê th ih ng kcl k  32Ê
2 8 Ê for 8 7 Ê 1 9 Ê f er  46Ê
2 9 Ê well 8 4 Ê 4 9 Ê w eh l  23Ê
3 0 Ê what 8 2 Ê 4 0 Ê w ah dx  14Ê
3 1 Ê about 7 7 Ê 4 6 Ê ax bcl b aw  12Ê
3 2 Ê all 7 4 Ê 2 7 Ê ao l  24Ê
3 3 Ê that's 7 4 Ê 1 9 Ê dh eh s  16Ê
3 4 Ê oh 7 4 Ê 1 7 Ê ow  61Ê
3 5 Ê really 7 1 Ê 2 5 Ê r ih l iy  45Ê
3 6 Ê one 6 9 Ê 8 Ê w ah n  78Ê
3 7 Ê are 6 8 Ê 1 9 Ê er  42Ê
3 8 Ê right 6 1 Ê 2 1 Ê r ay  28Ê
3 9 Ê uh 6 0 Ê 1 6 Ê ah  41Ê
4 0 Ê them 6 0 Ê 1 8 Ê ax m  23Ê
4 1 Ê at 5 9 Ê 3 6 Ê ae dx  8Ê
4 2 Ê there 5 8 Ê 2 8 Ê dh eh r  22Ê
4 3 Ê my 5 8 Ê 9 Ê m ay  66Ê
4 4 Ê mean 5 6 Ê 1 0 Ê m iy n  58Ê
4 5 Ê don't 5 6 Ê 2 1 Ê dx ow  14Ê
4 6 Ê no 5 5 Ê 8 Ê n ow  77Ê
4 7 Ê with 5 5 Ê 2 0 Ê w ih th  35Ê
4 8 Ê if 5 5 Ê 1 8 Ê ih f  41Ê
4 9 Ê when 5 4 Ê 1 8 Ê w eh n  31Ê
5 0 Ê can 5 4 Ê 2 8 Ê kcl k ae n  15Ê

Word N # P r .

M o s t
Common

Pronunciat ion
%

T o t
5 1 Ê then 5 1 Ê 1 9 Ê dh eh n  38Ê
5 2 Ê be 5 0 Ê 1 1 Ê bcl b iy  76Ê
5 3 Ê as 4 9 Ê 1 6 Ê ae z  18Ê
5 4 Ê out 4 7 Ê 1 9 Ê ae dx  22Ê
5 5 Ê kind 4 7 Ê 1 7 Ê kcl k ax nx  21Ê
5 6 Ê because 4 6 Ê 3 1 Ê kcl k ax z  15Ê
5 7 Ê people 4 5 Ê 2 1 Ê pcl p iy pcl l el  44Ê
5 8 Ê go 4 5 Ê 5 Ê gcl g ow  83Ê
5 9 Ê got 4 5 Ê 3 2 Ê gcl g aa  15Ê
6 0 Ê this 4 4 Ê 1 1 Ê dh ih s  47Ê
6 1 Ê some 4 3 Ê 4 Ê s ah m  48Ê
6 2 Ê i'm 4 2 Ê 9 Ê q aa m  26Ê
6 3 Ê would 4 1 Ê 1 6 Ê w ih dcl  29Ê
6 4 Ê things 4 1 Ê 1 5 Ê th ih ng z  52Ê
6 5 Ê now 3 9 Ê 1 1 Ê n aw  69Ê
6 6 Ê lot 3 9 Ê 9 Ê l aa dx  47Ê
6 7 Ê had 3 9 Ê 1 9 Ê hh ae dcl  24Ê
6 8 Ê how 3 9 Ê 1 1 Ê hh aw  53Ê
6 9 Ê good 3 8 Ê 1 3 Ê gcl g uh dcl  27Ê
7 0 Ê get 3 8 Ê 2 0 Ê gcl g eh dx  13Ê
7 1 Ê see 3 7 Ê 6 Ê s iy  80Ê
7 2 Ê from 3 6 Ê 1 0 Ê f r ah m  28Ê
7 3 Ê he 3 6 Ê 7 Ê iy  39Ê
7 4 Ê me 3 5 Ê 5 Ê m iy  87Ê
7 5 Ê don't 3 5 Ê 2 1 Ê dx ow  14Ê
7 6 Ê their 3 3 Ê 1 9 Ê dh eh r  25Ê
7 7 Ê more 3 2 Ê 1 1 Ê m ao r  56Ê
7 8 Ê it's 3 1 Ê 1 4 Ê ih tcl s  20Ê
7 9 Ê that's 3 1 Ê 2 0 Ê dh eh s  16Ê
8 0 Ê too 3 1 Ê 6 Ê tcl t uw  60Ê
8 1 Ê okay 3 1 Ê 1 7 Ê ow kcl k ey  45Ê
8 2 Ê very 3 0 Ê 1 1 Ê v eh r iy  36Ê
8 3 Ê up 3 0 Ê 1 1 Ê ah pcl p  34Ê
8 4 Ê been 3 0 Ê 1 1 Ê bcl b ih n  51Ê
8 5 Ê guess 2 9 Ê 8 Ê gcl g eh s  42Ê
8 6 Ê time 2 9 Ê 8 Ê tcl t ay m  62Ê
8 7 Ê going 2 9 Ê 2 1 Ê gcl g ow ih ng  13Ê
8 8 Ê into 2 8 Ê 2 0 Ê ih n tcl t uw  14Ê
8 9 Ê those 2 7 Ê 1 2 Ê dh ow z  42Ê
9 0 Ê here 2 7 Ê 1 1 Ê hh iy er  25Ê
9 1 Ê did 2 7 Ê 1 3 Ê dcl d ih dx  23Ê
9 2 Ê work 2 5 Ê 8 Ê w er kcl k  66Ê
9 3 Ê other 2 5 Ê 1 4 Ê ah dh er  26Ê
9 4 Ê an 2 5 Ê 1 2 Ê ax n  28Ê
9 5 Ê I've 2 5 Ê 7 Ê ay v  46Ê
9 6 Ê thing 2 4 Ê 9 Ê th ih ng  52Ê
9 7 Ê even 2 4 Ê 7 Ê iy v ix n  40Ê
9 8 Ê our 2 3 Ê 9 Ê aa r  33Ê
9 9 Ê any 2 3 Ê 1 1 Ê ix n iy  23Ê

1 0 0 Ê I'm 2 3 Ê 9 Ê q aa m  26Ê

Table 1.  Pronunciation variability for the 100 most common words in the Switchboard Transcription Corpus. "N" is the
number of instances each word appears in the 72-minute corpus. "#Pr." is the number of distinct phonetic expressions for
each word. "%Tot" is the percentage of the total number of pronunciations accounted for by the single most common
variant. The phonetic representation is derived from the Arpabet orthography. Further details concerning both the
pronunciation data and the transcription orthography may be found in [18].



sources to considerably reduce the uncertainty. One way
in which this is potentially achieved is to characterize
these most common words in terms of other
representational units, such as the syllable.

The 30 most common words in the Switchboard
corpus are monosyllabic, and of the 100 most frequent
lexical items only ten are not (and all of these are
disyllabic). This lexical preference for syllabic brevity is
consistent with Zipf's law (originally formulated in terms
of word length based on the orthographic sequence of
characters) and has potentially important implications
for decoding the speech signal.

_________________
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Figure 2. Cumulative frequency of occurrence as a
function of word frequency rank for the 10,000 most
frequent lexical items in the Switchboard corpus.

_________________

In spontaneous English discourse there is a decided
preference for words of a single syllable. Although only
22% of the Switchboard lexicon is composed of
monosyllabic forms, fully 81% of the corpus tokens are
just one syllable in length (Table 2). This statistical skew
towards short syllabic forms provides yet another
interpretative constraint on the decoding of the speech
stream.

_________________

#SyllablesÊ  Usage (%) Lexicon (%)

1 Ê Ê 81.04ÊÊÊ 22.39ÊÊÊ

2 Ê Ê 14.30ÊÊÊ 39.76ÊÊÊ

3 Ê Ê 3 . 5 0 Ê Ê Ê 24.26ÊÊÊ

4 Ê Ê 0 . 9 6 Ê Ê Ê 9 . 9 1 Ê Ê Ê

5 Ê Ê 0 . 1 8 Ê Ê Ê 3 . 2 1 Ê Ê Ê

6 Ê Ê 0 . 0 2 Ê Ê Ê 0 . 4 0 Ê Ê Ê

Table 2. The proportion of words consisting of n-
syllables for the entire Switchboard corpus (i.e., tokens)
and lexicon (i.e., type). Comparable data from a
telephone dialog corpus study performed in the 1920's
[13] shows a virtually identical frequency pattern as a
function of syllabic length for lexical items.

Knowing the number of syllables in a word also
provides some degree of grammatical information. This is
a consequence of the tendency for polysyllabic words
(particularly those containing three or more syllables) to
be either a noun (66% of the time) or adjective (15%). In
contrast, verbs are rarely longer than two syllables in
length. Speakers of English appear to be well aware of
such statistical regularities and use syllable count as an
effective strategy for pruning grammatical class
candidates [5]. Impairment of the ability to accurately
count syllabic units is one of the consequences of
information degradation in the auditory frequency
channels above 3 kHz [15] and it is therefore not
surprising that individuals with a sensorineural hearing
loss (which generally affects these high-frequency
channels most severely) exhibit particular difficulty in
understanding speech in noisy and reverberant
environments where such knowledge would prove
especially useful for pruning lexical candidates.

The syllable has often been dismissed in linguistic
circles as a viable candidate for decoding of spoken
English [7] (and Dutch [43]) due to its heterogeneous
phonological structure. Statistical analysis of the
Switchboard corpus demonstrates, however, that the
syllabic composition of spontaneous English is
generally much closer to the relatively transparent
structure characteristic of so-called syllable-timed
languages than would otherwise be imagined. In contrast
to languages such as Japanese, where the syllable
generally assumes only one of a few potential
phonological forms (such as consonant+vowel [CV],
vowel [V] or consonanant+vowel+consonant [CVC]),
English syllables can assume a wide range of patterns due
to the occurrence of consonant clusters (e.g., "strengths"
= CCCVCCC). According to this logic, the heterogeneity
of syllabic forms makes it difficult for accurate
syllabification to proceed in real time.

However, the syllable structure of English is far more
homogeneous than one would initially imagine. Over
83% of the corpus syllables are of CV, CVC, VC or V
form (Table 3). This is the case whether the statistics are
based on the canonical phonological representation
("Corpus") or on the phonetic realization ("Phn. Tr.").
The primary distinction between the two concerns the
tendency for CVC phonological forms to reduce to CV
structure in spoken discourse (as indexed by the reciprocal
relation between the frequency of occurrence for CVC and
CV syllables). The remaining, more complex syllabic
forms constitute only a small proportion of the corpus
tokens. This relatively predictable syllabic structure
(nearly half of the syllables in spoken discourse are of the
CV form) is likely to facilitate the process of syllabic
segmentation and to aid in the identification of the
constituent phones (since one has a priori knowledge
concerning both the number and gross class of the
phonetic segments). Deviations from the canonical
syllable patterns also provide important information
since these tend to be nouns or adjectives of relatively
infrequent occurrence.

In spontaneous, informal speech the phonetic
realization often differs markedly from the canonical
phonological form. Entire phone elements are frequently
dropped ("deletions") or transformed into other phonetic
segments ("substitutions"). At first glance the patterns of
deletions and substitutions appear rather complex and
somewhat arbitrary when analyzed on the phonological
level. Current-generation ASR systems attempt to handle
such phonetic variation through multiple-pronunciation
dictionaries that include the most common forms.



However, this strategy is unable to capture the entire
range of variability, which is often quite broad. It is not
uncommon for frequently occurring words to be
phonetically realized in dozens of different ways, with the
most popular variant often accounting for only 10-15%
of the forms (Table 1). However, the patterns of phonetic
variation are relatively straightforward to describe within
a syllabic framework. The syllable can be divided into
three components, the onset, nucleus and coda. For
example, the word "cat" can be represented phonetically
as three segments [k] [ae] [t], each of which is identified
with one of these components. The onset, [k], is
typically the most well-preserved portion of the syllable,
while the coda [t] is most likely to delete in fluent
discourse and the nucleus is most prone to substitution
(e.g., [ae] > [I] or [e]). In fast, running speech the syllable
can reduce to just the onset (as in "t'day" for "today").
Syllables beginning with vocalic segments (i.e., where
the onset and nucleus are one and the same) often convert
into a CV(C) form if the preceding syllable contains a
consonant coda (e.g., "four" [f ao r] + "eight" [ey t] > [f
aor] [r ey t]). This "resyllabification" is quite common
when contiguous syllables are phonologically of the
(C)VC + V(C) form and the syllables belong to the same
phrasal unit [18]. At present, most ASR systems do not
explicitly model such trans-syllabic phenomena, nor do
they explicitly encode lexical information into atomic
elements of the syllable, despite the relatively systematic
behavior they engender in spontaneous discourse.

_________________

Syllable Type Lexicon(%) Corpus(%) Phn. Tr(%)

CV 36.2ÊÊ 34.0ÊÊ 47.2ÊÊ

CVC 28.8ÊÊ 31.6ÊÊ 22.1ÊÊ

VC 5 . 3 Ê Ê 11.7ÊÊ 4 . 8 Ê Ê

V 4 . 8 Ê Ê 6 . 3 Ê Ê 11.2ÊÊ

Subtotal 75.1ÊÊ 83.6ÊÊ 85.3ÊÊ

"Complex"

CVCC 7 . 3 Ê Ê 6 . 3 Ê Ê 2 . 9 Ê Ê

VCC 0 . 5 Ê Ê 4 . 3 Ê Ê 0 . 5 Ê Ê

CCV 7 . 4 Ê Ê 2 . 6 Ê Ê 5 . 1 Ê Ê

CCVC 5 . 0 Ê Ê 2 . 2 Ê Ê 2 . 5 Ê Ê

CCVCC 2 . 2 Ê Ê 0 . 6 Ê Ê 0 . 4 Ê Ê

CVCCC 1 . 0 Ê Ê 0 . 4 Ê Ê 0 . 2 Ê Ê

CCCVC 0 . 5 Ê Ê <0.1ÊÊ 0 . 1 Ê Ê

CCCV 0 . 4 Ê Ê <0.1ÊÊ 0 . 3 Ê Ê

CCVCCC 0 . 3 Ê Ê < 0.1ÊÊ < 0.1ÊÊ

CCCVCC 0 . 2 Ê Ê < 0.1ÊÊ < 0.1ÊÊ

VCCC < 0.1ÊÊ < 0.1ÊÊ < 0.1ÊÊ

CCCVCCC < 0.1ÊÊ < 0.1ÊÊ < 0.1ÊÊ

Table 3. The  relative frequency of occurrence for
various forms of syllable structure in both the lexicon and
in the actual usage for the entire Switchboard corpus.
These data are derived from canonical pronunciations of
dictionary sources, and are compared with the syllable
structure for actual pronunciation derived from phonetic
transcription (Phn. Tr.).

2.3  Syllable Frequency

Another common objection to the syllable as an
organizational unit in English is the large number of
potential entries in the language's repertoire (over 8000
distinct syllables according to one authoritative account
[32]). Within the Switchboard corpus alone there are
nearly 5000 syllabic forms (in terms of their
phonological representation). However, the distribution
of these syllables is far from uniform, either in the
lexicon as a whole, or in terms of their frequency of
occurrence (Figure 3). Approximately 63% of the corpus
is accounted for by just 100 syllables. An additional 170
syllables is required to cover 80% of the syllable
occurrences in the Switchboard corpus (Figure 3),
suggesting that it may indeed be feasible for both humans
and machines to encode English in terms of syllabic
units.

The "Corpus" statistics pertain to actual instances of
occurrence, while the "Lexicon" statistics refer to
syllable frequency within the dictionary, independent of
their frequency of occurrence.

A comparison of the cumulative frequencies for
syllabic and lexical elements in the Switchboard corpus
(Figure 4) indicates the essential similarity of the
distributions for the 1000 most common words.

3.  SEGMENTATION OF THE SYLLABLE

Anyone who has attempted to partition the speech
stream into phone-level elements is aware of how difficult
a task this is to perform. It requires an intimate
knowledge of acoustic and articulatory phonetics as well
as a large expenditure of time. Syllables are considerably
easier to segment. In contrast to phone elements there is
typically a convergence of waveform, spectrographic and
audio cues upon which to rely, resulting in relatively
seamless segmentation. This coherence of physical cues
provides a basis for the syllable to function as a
fundamental grouping element for speech, reflecting the
acoustic realization of the articulatory gesture.

Given the potential utility of syllabic information,
how practical is it to segment the speech signal into such
units automatically? Shire [44] has shown that it is
possible to accurately determine the syllabic onsets about
85-90% of the time, using relatively simple signal
processing techniques that look for patterns of energy
over contiguous spectral channels. And Kingsbury [20]
has shown that a representation of the speech signal
based on relatively long time windows of 250 ms is
especially sensitive to syllabic units.

3 . 1 Syllable-length Analysis Required
For Representational Stability

The conventional window for spectral analysis is ca.
20-30 ms, an interval corresponding roughly to the time
constant of the auditory periphery [17]. Although it is
currently fashionable to model the auditory response to
speech and other complex signals with such a short time
constant [6, 37] there are many reasons to believe that
human listening performance also requires an analysis at
considerably longer time constants to account for the
perceptual stability characteristic of auditory experience.

The average length of a syllable in English discourse
(as represented by the Switchboard corpus) is ca. 190 ms.
Half of the syllables have durations greater than 167 ms.
Twenty percent are longer than 260 ms, while anther 20
percent are shorter than 107 ms [19], as illustrated in
Figure 5. This heterogeneity reflects a combination of
factors, including differential speaking rate, linguistic
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entire Switchboard corpus as a function of syllable
frequency rank. The "Corpus" statistics pertain to actual
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pertain to syllable frequency within the dictionary,
independent of their frequency of occurrence.
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Figure 4.  The cumulative frequency of syllables in the
entire Switchboard corpus as a function of syllable
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_________________
stress (which tends to lengthen syllables) and the
differential number of phonetic constituents (as described
in Section 2.2 and in Table 3). The variability in syllable
duration is reflected in the long-term modulation spectrum
which shows a peak at ca. 4 Hz (Figure 5), but which also
contains significant energy between 2 and 8 Hz. ÊThis is

_________________
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Figure 5. Frequency histogram for 2925 syllables from
a portion of the Switchboard corpus (upper illustration).
The modulation spectrum for two minutes of spoken
discourse from a single speaker is shown in the lower
illustration. Reprinted from [19].

the modulation spectral range over which information
germane to phonetic and lexical identity is contained [24]
and whose modification significantly degrades speech
intelligibility (Dutch [11], English [16] and Japanese
[2]). It is also the frequency range over which the speech
articulators move [38].

It is possible to capture this syllabic information in
terms of a representation known as the modulation
spectrogram [20, 25]. This representation decomposes
the speech signal into 1/4 octave channels and extracts
the magnitude of energy in the low-modulation-frequency
range, using a filter whose shape is similar to the long-
term temporal modulation characteristics of running
speech (Figure 6). The representation exhibits a high
degree of stability in both noisy and reverberant
environments ([20], for a color representation, see
http://www..icsi.berkeley.edu/~bedk/ICASSP97_fig2_color.gif).
Recognition performance using this representational
format results in a significant reduction in the word error
rate for moderately reverberated speech, in comparison to
the more conventional representations based on static
spectral features (Table 4).

_________________

Representation Clean(%) Reverberant(%)

P L P Ê Ê 8 . 5 Ê Ê Ê Ê 4 2 . 6 Ê Ê Ê Ê

ModSpecÊÊ 1 0 . 2 Ê Ê Ê Ê 2 9 . 3 Ê Ê Ê Ê

Table 4.  Recognition results from the OGI Numbers95
corpus. The PLP recognizer uses 8th-order PLP and delta
PLP features, without energy, and an MLP with 512
hidden units. The modulation spectrogram based
recognizer uses cube-root compressed modulation
spectrographic features, with the real and imaginary
filters separated, no per-channel normalization and no
thresholding, and an MLP with 328 hidden units. The
reverberation condition, T60, is 0.5 s, with a direct-to-
reverberant energy ratio of 0 dB.



4. SPEECH UNDERSTANDING THROUGH
CORRELATIVE DEDUCTION

Despite the impressive reduction in error rate effected
by such signal processing techniques as the modulation
spectrogram, it is unlikely that such methods, alone, can
yield the sort of fault-tolerant performance typical of
human listeners. This limitation is largely a consequence
of current-generation ASR systems' focus on deriving
word elements from the acoustic stream, based on the
dubious assumption that such lexical items are easily
modeled as a linear sequence of phones.

A more principled approach to automatic speech
recognition is required, one that draws inspiration from
strategies used by human listeners to successfully decode
the speech signal under real-world conditions, and which
de-emphasizes the extraction of rigidly defined elements
(such as words and phones) which often bear but a
tangential relationship to the information transmitted
during the course of human discourse. Speakers possess
keen intuitions concerning the information valence of
their speech and sculpt their pronunciation and timing in
anticipation of their interlocutor's decoding requirements.
Thus, vocal effort increases under severely noisy
conditions (the so-called "Lombard" effect [22,26]), and
both the precision and temporal properties of the
utterance will vary according to the emphasis the speaker
believes is required for the listener to accurately decode
the intended message. Linguistic stress, syllabic
reduction, lexical selection all reflect such
informationally guided processes in the normal conduct
of vocal communication. At present, ASR systems do not
explicitly model these effects, and are thus consigned to
modeling each novel environmental and communication
condition largely from scratch.

One of the hallmarks of human discourse is its
flexible format and expression. There are many different
ways to pronounce common words (Table 1) and embed
these within a grammatical framework that is itself rather
fluidly defined. Despite such variability in linguistic
expression, listeners readily interpret the speech stream.
How can this be so?

Despite the seemingly infinite capacity for novelty
in linguistic discourse, most of the words expressed
derive from an extremely restricted lexical pool (Figure
2). This tendency towards predictability provides a
relatively stable statistical framework with which to
interpret the high-information-content words.

Operating in tandem with this low entropic
background are a variety of prosodic cues based on such
physical quantities as the fundamental frequency contour,
amplitude fluctuations and segmental duration, as well as
a range of grammatical constraints (such as word order and
morphological markings), all of which serve to reduce the
degree of interpretive uncertainty. This mixture of high
and low entropic elements within the linguistic stream
may be likened to the use of impurities to control the
electron flow within a semiconductor-based circuit.

Time functions as a crucial parameter in this
constraint-based decoding process, providing a
infrastructure within which to embed and interpret the
abstracted features derived from the speech signal.
Statistically based knowledge of the durational properties
of syllabic and phonetic segments, as well as of lexical
and phrasal constituents, all serve to facilitate the
parsing of the speech stream and to bind features derived
from heterogeneous levels of abstraction into coherent
informational units. This interpretative adaptability is
likely to underlie the ability of human listeners to
successfully decode speech derived from minimal spectral
cues [36].

The temporal binding process appears to operate on
a time constant of 40-250 ms at the most basic level of
speech analysis. Listeners are capable of tolerating
random temporal shifts in spectrally partitioned (e.g.,
quarter-octave channels) speech, as long as these shifts
occur over less than ca. 120 ms [16]. And the visual
speech signal can be desynchronized from the acoustic
stream by as much as 250 ms without significant
degradation of the intelligibility derived from combining
these two distinct sources of linguistic information [29].

_________________________________________
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This relative tolerance of temporal asynchrony provides
an important foundation for the seamless, transparent
nature of speech decoding under all but the most highly
reverberant conditions. Figure 7 schematically illustrates
the nature and relation of the variety of temporal analyses
germane to speech processing that are likely to
characterize the human listener's search for meaning when
engaged in spontaneous discourse.

The actual process of speech decoding is likely to
involve dozens, if not hundreds of parametric analyses,
all proceeding in parallel. The extraction of information
and its interpretative framework can be likened to a
process of "hyper-triangulation" in an n-dimensional
space through time, where n is likely to exceed 50. None
of these dimensions is encoded with sufficient precision
to provide a comprehensive, robust representation of the
linguistic information contained within the speech
signal. The process of speech understanding involves,
rather, a complex process of deduction, whereby patterns
of convergence across some proportion of these
dimensional analyses provides the interpretative
specificity and precision absent from any single
representational tier.

Current-generation ASR systems focus on
delineation of just a few of the linguistically relevant
tiers (typically, sequences of phones and words, and their
co-occurrence behavior). Such a limited number of
representational tiers has proven sufficient to
successfully decode speech under highly artificial and
constrained communication environments, but is
unlikely to yield the sort of quantal improvements
required to recognize speech under the sorts of
environmental and speaking conditions that characterize
the majority of linguistic interactions among humans. In
order to achieve truly robust, flexible speech recognition,
a new paradigm is required, one that focuses on extraction
of linguistic information  derived from coarse
specification of many representational dimensions rather
than on the mere recognition of lexical elements derived
from sequences of phones. However, an information-
based  approach will necessarily transcend current
recognition strategies, and in so doing, bring us a step
closer towards true speech understanding.
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