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ABSTRACT

The possible set of pronunciations in continuous speech
corpora change dynamically with many factors. Two vari-
ables, speaking rate and word predictability, seemed to be
promising candidates for integration into dynamic ASR pro-
nunciation models; however, our initial efforts to incorpo-
rate these factors into phone-level decision tree models met
with limited success. In this paper, we confirm the intuition
that these factors have an effect on ASR systems, and ana-
lyze the relationship between these factors and pronuncia-
tions in order to shed light on why the decision trees models
failed. We present a statistical exploration of the effects of
these factors at the word, syllable, and phone level in the
Switchboard corpus. We show that both increased speak-
ing rate and word likelihood can induce a significant shift in
probabilities of the pronunciations of frequent words. Us-
ing these data, we hypothesize reasons for the difficulty in
incorporating these dynamic measures into phone-level de-
cision trees.

1. INTRODUCTION

One of the foremost issues in pronunciation modeling for
ASR is how to increase the coverage of pronunciations
without increasing acoustic confusability. We argue that
a model of word pronunciations should be dynamic; the
changes in ASR models should be influenced by contex-
tual factors that determine a probability distribution over
pronunciations. The need to constrain the number of pro-
nunciation alternatives was shown in a diagnostic study [1]
where Switchboard lattices (baseline: 46% word error) were
rescored with a dictionary which was augmented on a per-
utterance basis with the “correct” pronunciations in the
utterance (as determined by phone constraint decoding),
reducing word error to 26%. However, when the dictionary
was augmented with the “correct” pronunciations for all of
the test set, the word error rate degraded to 38%; in other
words, the benefit of having the correct pronunciation was
often offset by the presence of unnecessary competing pro-
nunciations. This showed the importance of dynamically
selecting appropriate pronunciations.

We have appealed to linguistic studies to find conditions
under which one should dynamically change the selection
of pronunciations available to the recognizer. For instance,
linguists have recognized that word frequency affects the
perception and production of phones; speech researchers
have used the concept of function words as an approxima-
tion to this factor, although we argue that this binary deci-
sion should be smoothed. Unusually slow or fast speaking
rate has also been shown to have an adverse effect on rec-

ognizers, and linguists have also found that rate of speech
variations can affect phone perception and production.

1.1. Integration into pronunciation model

We have been using decision-tree pronunciation models de-
rived from work at the 1996 Johns Hopkins LVCSR Summer
Research Workshop [2, 3]. These decision trees determine
mappings from baseform phonemes to realized phones us-
ing information-theoretic clustering of surrounding phone-
mic contexts, similar to [4, 5].

Our goal was to place variables corresponding to speak-
ing rate and word predictability directly into the pronun-
ciation model as a feature for determining splits in the de-
cision tree growing process. Therefore, we marked every
baseform/realized phone pair with the following candidate
features:

Unigram probability
The probability of the word in which the phone occurs,
determined from frequency counts of the word in the
reference transcription of the corpus.

Trigram probability
The probability of the word dependent on the previous
two words.

Transcribed syllable rate
The interpausal rate determined from hand transcrip-
tions. For interactive systems, this particular measure
is not determinable at recognition time. As speaking
rate estimators can sometimes be unreliable, however,
we wanted to see what the best-case scenario might be.

Mrate
A signal-processing speaking rate measure that we have
been developing at ICSI [6]. We defer description of
this measure and its relationship to our studies until
section 4.

Since we were still developing our baseline Switchboard
ASR system, we decided to train and test the decision trees
on the portion of the Switchboard corpus that was hand
transcribed by linguists at ICSI [7]. However, we found
that the trees on the whole failed to use our new factors as
splitting criteria. This was surprising, particularly as other
researchers have found that an earlier measure of ours called
enrate (which did not correlate as well with transcribed rate
as our current version of mrate) was a useful feature in de-
termining a “hidden mode,” which they then used to deter-
mine pronunciation probabilities (see [8] for details).

Thus, we decided to check our assumptions, and conduct
an investigation of the relationship between the above fac-
tors and pronunciation errors. We set out to answer the
following questions:

o What is the effect of non-canonical pronunciations on

recognizer performance for the Switchboard corpus?



e Do the factors we have chosen (speaking rate and
word predictability) have an effect on recognizer per-
formance for Switchboard?

e Taking these static and dynamic factors into account,
can we find systematic trends in pronunciations? If
so, why do they not fit into the phone decision tree
paradigm?

1.2. Materials

The Switchboard data used are approximately four hours
of phonetically hand transcribed utterances with syllable
boundary markers, provided by ICSI for the Johns Hop-
kins Summer Research Workshop series [7]. We generated
a mapping from syllabified Pronlex dictionary baseforms
to these hand transcriptions using a dynamic programming
technique which uses phonetic features to calculate a dis-
tance metric between phones, as in [2]. In the cases where
multiple pronunciations existed in the dictionary,! the clos-
est baseform (in terms of the distance metric) to the real-
ization was used. Pronunciation maps were generated for
every baseform word, syllable and phone.

We also used the syllabic boundaries marked in the hand
transcriptions to calculate the interpausal syllabic rate, and
calculated the mrate for the same region. Using the word-
level transcriptions, we also computed the unigram and tri-
gram probability of each word, using a back-off grammar
trained from Switchboard data.

We also used the 1996 JHU workshop HTK recognizer
trained with the same Pronlex dictionary (hereafter referred
to as the WS96 recognizer) to provide recognition hypothe-
ses for error analysis. While analyzing only one recognizer
can certainly highlight the idiosyncrasies of that system, the
speech community has seen previously [9, 10] that speaking
rate affected the output of all WSJ systems in a 1993 evalu-
ation, so we have hope that these studies may be applicable
to more than just the WS96 system.

1.3. Error metrics

One of the difficulties we encountered when embarking upon
this study was finding a good way to characterize the behav-
ior of pronunciations as a function of the factors we would
like to study. We have experimented with a number of met-
rics; each has some advantages and disadvantages.

Probability of a single pronunciation
We track the probability of canonical (dictionary) pro-
nunciations, which is particularly useful when estimat-
ing how well the pronunciations given to the baseline
recognizer match the transcribed data. In later ex-
periments, we also track the behavior of the single
most likely pronunciation, under the assumption that
a system which performs automatic baseform learning
would also have that pronunciation in its dictionary.
Unfortunately, analysis becomes complex when track-
ing more than just a few pronunciations.
Entropy

This is a traditional measure for pronunciation learn-
ing systems [5], and is a good measure of the spread of
pronunciations in a training set. It becomes unwieldy,
however, if one tries to use it to predict how well mod-
els will perform on a particular test set (i.e. relative
entropy), as pronunciation models are typically pruned
to some cutoff (assigning zero probability to some test
events), which causes relative entropy to approach in-
finity.

1The average number of pronunciations per word was 1.07.

Phonetic distance score

We also developed a metric which was smoother than
the hard binary decision of whether a pronunciation
was canonical or not by using the phonetic feature dis-
tance between the two pronunciations as utilized in the
dynamic programming technique described above. We
interpret this distance as a measure of how far the pro-
nunciation has deviated from expected. This procedure
can also be extended to give a smoothed score using a
particular pronunciation model; the distance between
each baseform pronunciation in the model and the tar-
get phone sequence is weighted by the probability of the
baseform pronunciation. It is difficult, however, to give
a statistical or information-theoretic interpretation to
this metric.

2. RECOGNIZER ERROR ANALYSES

2.1. Previous work

As one moves to spontaneous speech corpora, such as
Switchboard, the variability in word pronunciations in-
creases. An immediate observation is that typical conversa-
tional speech is faster than typical read speech. The differ-
ences between these two speaking modes are more complex,
however. Bernstein et al. [11] show that pronunciations
in spontaneous speech are different from fast read speech.
Although the number of words per second in spontaneous
speech is similar to fast reading for most speakers, the num-
ber of phones per second for spontaneous speech is more like
that for normal reading. This suggests that speakers tend
to delete phones rather than reduce durations during spon-
taneous speech— many pronunciation variations and a high
phone deletion rate can be expected.

As we have reported previously [3], in an initial study at
WS96 we attempted to characterize this variability for the
Switchboard corpus. A comparison of the phonetic tran-
scription of the development test set with citation-form pro-
nunciations of the transcribed words revealed that 12.5% of
the phonemes in the “standard” pronunciation are deleted;
substitutions and insertions of phones also changed pronun-
ciations so that only 67% of the phones in the pronuncia-
tions obtained from the dictionary were identified as correct
by the hand transcriptions.

2.2. Pronunciation models as a cause of error

In an elaboration of this study, we have tried to character-
ize the effects of these phone-level statistics on word-level
pronunciations. We found that while 67% of phones re-
tained “canonical” form in spontaneous speech, only 33%
of word pronunciations found in the Switchboard develop-
ment test set (using ICSI hand transcriptions) were found
in the Pronlex dictionary. Thus, the phone transformations
we have observed are not concentrated in a few words, but
rather are spread throughout the corpus.

What remains to be shown is that these pronunciation
errors have an effect on our recognizers. Intuitively, one
would believe that recognizers would fail miserably if 67%
of word pronunciations are not in the dictionary. How-
ever, recognizers are not necessarily learning the linguis-
tic ideas with which they are being seeded— for instance,
the distributions of acoustic models may be less sharp to
compensate for the pronunciation deviance. We analyzed
the errors made by the WS96 H'TK recognizer, comparing
recognizer results in conditions where linguists determined
that pronunciations were canonical versus conditions where
alternative pronunciations were used by the speaker.
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Figure 1. Accuracy of WS96 Switchboard recognizer dependent on several factors. In these graphs, the solid
line indicates the overall accuracy trend as each factor changes. The size of the dots indicate the proportion
of data found in that particular histogram bin. The dashed and dot-dashed lines indicate recognizer scores
when the hand transcription of the word did or didn’t match the recognizer pronunciation, respectively.
The dotted line indicates the percentage of words that had canonical pronunciations for that histogram bin.

For this study, we examined 439 sentences from the
Switchboard development test set which were also phonet-
ically transcribed. Each word in the test set transcriptions
was annotated with whether it was correctly recognized,
substituted, or deleted, and whether the transcribers ob-
served a canonical or alternative pronunciation, as defined
by the Pronlex dictionary (i.e. the recognizer lexicon). Rec-
ognizer insertions were disregarded; although pronuncia-
tions certainly have an effect on insertions, it is difficult
to mark them as canonical or alternative pronunciations
compared to the hand transcriptions, as the speakers did
not actually utter the inserted words.

| | Overall | Canon. Pron. [ Alt. Pron. |

% correct 57.4 65.0 53.9

% deleted 12.0 8.1 13.9

% substituted 30.5 26.1 32.2
| # of words [ 4085 | 1337 | 2748 |
Table 1. Breakdown of word substitutions and

deletions with WS96 Switchboard Recognizer for
Canonical and Alternative Pronunciations.

There is a significant improvement in recognizer perfor-
mance when the linguists’ transcription matches the dictio-
nary pronunciation (Table 1). There is a large (70% rela-
tive) increase in the recognizer word deletion rate for words
with alternative pronunciations, as well as a significant in-
crease in recognizer substitutions.

It is difficult to separate the effects of different factors on
word error rates; for instance, a mispronounced word can
result in a substitution, causing a language model error for
the following word. However, these numbers suggest that
there is a real effect of pronunciations on word error. The
numbers also show that solving “the pronunciation prob-
lem” will not necessarily solve the speech recognition prob-
lem, but will contribute towards reducing error rates.

2.3. Relationships between static and dynamic
factors and recognizer error

Although we have seen that there is an effect of the pro-
nunciation model on recognizer errors, it is not clear what
the relationship is between recognizer errors and speaking
rate, unigram probability, and trigram probability. Thus,
we labeled every word in the above dev-test set with the

transcribed syllable rate, unigram probability, and trigram
probability of the word. We then partitioned the words into
histogram bins, and determined the recognizer accuracy for
each bin, as seen in Figure 1. Included on each graph is the
percentage of words which had canonical pronunciations,
and scores for words with or without canonical pronuncia-
tions, as marked by the transcribers.

In Figure la, we see that there is a 14% drop in recog-
nizer accuracy as the speaking rate moves from very slow
to very fast speech. This is due mainly to the poorer per-
formance on words pronounced non-canonically, of which
there are more in fast-speech conditions. Note that for this
test set, the number of fast utterances is non-trivial (35%
of the data); thus, there is a real and significant effect from
fast speech for this set. One additional note: as in Sec-
tion 2.2., these graphs do not include insertions. Since rate
is calculated over an interpausal region, we can calculate
insertion rates for each speaking rate, however. Insertions,
as expected, do decrease from 7.7% to 2.3% as the speak-
ing rate increases; when these are taken into account in the
word error rate, the difference in errors between slow and
fast speech is still roughly 9%.

In the case of language model probabilities (Fig-
ures 1b and 1c), we do see that recognizer performance
improves as words become more likely. This is not surpris-
ing, as language models in the recognizer tend to favor more
likely words during recognition. As one would expect in this
case, the trigram graph has a larger spread (from 30% to
69%) than the unigram (31% to 61%), as the recognizer
(which utilizes a bigram grammar) takes into account more
information than unigram probabilities. What is interest-
ing here is that, even though the recognition rate increases
as words become more likely, the percentage of words with
canonical pronunciations decreases.> For higher probability
words (e.g. log(trigram)>-3), there is a gap in performance
for canonical versus non-canonical pronunciations. On the
other hand, for low probability words the language model in
the recognizer dominates the error, and it does not matter
as much whether the pronunciation was canonical or not.

21t is unclear why the probability of canonical pronunciations
drops for low probability words. These words do tend to be
longer on average, so a priori there is an increased chance of a
single phone changing in a word. This class makes up 5% of the
words in the test set.



Therefore, it seems that there is a relationship between lan-
guage model probabilities and pronunciations, although one
has to be careful to tease the effects apart from the influence
of the language model itself in the recognizer.

3. RELATIONSHIPS BETWEEN FACTORS
AND PRONUNCIATION ERRORS

We have shown above that there exist correlations between
recognition errors and pronunciation errors, as well as recog-
nition errors and the factors of speaking rate and word pre-
dictability. In the next few studies, we attempt to under-
stand more directly the correlation between pronunciations
and these factors. We begin with some word and phone-
level studies, although for the amount of data we had, the
most significant findings are at the syllabic level. Data from
these studies provide us with some hypotheses about our
decision tree problem.

3.1. Word-level experiments

In a pilot experiment, we extracted the word-pronunciation
pairs for the 117 most frequent words from a 2-hour subset
of the transcriptions. For each word, we divided the pronun-
ciation population in half based on speaking rate and com-
pared the probability of both the most likely transcribed
pronunciation and canonical pronunciation (as given in the
Pronlex dictionary) between partitions. A sample output
of the comparison for “been” is shown in Table 2.

[ Pronunciation | Low Syllable Rate | High Syllable Rate |

0.6087 bih n 0.3636 bih n
0.3913 others 0.6364 others

Canonical
Alternative

Table 2. Distribution of the pronunciation proba-
bilities for 45 realizations of the word “been.”

We also partitioned the data based on trigram scores.
We found that there was a significant (p<0.05) shift in the
probability of the canonical pronunciation for 30% of the
words due to rate differences; for trigram probabilities, 18%
of words had a significant shift. Similar results were seen
with the most likely pronunciations.

3.2. Phone-level experiments

In the word-level study, we had few words with enough data
for statistical analysis. Therefore, we examined how dictio-
nary phonemes are realized as phones in the hand tran-
scriptions. For each dictionary phoneme, we extracted the
corresponding hand transcribed phones, along with the ap-
plicable speaking rate. We then observed the overall trends
for all of the phones.

As seen in Figure 2, we found that from very slow to
very fast speech, the phoneme deletion rate rises from 9.3%
to 13.6%; the phone substitution rate also changes signifi-
cantly (p<0.05), rising from 16.9% to 24.2%. We also found
that as speaking rate increases, the entropy of the distribu-
tion of pronunciations also increases.

In the next step of this study, we wanted to examine the
effects of rate for each phone. However, we discovered that
this was a futile effort if we did not take into account the
phonetic context of the phoneme; since we had difficulty
building decision trees that incorporated context, stress,
and rate, we decided to work with larger linguistic units.

3.3. Syllable-level experiments

As a middle ground between the word level and phone level,
we decided to examine pronunciations on the syllable level.
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Figure 2. Phone-level statistics for effects of speak-
ing rate on pronunciations.

Average per-syllable phonetic distance vs. transcribed syllable rate and unigram probability

Dist(baseform transcription) per syllable

Transcribed syllable rate
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Figure 3. Average syllable distance from baseform
as a function of speaking rate and unigram proba-
bility. For low unigram probability and very high
or low speaking rates, the number of samples is low;
the peaks in the graph for these extremes are prob-
ably statistical noise.

This allowed us to cluster some of the data from the word-
level experiments, but also gave us more context than on the
phone level. In addition, it has been suggested that pronun-
ciation phenomena are more often affected by syllabically
internal rather than external context [12].

As can be seen from Figure 3, there is a connection be-
tween unigram probability, speaking rate, and the average
distance for each syllable from the Pronlex baseforms: in
less frequent words there is some increase in mean distance
as rate increases, but for syllables occurring in more fre-
quent words, the rate effect is more marked. There is a
relatively strong interaction between these two variables,
which may be a clue for our decision tree problem— as
trees partition the training data as they are built, we may
have lacked sufficient data to get good estimates of the joint
distribution when taking phonemic context, rate, and word
predictability into account.

When we looked at the probability of canonical pronun-
ciations for this same data, we did not see this sharp effect,
which puzzled us greatly. The first key to solving the puzzle
was to notice that the probability of canonical pronuncia-
tions did change as a function of rate when we took lexi-
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Figure 4. Probability of canonical pronunciations
for different speaking rates (in syllables/second),
partitioned by lexical stress and syllabic structure.
Light grey bars have 20-100 samples, medium grey
100-1000, dark grey >1000. O=omnset, N=nucleus,
C=coda.

cal stress and syllabic structure into account. In Figure 4,
we see that for some syllable types, (e.g. primary stressed
nucleus-only), rate has a strong effect, but for others the ef-
fect is negligible. For one case (secondary stressed nucleus-
only), a surprising reverse effect occurs— the probability of
canonical pronunciation increases as rate increases. These
data also confirm the commonly held intuition that syllabic
stress is an important factor in pronunciation models, as
shown by other researchers [13, 2].

We then chose to examine the 200 most frequent sylla-
bles in the Switchboard corpus, which provide 77% syllable
coverage of the 4-hour transcription set, and 75% of the
corpus at large. We clustered the data for each syllable
into speaking rate bins, and determined the probability of
the canonical and most likely pronunciations® for each syl-
lable as a function of the rate bin. We reclustered data in
a similar fashion using trigram probability as the clustering
criterion.

# of syls w/ significant differences
Clustering on: | Canon. | Most Likely | Either | Both

Speaking rate 85 81 95 71

Trigram prob 64 59 70 53

Table 3. Number of syllables (out of 200) with sig-
nificant (p<0.05) differences in pronunciation prob-
abilities for the extremes of speaking rate and tri-
gram probability.

As we see in Table 3, 95 of 200 syllables showed a sig-
nificant change in the probability of either the canonical or
the most-likely pronunciation. In general, the probabilities
shift smoothly as a function of rate (as in Figure 5a) or tri-
gram probability (Figure 5¢); this may be another reason
why it was difficult for the decision tree algorithm to make
hard data splits based on speaking rate.

3The canonical and most likely pronunciations differed for 55
of the 200 syllables.

The major characteristic that describes the class of syl-
lables with significant rate shifts is that these syllables are
often more frequent. The mean unigram log probability for
these syllables is -2.33; for non-affected syllables the mean
unigram log probability is -3.03.

For some syllables (Figure 5b), there is a tradeoff between
the most-likely and canonical pronunciations as a function
of rate. However, for faster examples, the sum of the prob-
abilities is lower than for slower examples; the rest of the
probability mass shifts to other pronunciations. This is also
shown by the fact that the entropy of the distribution of
syllabic pronunciations increases as a function of increased
rate for roughly the same set of syllables with significant
pronunciation differences.

To this point, we have been treating unigram and trigram
scores as roughly equivalent. For the vast majority of cases,
it appears that using trigram scores provides little extra
modeling power, as the trigram is often correlated with the
unigram. However, for a small number of frequent syllables
it distinctly helps to have the trigram score. For example,
in Figure 5c, the syllable ih_f, which corresponds only to
the word if in our training set (i.e. all examples share the
same unigram probability), is significantly reduced in very
likely word sequences.

A critical observation is that the effects of these variables,
even for similar syllables, can vary widely. For example,
the central vowel in the syllables th_ith_ng, th_ih_ng_k, and
th_ih_ng_z all share similar acoustic contexts (at least in a
system which only looks one phone to the left and right).
However, the vowels of these syllables change very differ-
ently under different speaking rates— in th_ih_ng, the vowel
shows a significant shift towards iz or iy, but for the other
two syllables, it remains relatively constant with respect to
rate. Again, this may show a lack of data— in order to
capture these effects, we may have needed more phonetic
context in our decision trees; however, 4 hours of data may
not be sufficient training data to allow more than one phone
of context during tree building.

4. ESTIMATION OF SPEAKING RATE

As the reader may have noticed, most of our speaking rate
investigations have been conducted using transcribed sylla-
ble rate; however, it is not feasible to have linguistic tran-
scribers determine the speaking rate at the runtime of the
recognizer. As mentioned before, we are developing a signal
processing measure of rate called mrate. A full description
of the algorithm can be found in [6]. The measure cor-
relates pretty well with transcribed syllable rate (p ~ .67),
although for faster speaking rates, it tends to underestimate
the rate somewhat.

The correlation of mrate with pronunciation reductions
is also reduced somewhat; only 54 of the 200 syllables show
significant shifts in the probability of the canonical or most-
likely pronunciations when mrate is used as the partition-
ing criterion. We hypothesized that mrate underestimates
the true rate when pronunciations are non-canonical (as
reduced pronunciations might have less sharp acoustic dis-
tinctions). Preliminary evidence supports this hypothesis.
When mrate matches or overestimates the true (i.e. tran-
scribed) rate, the probability of a canonical syllabic pronun-
ciation is roughly 50%. However, as the amount that mrate
underestimates the true rate increases, the canonical proba-
bility drops, reaching 33% when the rate is underestimated
by 40% or more.

We are continuing work on improving our rate estimate;
in the future, we will be integrating information from syl-
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Figure 5. Pronunciation probabilities of syllables dependent on dynamic factors.

labic onsets. We are also looking into more localized mea-
sures of rate (i.e. estimating over a few syllables). Psycholo-
gists have suggested that many rate effects are localized [14],
and we have found that estimating rate using a small num-
ber of syllables locally, as opposed to interpausally, sharpens
some of the pronunciation distinctions seen above.

5. CONCLUSIONS

This work originated as an analysis of pronunciation data
to determine why we were not able to integrate the dy-
namic real-valued attributes of speaking rate and word pre-
dictability into phone-level decision trees. We have shown
that pronunciations are strongly dependent on rate and lan-
guage model probabilities. Thus, there is no fundamental
problem with these variables as predictors of pronuncia-
tion variation. The complexity of the relationship between
factors, the smoothness of change in pronunciation proba-
bilities as a function of these factors, and the lack of both
context in our phone trees and enough data to train the
trees probably contributed to the poor performance of the
trees.

Furthermore, we have seen that these factors all affect
recognizer performance on the Switchboard database. We
will soon be integrating the lessons learned here into the
pronunciation models for our recognition systems.
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