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Abstract

Learning Discriminant Narrow-Band Temporal Patterns for Automatic Recognition

of Conversational Telephone Speech
by

Barry Yue Chen
Doctor of Philosophy in Engineering - Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Nelson Morgan, Chair

Typical automatic speech recognition (ASR) systems extract features from the full spec-
trum of speech over relatively short time spans (from about 25 milliseconds to approx-
imately 100 milliseconds). They rely on the short-term spectral envelope of speech for
modeling speech sounds. This dependence on the short-term spectral envelope of speech
may account for the fact that ASR systems still fall short of human recognition ability.
Variabilities in the speech signal come from environmental sources (such as noise and
reverberation) as well as from the speaker herself/himself (such as accent and speaking
style). These variabilities create difficult problems for typical ASR systems relying on
the short-term spectral envelope of speech. This thesis further explores the extraction of
discriminant speech information from long-term narrow-frequency energy trajectories of
speech. These long-term narrow-frequency energy trajectories stretch over 500 millisec-
onds of speech and span critical-bandwidths. Previous work on extracting information
from these long-term trajectories led to the development of a neural network architecture
called Neural TRAP [52, 112]. Neural TRAP consists of two stages of multi-layer percep-
trons (MLPs), each of which is a single hidden layer fully-connected MLP. The first stage
is trained to estimate the phone posterior probabilities within each critical-band, while the
second stage uses the critical-band level phone probabilities to come up with an overall
estimate of the full spectrum phone posterior probabilities. This system was competitive to

conventional ASR systems, but in combination with conventional systems, Neural TRAP



significantly improved ASR performance. We extend the Neural TRAP work along two
major directions in this thesis. First, we develop two new Neural TRAP-like architectures
that extract different critical-band level information. The first new architecture, Hidden
Activation TRAP (HAT), is like Neural TRAP except that instead of using the outputs of
the critical-band MLPs, which estimate critical-band level phone probabilities, it uses the
outputs of the critical-band hidden units, which represent probabilities of certain discrimi-
nant energy trajectories. The second new architecture, Tonotopic Multi-Layer Perceptron
(TMLP), has the same network topology as HAT, but the critical-band hidden unit pa-
rameters and the discriminant energy trajectories that they model are not constrained to
learn critical-band level phone posteriors, rather they are free to learn useful critical-band
discriminant patterns for the estimation of the full-band phone posteriors. The second ma-
jor extension in this thesis is the integration of the long-term narrow-band systems with
a conventional ASR system for the recognition of conversational telephone speech (CTS).
By augmenting conventional short-term features with features derived from a combina-
tion of phone posteriors estimated by the long-term systems and by more conventional
intermediate-term systems, we achieve word error rate reductions of about 9% relative on

CTS, which is considered impressive for this task.

Professor Nelson Morgan
Dissertation Committee Chair
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Chapter 1

Introduction

One of the funnier moments in a Star Trek movie happened when the crew of
the starship Enterprise attempt to save the Earth by traveling back hundreds of years to
the late 1980’s in search of whales. To fulfill their quest, these futuristic travelers must
deal with “primitive” technologies. They were used to teleporting from one side of the
planet to another, and now they had to ride the buses across town. In one scene, the chief
engineer of the Enterprise sits in front of a computer, picks up the mouse and uses it as a
microphone to talk with the computer. To his dismay, the computer does not even respond
with a beep or a boop. In his time, automatic speech recognition (ASR) had been long
solved, and people could interact with computers by simply talking. In our time, ASR, the
process by which a computer takes what a user says and translates it into text, remains a

challenging area of research.

1.1 ASR: Not a Solved Problem

You wouldn’t think that ASR still poses a challenge considering that today there
are powerful ASR products in the market capable of performing a variety of tasks including
dictation, command and control, and automated telephone call center routing. These
products recognize speech “pretty well” under ideal conditions, where an ideal condition
is one in which the recognizer was trained to deal with. However, when compared with
humans, ASR systems still perform much more poorly. Furthermore, under non-ideal

conditions, performance of current state-of-the-art speech recognizers degrades sharply.
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Figure 1.1: A comparison of word error rates for machines and humans from [84]. When

possible, machine word error rates are updated from a variety of sources [76], [36], [104],
and [133].

In 1997 Richard Lippmann surveyed the state-of-the-art performance of ASR
compared with human performance on various speech recognition tasks [84]. Figure 1.1
compares the word error rates' of machines versus that of humans on these tasks. Where
possible, I have updated the machine word error rates to reflect some of the progress that
has been made since 1997. Speech recognition performance by machines is still much worse

than that by humans.

Another way to evaluate the quality of current ASR performance is to compare
using ASR as an input method against other conventional input methods such as typing.
Speech researcher Roger K. Moore has measured the number of correct words per minute?
from typing and from a speaker dependent large vocabulary continuous speech recognition
(SD LVCSR) system like the ones you can buy from ScanSoft or IBM for home use. He
found that an expert QWERTY typist can type up to 70 correct words per minute, while
the SD LVCSR system can only output about 30 correct words per minute [95]. It is
interesting to note that while the number of words per minute from the SD LVCSR system
is about 107, the number of correct words per minute drops down to 30. The explanation for
this drop is that the ASR system makes mistakes which takes time for the user to correct,
thus greatly reducing the number of correct words per minute. Consumers expecting ASR
dictation products to be as good as a secretary may be sorely disappointed. The word

error rates of ASR systems are still too high.

The errors made by ASR systems come from two major sources of variability:

'Word error rate is a typical performance measure for ASR systems and is defined to be the total number
of errors (word substitutions, insertions, and deletions) divided by the total number of words.
2This is a measurement of how many of the desired input words can be inputted per minute.
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environmental variations, and speaker variations. Environmental variations can consist of
sounds picked up by the microphone that happen in the background, e.g., a barking dog, a
noisy computer fan, or even other people gossiping and laughing. We refer to this kind of
environmental variation as “background noise”. Another kind of variation caused by the
environment is reverberation or the echo effect. Sound waves coming from a speaker, not
only travel to the microphone directly from the speaker’s mouth, but also indirectly from
reflections off walls and other objects. These sound reflections cause significant perfor-
mance degradations in ASR systems. Speaker variation can happen both within a specific
speaker (at different times) or across different speakers (i.e., from one speaker to another
speaker). An example of within speaker differences occurs when a person speaks at different
rates, possibly because of time pressures or varying levels of excitement. People also tend
to talk differently depending on the audience. For example, when speaking formally to a
boss or a superior, one may want to enunciate and use a more sophisticated vocabulary. In
contrast, when speaking to a friend, a person is more likely to use slang and talk casually.
A person’s speech may also sound differently when he/she is sick or has just woken up. The
previous examples highlight variations caused by vocabulary change as well as variations
in the quality of the speech signal. Cross speaker variability may occur in the pitch of
their voices, the accents in their speech, the rhythm and pace of their delivery, and all the
same variations that can happen within the same speaker. All these sources of speaker
variability, as well as the environmental variability mentioned above, contribute to making
speaker independent large vocabulary continuous speech recognition such a challenging
task. Conversational telephone speech (CTS), consisting of recordings of people talking
over the phone about everyday topics, represents one of the biggest challenges facing ASR
today. One of the goals of this thesis is to address this challenge and improve performance
on CTS. Before we outline other goals of this thesis, let us first discuss the motivation for

our approach starting with a brief explanation of conventional ASR systems.

1.2 Typical ASR Systems

A typical state-of-the-art ASR system tries to find the best sequence of words
given a set of acoustic observations and modeling parameters (e.g., grammar, pronun-

ciation, and phonotactics). Let X = {x1,x2,...,xy} denote a sequence of N acoustic
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observation vectors or “feature” vectors, and let W = {word;, words, ..., wordy} denote
a sequence of M words. The ASR system outputs the word sequence, W, that maximizes
the following equation:

Wi = argmax P(W|X, 0) (1.1)
w

where 6 represents all the trained model parameters. Instead of building an all-
encompassing model of P(W|X,#), we can factor this probability into several smaller
models. First, let us consider words as a sequence of sub-word units or states. The most
common choice for these sub-word states are sub-phones which are portions of phones3.
Without loss of generality, we will denote this sequence of sub-word states by a sequence of
phones: Q = phoney,phones,...,phoneg. Equation 1.1 can be rewritten as Equation 1.2

by summing over all the possible phone sequences, Q, that together make up the word

sequence, W.

argmax P(W|X,0) = argmaxZP(W,Q\X,G) (1.2)

\\% w Q
o P(XIW.Q.0)P(W.QJf)

= agwa % PX[0) (1.3)

= argmax 3 PIXIW, Q.0)P(QIW, 0)P(W]h) (1.9
Q

~ arguax 3 P(XIQ.0am) P(QIW. Opat) P(W[0111) (15
Q

Invoking Bayes’ rule we arrive at Equation 1.3. Notice that P(X|f) in the denominator of
Equation 1.3 is constant over all word sequences, so we can drop this term in the argmax.
Equation 1.4 results from this and the factoring the joint probability P(W,Q|0). We
then apply the conditional independence assumption that the sequence of features X is
conditionally independent of the word sequence W given the phone sequence Q which gives
us Equation 1.5. Equation 1.5 consists of three probability models which also happen to

define three major subdivisions in ASR research. They are:

e P(X|Q,0am): The acoustic model models how probable a sequence of features

are given a sequence of phones.

e P(Q|W,0pnm): The pronunciation model models how probable a sequence of

3 A phone is defined as any single speech sound considered as a physical event without regard to its place
in the sound system of a language [47].
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phones are given a sequence of words, essentially providing a pronunciation dictionary

that shows how to pronounce words using their constituent phones.

e P(W,0Mm): The language model models how probable a given word sequence is.

This is where grammatical and semantic constraints are modeled.

Many researchers actively pursue improvements in pronunciation as well as lan-
guage modeling, but this thesis primarily focuses on innovations in the acoustic model.
One important component in the acoustic model is the set of acoustic observations used
to represent speech, i.e., the front-end features. Nearly every state-of-the-art ASR system
uses features that represent some form of the spectral envelope of speech. Figure 1.2 shows
some of the typical processing steps. First, we window the speech waveform by applying
a 25-millisecond Hamming window every 10 milliseconds. Next, we transform the time
domain speech signal into the frequency domain by computing a 256-point fast Fourier
transformation (FFT) on each of the windows every 10 milliseconds. Inspired by how the
human peripheral auditory system works [48], the next two steps smooth in frequency
and compress the magnitude. The squared magnitudes of groups of FFT output bins are
averaged together to simulate an auditory-scaled filter bank. The output of the filter bank
is compressed by applying the log. For every 10 milliseconds of speech, the result is a
smoothed and compressed representation of the spectral envelope of speech. When com-
puting either of the typical features, Mel-Frequency Cepstral Coefficients (MFCC) [87] or
Perceptual Linear Predictive (PLP) features [48], additional transformations are applied
which further smooth out the spectral envelope. While these features are computed over
the entire frequency range, the temporal context of the features is quite limited, coming
from the original analysis window of 25 milliseconds. Most state-of-the-art ASR systems
use front-end features that have some form of velocity (delta) and acceleration (double
delta) components or have been transformed by linear projections computed over several
consecutive features. The result of such operations effectively widens the temporal context
to about 90 milliseconds. Pictorially, the conventional feature extraction processes speech

within narrow vertical rectangles like the one shown in Figure 1.2.

To represent P(X|Q,0anm), state-of-the-art acoustic models use Hidden Markov
Models (HMMs). HMMs are probabilistic finite state machines. There are states in an
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Figure 1.2: Typical front-end feature calculation block diagram.

HMM which represent portions of phones, triphones?*, or some other sub-word unit. Within
a state there are probabilities for transitioning to another state or to remain in the current
state. Also, within a state there is a probability associated with emitting a certain acoustic
feature vector. Figure 1.3 shows an HMM for the word “cat” which is depicted as a sequence
of phones (/k/, /ae/, and /t/). Starting in state /k/, there is a probability of staying in
state /k/ given by P(q; = /k/|q;—1 = /k/) and a probability of transitioning to state /ae/
represented by P(q; = /ae/|qi—1 = /k/). State /k/ also has a probability of emitting a
certain feature vector x; given by P(x;/q; = /k/). In general, the overall probability of
a sequence of feature vectors given a sequence of phone states from an HMM is given by
Equation 1.6, where 64,/ is omitted for simplicity but assumed as a conditioning variable

in all of the probabilities.

N
P(X|Q) = P(z1lg1)P(q1) [[ P(zila) Plarlar—1) (1.6)

t=2

HMMs make two key modeling assumptions:

*Triphones are contextual phones defined by the current phone and the previous and subsequent phone.
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Figure 1.3: An example of a Hidden Markov Model for the word “cat”.

e A feature vector at time ¢ is conditionally independent of everything else given the
state at time ¢. In other words, the emission probability distribution doesn’t change

from time to time within the same state.

e The next state is conditionally independent of all previous states and feature vectors
given the current state. Essentially, the next state depends only on what the current

state is. This assumption is often referred to as the first-order Markov assumption.

While the second modeling assumption provides a means of modeling the time evolution
of feature vectors when states transition, the first modeling assumption implies that the
time evolution of feature vectors is not modeled within a single state since the emission
probability distribution doesn’t change. This means that the probability of being in a
phone state is derived from a distribution on a front-end feature that is computed over a

very small amount of time context.

1.3 Motivation

Conventional ASR acoustic models are based on capturing the representative
spectral profiles of speech sounds. While these spectral profiles or spectral envelopes span
the entire frequency bandwidth in the speech, they have very short temporal extents (25
milliseconds - 90 milliseconds). As evidenced by current ASR performance, this short-
term approach seems to capture some information about the underlying speech; however,

current ASR systems are particularly sensitive to the aforementioned variations in the
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speech signal that have deleterious effects on the spectral envelope of speech [113]. The
temporal information that is captured by current ASR systems is incorporated in a limited

way via the first-order Markov modeling in the HMMs.

1.3.1 Narrow-Band Temporal Patterns Approach to ASR

It is this weakness of relying on the short-term spectral envelope of speech that
the work in this thesis addresses. The main goal of this thesis is to capture long-term
temporal information in speech and apply it on the recognition of conversational telephone
speech (CTS). In particular, this thesis explores and discusses the learning of discriminant
temporal patterns (or temporal profiles as opposed to spectral profiles) within narrow-
frequency bands spanning long periods of time (about 500 milliseconds). This work extends
ground breaking research in TempoRAl Patterns (TRAPs) conducted by Sangita Sharma,
Hynek Hermansky, and Pratibha Jain [52, 53, 54, 112, 62] which will be discussed in
detail in the next chapter. Our approach to improving the state-of-the-art performance
is to develop data-driven front-end features that extract information from speech energy
in narrow-frequency bands over long periods of time using neural networks. Instead of
developing spectral features from narrow vertical rectangles in the time/frequency plane,
we will extract temporal features from long horizontal rectangles as in Figure 1.4. In
addition to developing these temporal features, the work in this thesis also combines these
features with the conventional spectral features. In this way, we use the information
captured by the temporal features to complement the information already provided by the
conventional spectral features for the purpose of improving ASR on CTS which contains

large amounts of speaker variation.

1.3.2 Why Narrow-Frequency Bands?

We draw our motivation for learning in narrow-frequency bands from a series of
human listening experiments. Harvey Fletcher’s human listening experiments [37] and Jont
Allen’s summary of his work [2] provide the main impetus for working on narrow-frequency
bands. Fletcher’s hypothesis is that independent, narrow-frequency detectors, working in

parallel, account for the robustness of human auditory processing. Fletcher introduced the
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Figure 1.4: Proposed temporal front-end feature calculation block diagram.

Articulation Index (AI) model for predicting speech articulation®, which states that the
total articulation error is equal to the product of independent sub-band articulation errors.
Other listening experiments have also shown how humans seem to be able to discriminate
between speech sounds given only narrow-frequency speech. Greenberg, et. al. [44, 118]
and Warren, et. al. [128, 127] show independently how words can still be recognized despite
filtering out all frequencies of speech except for several narrow frequencies. Lippmann [83]
also shows that recognizing consonants in nonsense CVC syllables can still be done effec-
tively by human listeners even when the speech is missing middle frequencies from 800
Hz to 3,150 Hz. His listeners could correctly identify 91.6% of the consonants even when

missing these frequencies.

Another set of listening experiments shows evidence that humans can robustly
detect some set of fundamental categories or speech attributes within narrow-band signals.
Miller and Nicely performed an analysis of consonant identification experiments where lis-
teners were given speech that had been filtered by a series of high, low, and band-pass

filters [88]. They found that the patterns of errors were not random. Instead, errors seem

% Articulation refers to the recognition of nonsense speech sounds, while intelligibility refers to the recog-
nition of meaningful speech.
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to be grouped along several speech attributes like voicing, nasality, affrication, place of
articulation, and an attribute they call duration to distinguish between /s/, /sh/, /z/, and
/zh/. Confusions between consonants sharing an attribute (e.g., voiced consonants) are
more often confused with each other, but not often confused with consonants not sharing
the attribute (e.g., unvoiced consonants). Also, they measured the mutual information of
spoken and perceived consonants in noisy band-limited speech and found that the infor-
mation transmitted for the voicing attribute is the most robust, followed by nasality, while
place is the attribute that is least robust to noise. These results show that certain speech
attributes are robustly detected within narrow-frequency bands, and these attributes are

detected more robustly than larger units of speech like consonants.

In this work we primarily focus on overlapping narrow-frequency bands spanning
a “critical bandwidth”. The critical bandwidth comes from early hearing experiments
performed by Harvey Fletcher which showed that the threshold of hearing a pure sinusoidal
tone with a noise signal centered at the tone increases as the noise signal’s bandwidth is
widened up to a certain bandwidth. After exceeding this bandwidth, which he referred to
as a critical bandwidth, there is no change in the hearing threshold for the sinusoidal tone.
In other words, only noise falling within the critical bandwidth of a narrow-band signal can
contribute to the masking, and in this way one can consider critical-bands as a series of
frequency selective filters. Motivation for using critical-bands also comes from some work
on deriving discriminant functions in frequency for ASR. Malayath and Hermansky used
linear discriminant analysis (LDA) to derive filters in the frequency domain [85] and found
that these filters very much resemble the bank of critical-band filters used in traditional

front-end processing techniques like PLP and MFCC.

1.3.3 Why Long-Term?

Human recognition of phones in nonsense syllables has an error rate of about 1.5%
according to Allen’s analysis of Fletcher’s early listening experiments [2]. In contrast, the
ASR error rates on phone recognition tasks are still an order of magnitude worse [78, 27,
106, 3]. One reason for the discrepancy in performance between humans and machines is
that humans use longer-term information about the phone which is not captured by the
current emphasis on the short-term spectral envelope in most ASR systems. Note, this

longer-term information does not simply come from semantic context since Fletcher’s study
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used nonsense syllables. There must be some important long-term characteristics within
the acoustics that are cues to the phonetic identity. Researchers have also shown, using
information theoretic analysis, that there is significant discriminant information about the

identity of the current phone at times up to several hundred milliseconds away [130, 14].

1.3.4 Complementarity to Conventional Features

Finally, by looking for discriminant information in very long time contexts within
critical-bands, finding information that is complementary to the information in the short-
term conventional analysis is highly likely. The temporal analysis in this thesis helps more
on some speech sounds than the short-term conventional features and vice versa. Over
the years, many other ASR systems have greatly benefited by using multiple experts or
streams of information. Here is but a sampling of successful combination approaches for
ASR: [92, 71, 52, 115, 65, 86, 31, 12, 1, 73, 94]. Performance in clean conditions as well
as robustness to noisy conditions improves greatly when combining multiple streams of
information. This work is yet another example of the benefits obtained by combining

different streams of information.

1.4 Thesis Overview

1.4.1 Thesis Goals

In the past few years, several systems that utilize speech information from narrow-
frequency channels over long periods of time have demonstrated promising recognition
performance improvements. The main thrust of this thesis is to further improve these

long-term narrow-band ASR systems. More specifically, this thesis has three main goals:

1. To design and implement new neural network architectures for the learning of pho-

netically discriminant patterns within critical-bands over long periods of time.

2. To integrate these new architectures with a state-of-the-art ASR system by using
the outputs of the neural networks as a data-driven feature vector for the purpose of
improving recognition performance on challenging ASR tasks, such as conversational

telephone speech.
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3. To learn the strengths and weaknesses of these new neural network architectures
by comparing them to several existing methods for extracting information within

critical-bands over long periods of time.

1.4.2 Thesis Outline

This thesis proceeds as follows. Chapter 2 gives background information useful
for understanding the thesis work. This includes a survey of previous work to help the
reader frame this work within the state-of-the-art in ASR research. Chapter 3 presents two
new neural network architectures for extracting information within critical-bands over long
periods of time: Hidden Activation TRAP (HAT) and Tonotopic Multi-Layer Perceptron
(TMLP). Performance on a phone recognition task for HAT, TMLP, and other temporal
systems is also presented in this chapter as well as their performance in artificial noise
and reverberant conditions. In Chapter 4 we explain the approach of using functions of
posterior probabilities approximated by neural nets as features for a state-of-the-art ASR
system and describe the series of experiments that lead to our best system configuration for
the conversational telephone speech recognition task. A comparison of the various temporal
systems on a full conversational telephone speech recognition task is presented in Chapter 5.
We show that HAT and TMLP significantly outperform some other narrow-band temporal
systems, and we analyze where these improvements come from. In Chapter 6 we present
an empirical study examining the optimal configuration for TMLP given constraints in
total parameters as well as training data. A section on sharing critical-band hidden units
in the TMLP is also presented. By sharing these parameters, we are able to show which
discriminant temporal patterns are common among different critical-bands. In Chapter 7,
we summarize the major themes and points in this thesis and speculate on future directions.
Appendices C, D, and E contains a gallery of discriminant temporal patterns learned in

HAT and TMLP.
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Chapter 2

Background

Having motivated the general approach of extracting speech information within
narrow-frequency bands over a relatively long amount of time, we survey the research
landscape in this background chapter. Specifically, we are interested in showing how the
work in this thesis “stands on the shoulders of giants”' by reviewing relevant previous

work.

2.1 Related Work

2.1.1 Multi-Layer Perceptrons

Multi-Layer Perceptrons (MLPs) are artificial neural networks that have been
successfully used in many ASR systems over the past 15 years. They are one of the
central tools used in this thesis, and so we provide a brief description of them. MLPs
can be thought of as universal function approximators and are commonly used in ASR
as phonetic posterior probability estimators. Given a set of input features, the MLPs are

trained to learn the mapping to phonetic probabilities posterior on the input features.

Since it has been shown theoretically that fully-connected 3-layer neural networks
with a single, sufficiently large hidden layer of units can approximate any function [74, 75],

3-layer MLPs are typically used. A 3-layer MLP, similar to ones used in this thesis, is

'This quote is often attributed to Isaac Newton who wrote “If I have seen further it is by standing on
ye shoulders of Giants”.
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pictured in Figure 2.1. The inputs to the neural net are copied into nodes of the first layer,
which is referred to as the input layer. The input layer is fully-connected to the next layer,
called the hidden layer, which means that the output of every hidden unit is a function of
every input node. The value at the output of the jth hidden unit, H;, is a weighted sum

of all the inputs passed through a sigmoid nonlinearity:

H]‘ def 519 Z inin + Bj (2.1)

i€inputs
where in; is the sth input, W; ; is the trainable weight parameter between the ith input
and the jth hidden unit, and Bj; is the trainable bias for the jth hidden unit. The sigmoid

function is given by:
sig(x) der 1
1 + exp(—x)

These hidden units are fully-connected to the last layer which is called the output layer.

(2.2)

The output of the kth output unit is given by the softmax function:

def exp(Z)
Outk = (23)
ZKEoutputs exp(ZK)
where Z is given by equation (2.4):
Z N H Wi+ By (2.4)
j€hiddenunits

W, and By are the trainable weights and bias for the kth output unit. For every category
that we wish to classify, there is an output unit whose value approximates the posterior

probability of the corresponding category after training.

The training procedure that we use for these MLPs is the gradient descent-based
error back-propagation algorithm [108]. We use the cross-entropy error criterion [15] with
the training targets in a “l-of-c coding”. This means that there are ¢ output classes, and
the target vector consists of “0.0”s except for the single dimension corresponding to the
labeled category which gets a value of “1.0”. The learning schedule is a form of early
stopping with cross-validation. This means that each epoch’s learning rate is determined
by how well the MLP is performing on a separate cross-validation data set. Initially
the learning rate is high, and as improvements in accuracy on the cross-validation data
become smaller, the learning rate is exponentially reduced. Finally, when no more accuracy

improvements happen, the training is stopped to prevent overfitting. If the MLP has a



2.1. RELATED WORK 15

Input Hidden

Layer Layer Output

/O O Layer

Figure 2.1: A 3-Layer Multi-Layer Perceptron

sufficiently large number of hidden units to approximate the mapping function between
the inputs and output classes, then the outputs of an MLP trained in this way can be
considered probabilities of the training categories posterior on the inputs. For a detailed

proof of this, as well as further description of the learning approach, refer to [96].

2.1.2 The Hybrid HMM/ANN and Tandem ASR Architectures

The work presented in this thesis contains many experimental results on the
automatic recognition of words in various standard speech databases, and it uses two dis-
tinct ASR architectures: the hybrid HMM/ANN [18] and the Tandem [54, 49, 34, 32]
architectures. Both of these architectures use feed-forward neural nets like the 3-layer
MLPs described above to derive estimates of phone posterior probabilities. In the hy-
brid HMM/ANN architecture, these phone probabilities are used directly in a dynamic-
programming-based Viterbi search [107, 105, 57], which approximates the forward algo-
rithm for HMMs [11], to recognize the best sequence of words. In the Tandem architecture
the MLP serves as a data-derived feature extractor. The estimated phone posteriors from
the MLP are transformed and then used as front-end features to a standard Gaussian
mixtures-based HMM system. A block diagram for a typical hybrid HMM/ANN system
is depicted in Figure 2.2, while that for a Tandem ASR system is pictured in Figure 2.3.
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Figure 2.2: Hybrid HMM/ANN ASR system. Speech is transformed into spectral-like
features, which are sent to a neural net that estimates phone posterior probabilities used
for decoding (typically after division by priors to yield scaled likelihoods) by a Viterbi
decoder under grammar and pronunciation constraints.
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transformed by the log and Karhunen Loeve Transform (including dimensionality reduc-
tion) and used as posterior features for a standard Gaussian mixtures-based HMM.

These are then
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Much of the new work in the ASR research community has focused on a cousin
of the hybrid approach, which uses Gaussian mixtures for modeling the acoustic emis-
sion probabilities in HMMs. Many powerful techniques, like adaptation based on Maxi-
mum Likelihood Linear Regression (MLLR) [39], speaker-adaptive feature transformation
(SAT) [80], tied context dependent triphones [131], etc. were developed for these Gaussian
mixtures-based HMMs and led to major reductions in word error rates. These techniques
were harder to integrate within the hybrid system, and so they were either not tried or were
only moderately effective. As a result, the perfomance of many hybrid systems lagged that
of the Gaussian mixtures-based HMMs. With the advent of the Tandem system, the advan-
tage of discriminative training of the neural nets could be combined with all the powerful
adaptation techniques developed for the Gaussian mixtures-based HMMs. In [12], Benitez
et. al. improved the original Tandem setup by using the outputs of the MLPs to augment
the traditional PLP features instead of replacing them. This led to great improvements in
the performance of the recognizer compared to the baseline system that simply used the
PLP features. There are several issues that arise when using the Tandem approach. First,
the development time is greater because of the additional training time needed for the neu-
ral net. Also, there are issues involving the transformation of the MLP outputs (posterior
probabilities) to features that are better suited for the modeling assumptions implied by
the Gaussian mixtures-based HMM. This involves choosing suitable transformations and

also determining what amount of dimensionality reduction is optimal.

2.1.3 TempoRAI Patterns - TRAPs

The work in this thesis is most closely related to the study of temporal patterns
or TRAPs. For decades, conventional ASR systems have based the feature extraction
process on the premise that each of the various speech sounds or phones have distinctive
patterns in frequency. For example, the spectral envelope of a typical /i/ sound, as in
“beet”, has magnitude peaks near 280, 2250, and 2900 Hz, while a typical /U/ sound,
as in “book”, has peaks near 450, 1030, and 2380 Hz. In a similar way, one can look
for distinctive patterns along time within narrow-frequency bands. This is exactly what
Hynek Hermansky and Sangita Sharma did in their TRAPs work [52, 53, 112]. Using
speech data that was phonetically hand-transcribed, they first computed frames of log

critical-band energies for every 10 milliseconds of speech. Each of these frames was given a
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Figure 2.4: Computation of the temporal evolution of phoneme /ah/ for critical-band f;
from a labeled database. Adapted from [112].

phone label corresponding to the phonetic transcription occurring at the time in the speech
waveform that the frame was calculated. For each frame within a single critical-band, they
concatenated 50 consecutive frames before and after the frame to form a 101-frame critical-
band energy trajectory or temporal pattern?. By taking all the energy trajectories whose
center frame was labeled with the same phone and averaging these energy trajectories,
they were able to produce representative temporal patterns for each of the 45 hand-labeled
phones in their speech data. Figure 2.4 shows this process of producing these representative

temporal patterns, which they call “Mean TRAPs”.

Having calculated mean temporal patterns or Mean TRAPs for each critical-band

and every phone, Sharma plotted these Mean TRAPs. Figure 2.5 displays the 45 Mean

2This trajectory is about 1 second wide
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Figure 2.5: Mean TRAPs for 45 phonemes for critical-band 5 (446-637 Hz). The dotted
line for each of the TRAPs represents the center frame, or time=(0 milliseconds. The
patterns separated by solid lines represent sounds with similar temporal patters. The

Y-axis corresponds to the energy magnitude. Adapted from [112].
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TRAPs calculated for critical-band 5 (446-637 Hz) adapted from [112]. From this figure,
you can see how every phone has its unique temporal pattern. Some of the temporal
patterns look similar to each other. Temporal patterns coming from vowels (/iy/, /ih/,
/eh/, Jey/, Jae/, [aa/, Jaw/, /ay/, /ah/, Jao/, Jow/, /uw/, /er/, and /axr/) look pretty
similar in that they all have high energy at the center frame. Stop consonants (/b/, /d/,
/g/, /p/, /t/, and [/k/) also look alike; each has a low energy valley preceding the center

frame corresponding to the complete closure in the vocal tract.

Based on these observations, Hermansky and Sharma surmised that they could
use similarity measures to the Mean TRAPSs in each critical-band as features for a neural
net classifier. They created 101-frame energy trajectories centered at every frame in the
same way as was done to create the Mean TRAPs. Then they calculated the similarity
score (given by Equation 2.5) to each of the Mean TRAPS in every critical-band.

0.2

d(z,y) = =~ (2.5)
zCy

d(z,y) is the distance between trajectory z and trajectory y as of function of the covariance

2

between z and y ( o3,

) and the standard deviations of z and y (0, and o). This resulted
in a set of numbers (15 critical-bands by 29 phones) that were used as inputs to a merger
MLP trained on corresponding phone targets. Using this MLP in the hybrid HMM/ANN
recognition setup, they achieved a word error rate (WER) of 11.5% on the OGI Numbers
corpus. State-of-the-art performance at that time hovered around 6% for this corpus, but

11.5% was not a terrible result for such a radically new approach.

Since many of the Mean TRAPs looked similar, Hermansky and Sharma also
clustered them agglomeratively using the same distance metric in Equation 2.5. They
called these cluster centroids “Broad TRAPs” because the Mean TRAPs automatically
grouped into five broad phonetic categories: vowels, stop-consonants, fricatives, schwas,
and silence. A picture of the Broad TRAPs for critical-band 5 as adapted from [112] is
shown in Figure 2.6. Using these Broad TRAPs as the templates for recognition, they
again computed similarity measures of test speech to these Broad TRAPs and used these
measures as input to an MLP trained to learn phone probabilities. Within the hybrid
HMM/ANN recognition setup, this Broad TRAP system gave a 12.8% WER on the OGI

Numbers corpus.

To improve upon these initial TRAP-based systems, they developed the Neural
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Figure 2.6: Broad TRAP clusters of the fifth critical-band (438 Hz - 629 Hz) time trajec-
tory. The thinner lines in each plot represent the individual Mean TRAP of the phonemes
clustered in one category. The thicker line is the Broad TRAP and represents the weighted
mean of the constituent Mean TRAPs. Adapted from [112].
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‘ System H WER ‘
‘ Baseline H 6.5% ‘
Neural TRAP 7.6%
Mean TRAP 11.5%
Broad TRAP 12.8%

Combined: Baseline+Mean TRAP 6.0%
Combined: Baseline+Neural TRAP 5.5%

Table 2.1: Word error rate results on various systems on OGI Numbers corpus.

TRAP system. The Neural TRAP system consists of two stages of MLPs. The first stage
MLPs are a set of critical-band MLPs (one for each critical-band) that estimate critical-
band level phoneme probabilities from 101-frame energy trajectories. These critical-band
MLPs replace the simple similarity metrics with a powerful universal function approximator
that is discriminant in nature. The second stage of the Neural TRAP system consists of a
single MLP that combines the output of the each of the critical-band MLPs to form a single
estimate for the phone posterior probability. This Neural TRAP system outperformed
their previous Mean TRAP system by achieving a 7.6% word error rate on the same OGI

Numbers corpus.

Table 2.1 summarizes the performance of the various hybrid HMM/ANN systems
tested by Sharma on the OGI Numbers corpus [112, 52]. The baseline system is a stan-
dard HMM/ANN setup where 9 frames of 8th order PLP cepstral coefficients along with
9 deltas and 9 acceleration coefficients are used as inputs to an MLP outputting phone
posteriors. Note that the temporal context of this baseline system is 9 frames (about 100
milliseconds). By themselves, the TRAP-based systems do not outperform the baseline
system. Neural TRAP is competitive to the baseline (7.6% vs. 6.5%), while the Mean
TRAP and Broad TRAP systems are much worse. However, when combining the out-
puts of the TRAP-based MLPs (which look at temporal extents of about 1 second) to
that of the baseline MLP by simply averaging them in the log domain, recognition per-
formance beats that of the baseline system (6.0% for combination with Mean TRAP and
5.5% for combination with Neural TRAP). In general TRAP-based systems are typically
competitive with conventional systems that rely on the spectral envelope of speech, but

when combined with these conventional systems, performance improves over that of ei-
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ther system alone. This suggests that the method of extracting information from speech
within long-term and narrow-frequency bands is providing complementary information to
the conventional methods. Other TRAP-based studies have also shown results consistent

with this generalization [54, 64, 24].

Because the work in this thesis and much of the other related work on TRAPs
requires deeper understanding of the Neural TRAP system, we will now go into greater
detail about the Neural TRAP system. Figure 2.7 shows a block diagram explaining the
processing steps for the Neural TRAP setup. The inputs to the Neural TRAP setup are
19 101-frame log critical-band energy trajectories?. Each energy trajectory is fed into the
corresponding first stage critical-band MLP whose outputs are then either taken before
the final softmax or transformed by log and fed into the second stage merger MLP. To
train a complete Neural TRAP system, the first step is to train the critical-band MLPs
using the standard error back-propagation algorithm. Hermansky and Sharma used the
overall phone labels as targets for each of the critical-band MLPs, so that each critical-
band MLP would learn to gather all the evidence within critical-band energy trajectories
for phone discrimination. Once these MLPs were trained, the training data was forward
passed through them to create input training data for the merger MLP. The training pairs
for the merger MLP are either the outputs before the final softmax or the log outputs
from the first stage MLPs and the same phone labels used in the first stage training. The
second stage merger MLP is also trained with the error back-propagation algorithm, and

its outputs approximate phone posterior probabilities.

It is interesting to discuss the nature of the narrow-frequency long term energy
trajectory that is learned by these various TRAP-based ASR systems. In the Mean TRAP
ASR system, an underlying representation of the temporal patterns for each phone in
every critical-band is captured by averaging together all such examples in the training
data. The Broad TRAP ASR system further collapses these Mean TRAPs into 5 cluster
centroids. Both of these systems learn basic canonical trajectory patterns that are then
used as a template for matching during testing. In contrast, the Neural TRAP system
learns a discriminant mapping from the critical-band trajectories to critical-band level

phone probabilities. Such mappings produce critical-band level evidence for the presence

3There are 19 critical-bands when the sampling rate is 16000 Hz and 15 when the sampling rate is 8000
Hz.
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Figure 2.7: The Neural TRAP architecture consists of two stages of MLPs. The first stage
is a set of critical-band MLPs estimating the critical-band level phone posteriors. The
second stage is a merger MLP that combines the critical-band level phone posteriors to
get an overall estimate of the phone posterior probabilities.

or absence of each phone. Neural TRAP works much better than either the similarity-
based Mean TRAP or Broad TRAP systems, which suggest that the discriminant mapping
produced by the critical-band MLP is better able to capture subtle differences between
different phones not captured by the similarity measure to Mean TRAPs or Broad TRAPs.

It is also interesting to note that the performance difference between the Mean
TRAP and Broad TRAP systems is not large, which led Sharma to write that “full phoneme
classification on each sub-band temporal energy pattern may not be necessary”. Addition-
ally, the mapping from critical-band energy trajectories to phone probabilities learned by
the critical-band MLPs in the Neural TRAP system is not perfect. The reported frame er-
ror on the OGI Numbers corpus from [112] ranges from a low of 65% to a high of 69%. One
may have expected this since it is really hard to distinguish one phone from another sim-
ply given a critical-band speech signal. Still, this raises an important question: are phone
probabilities at the critical-band level the best information to extract for better ASR per-
formance? If not, then what other kind of evidence within critical-band trajectories should
be collected? The two new neural net architectures presented later in this thesis address
these questions. The first new architecture, Hidden Activation TRAP (HAT), shows that
mapping all the way to phones at the critical-band level is not necessary and actually

hurts performance. The second architecture, Tonotopic Multi-Layer Perceptron (TMLP),
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automatically learns what is important at the critical-band level to improve the overall

phone classification rate.

Other work that has built upon the foundation of Sharma’s work can be grouped
into 3 categories: improvements to the features presented to Neural TRAP; applications to
other ASR tasks or other speech related problems; and explorations of different techniques

to learn important critical-band level information.

The first category consists of research devoted to improving the input features to
Neural TRAP. One line of work within this first category is to replace the adjacent frames
of log critical-band energies with more elegant approaches that avoid artifacts arising from
windowing speech and applying the short-term FFT. In [99], Motlicek et al. derived
inputs to Neural TRAP directly from the time domain signal using a bank of band-pass
Gammatone filters. In [7], Athineos et al. created inputs for Neural TRAP by applying
Frequency Domain Linear Prediction to the speech signal which essentially fitted an all-
pole model to the speech signal’s squared Hilbert envelope. Motlicek’s approach did not
significantly improve over the original Neural TRAP’s inputs, while Athineos showed about

a 10% relative improvement on the OGI Numbers task.

Another line of research for improving the inputs to Neural TRAP is the prepro-
cessing of the original frames of log critical-band energies with various filters. In [46, 69],
Grezl and Karafiat applied 1-dimensional and 2-dimensional filters to the log critical-band
spectrum which in essence either averaged or differentiated the energy across adjacent fre-
quency bands and adjacent frames. After these modifications, they concatenated adjacent
frames within each critical-band for input to the Neural TRAP classifier. They found that
in combination with the original Neural TRAP, this new Neural TRAP based on modified
features gave some amount of complementary information and improved performance over
uncombined systems. Jain found in her thesis that transforming the original critical-band
energy trajectory by performing principal components analysis (PCA) or a discrete cosine
transform (DCT) and then keeping only half of the original features also improved the
performance of Neural TRAP [62]. Finally, a push to using three adjacent critical-band
energy trajectories instead of one as inputs to each first stage MLPs in Neural TRAP has
also led to better performance than the original Neural TRAP. Using 3 bands, Jain and
Hermansky were able to beat the performance of the conventional HMM/ANN system that
used PLP features as input to the MLP on the OGI Numbers task [63].
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The second category of extensions to the original Neural TRAP system is the
application of Neural TRAP to different tasks, whether they be different speech recognition
test sets or other non-ASR tasks. In [64], Neural TRAP was used to derive front-end
features for a distributed speech recognition system applied to noisy digit recognition.
Schwarz et al. [111] used Neural TRAP to perform TIMIT phoneme recognition, and
Kingsbury et al. used the Neural TRAP architecture applied on the task of robust voice
activity detection [70].

The final category of extensions explore alternative methods to the learning of
critical-band level information. More specifically, what categories of targets are appropriate
to learn at the critical-band level. As discussed before, the original Neural TRAP learns a
nonlinear discriminant mapping from the critical-band energy trajectories to critical-band
level phone probabilities, and these mappings are not very accurate. Jain and colleagues
developed a modified Neural TRAP that learned discriminant temporal patterns for clas-
sifying six broad categories based on manner of articulation [64], both at the critical-band
level and full-band level. Using the outputs of their new system as features to augment
conventional MFCC features, they were able to show consistent improvements on the
Aurora-2 noisy continuous digits data. Hermansky and Jain also explored a new method
based on Neural TRAP that was designed to learn temporal patterns that are shared by
speech sounds within the same critical-band and across different critical-bands [50]. Mo-
tivated by the clustering of Mean TRAPs into Broad TRAPs, they developed Universal
TRAP (UTRAP), which basically used data-derived class labels for the training of a single
critical-band MLP that replaced all the first stage critical-band MLPs in the Neural TRAP
setup. While the second stage merger MLP was still trained using phone targets, the first
stage critical-band MLPs were trained using targets that were derived as follows: starting
from the set of Mean TRAPs calculated for every phone in every critical-band, they per-
formed an agglomerative clustering (the similarity metric was given by Equation 2.5) of
all these Mean TRAPSs to come up with a set of 9 centroids. These 9 centroids represented
distinct speech events that commonly occured in all critical-bands. Next, they relabeled
each frame of speech in every critical-band with a label corresponding to the centroid that
was most similar (as measured by Equation 2.5) to the temporal trajectory centered at
that particular frame. They reported that the UTRAP system performed comparably to
a Neural TRAP system where the critical-band targets were the Broad TRAP categories,
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while using many fewer parameters [50].

2.1.4 Multi-Band

The Neural TRAP system described above is an example of a multi-band speech
recognition system. In multi-band speech recognition, evidence of phonetic events are
first analyzed in independent sub-frequency bands that are later merged for classification
of speech sounds. The main difference between Neural TRAP and more conventional
multi-band systems is that the sub-frequency bands in Neural TRAP are typically much
narrower, and the temporal context for Neural TRAP is from 500 milliseconds to 1 second
compared with conventional multi-band systems that take evidence spanning no more than

100 milliseconds.

The collaboration between Bourlard, Dupont, Hermansky, Tibrewala, Morgan,
and Mirghafori created complete multi-band ASR systems for recognizing continuous
speech within the hybrid HMM/ANN framework [16, 17, 55, 123, 92, 91]. These sys-
tems consisted of MLPs estimating phone posteriors within sub-bands (comprised of 2 or
more adjacent critical-bands), a fusion step to merge sub-band phone posteriors to create
an overall phone posterior (usually a simple frame-wise average or product), and then the
HMM Viterbi decoder. They tested their systems on various speech databases ranging
from a simple digits and continuous numbers corpus to the large vocabulary conversa-
tional Switchboard task. They also tested the noise robustness of multi-band systems by
artificially corrupting their speech data. Generally, the performance of multi-band sys-
tems were as good (and in some cases better) than full-band systems in clean conditions;
however, in band-limited noisy conditions, multi-band systems significantly outperformed
full-band systems. Moreover, in combination with full-band systems, multi-band systems
further improved ASR performance over the baseline full-band systems. Other researchers
have also corroborated these general findings in their own multi-band systems that were

not necessarily based upon the hybrid HMM/ANN framework [22, 23, 102, 103, 25, 98].

One issue that occurs in the design of multi-band systems is the choice of cate-
gories to classify at the sub-band level that would lead to the best performance improve-
ments for ASR at the full-band level. In the typical multi-band systems built within the
hybrid HMM/ANN framework, sub-band MLPs are trained on the full-band phone targets
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in the same way the critical-band MLPs in the Neural TRAP system are trained. This
may not be the best kind of target because sub-frequency bands may not contain all the
information necessary to do full phone classification. For example, consider the two frica-
tives /f/ and /s/. At lower sub-bands, they are almost indistinguishable. Only at the high
frequency sub-bands can one easily distinguish these two fricatives. Mirghafori in [91] ob-
served that the sub-band MLPs do confuse certain phones quite often. Her hypothesis was
that by combining the most confusable sub-band phone classes, the sub-band MLPs could
devote more trainable parameters to better model those phones for which the particular
sub-band contained the most information for classification. Once these sub-band phones
were merged, she retrained MLPs on these new merged sub-band phone categories. She
found performance improvements at the frame accuracy level, which did not translate to

improvements at the word level.

Others have approached this issue from a global optimization perspective. Instead
of deriving merged sub-band phone categories as Mirghafori does or deriving clustered
Mean TRAP targets as Jain does in UTRAP, researchers have automatically learned what
is important at the sub-band levels via optimization procedures. Cerisara et al. [21] used
the discriminant minimum classification error criterion (MCE) [66] to guide the training
of each sub-band classifier. Daoudi et al. in [25] and Saul et al. in [109, 110] treated
sub-band categories as hidden variables within probabilistic graphical models and used the
expectation maximization algorithm [26] to automatically learn the model parameters to
maximize the likelihood on the training data. In Saul’s work, various sub-band detectors
for evidence of voicing or sonorance were automatically learned without the need for sub-
band labeling of the evidence. One of the new neural net architectures presented in this
thesis, the Tonotopic Multi-Layer Perceptron, automatically learns what critical-band level

categories are useful for phonetic classification using the error-back propagation algorithm.

2.1.5 Temporal Filtering

There has been a considerable amount of work devoted to the temporal filtering
of front-end features to improve ASR performance. Temporal filtering in this context refers
to the processing of speech features (or spectral energies of speech) over time. All of the
TRAP-based systems, including the systems developed later in this thesis, are examples

of data-derived temporal filters. One of the earliest successful approaches to the tempo-
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ral filtering of features is Furui’s velocity and acceleration coefficients [38]. By appending
the calculated velocities and accelerations of each of the original front-end features, ASR
performance improves so consistently that the use of velocity and acceleration coefficients
today is ubiquitous. Cepstral Mean Subtraction (CMS) [6] is another effective temporal
filtering technique that subtracts out the mean of each of the cepstral coefficients calcu-
lated over long periods of time (whole utterances, whole conversations, or all examples).
CMS is often used to make ASR systems more robust to changes in the channel like the
ones caused by microphone differences. RASTA-PLP is also another technique that im-
proves robustness to channel effects [51] by suppressing constant factors in each spectral

component of the speech signal.

All of these earlier instances of temporal filtering, which led to increased ASR
accuracies, can be studied from the point of view of modulation frequencies. Modulation
frequencies [59] are the rates at which the spectral amplitudes of speech change. Just
as the conventional speech spectrum measures the energy content at various frequencies
or rates of changes in the time domain speech signal, a modulation spectrum measures
the energy content at various modulation frequencies or rates of changes of the spectral
energy over time [8]. We can view all temporal filtering techniques as processes that
either emphasize or deemphasize certain modulation frequencies. CMS, which removes
unchanging components in the cepstrum, filters out 0 Hz modulations; RASTA-PLP passes
components of the modulation spectrum between about 1 Hz and 12 Hz; and the velocity

and acceleration features emphasize modulations at 10 Hz [51].

For human speech perception, intelligibility of spoken words is directly related to
how well slow changes in the speech spectrum (modulation frequencies less than 16 Hz)
are preserved [58, 59]. Others have also filtered the spectrum (or cepstrum) of speech over
time to demonstrate in human perceptual experiments which modulation frequencies are
required for high intelligibility. Drullman et al. showed that modulation frequencies above
16 Hz are not required for good intelligibility, and that significant intelligibility remains
when only rates less than 6 Hz are preserved [29]. Arai et al. [5] extended Drullman’s
results to the logarithmic domain and applied various kinds of filters (high-pass, low-pass,
and band-pass) to show that modulation frequencies between 1 and 16 Hz are necessary to
preserve speech intelligibility. Kanedera et al. measured the effect of modulation filtering

to ASR performance and also showed the importance of modulation frequencies between
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1 and 16 Hz [68].

Newer temporal filtering techniques can be roughly classified in one of two cat-
egories: knowledge-driven or data-driven. In knowledge-driven techniques, the filters are
mostly designed based on expert knowledge, i.e., which modulation frequencies are impor-
tant for ASR. In data-driven techniques, some part of the filter design is guided by the
minimization/maximization of an error/goodness score on training data. We will briefly
summarize newer temporal filtering techniques for ASR according to these rough classifi-

cations.

Knowledge-Driven Temporal Filters

Motivated by the perceptual studies on the relationship between intelligibility
and preservation of low modulation frequencies, Kingsbury et al. developed Modulation
Filtered SpectroGram (MFSG) features [71]. MFSG processing steps were designed so that
modulation frequencies outside of the range between 0 and 8 Hz were filtered out, while
modulations at 4 Hz were emphasized. As reported in [71], MFSG outperformed regular
PLP features in noisy and reverberant conditions, but did not outperform RASTA-PLP,
another temporal filtering technique that is also sensitive to slow modulations in a different
way. Combining systems trained on RASTA-PLP features with that of MFSG features

yielded significant performance improvements.

Nadeu et al. also developed temporal filters that not only emphasize certain
regions in the modulation spectrum but also flatten out the modulation spectrum within
these regions [101]. According to [101], this equalization of the modulation spectrum
makes the filtered features a better match for the modeling assumption of typical HMMs
which model the emission of features from a single HMM state as being independent
and identically distributed. His filters emphasized modulation frequencies at 3 Hz, which
happens to be a common syllable rate of speech. Nadeu extended his approach to time
and frequency filtering in [100]. These techniques also led to significant ASR performance

improvements in both clean and noisy conditions.

Measurements of the average magnitude of modulation frequencies at different
auditory frequencies of Mandarin syllables motivated Shen et al. to develop a bank of

RASTA-like temporal filters [82]. The parameters of these filters were set to emphasize
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the important modulation frequencies of their speech data. They measured the difference
between the magnitudes of noise and speech with respect to modulation frequency to
determine which modulation frequencies were important. The lower this difference was
at a particular modulation frequency, the more important this frequency was for speech
intelligibility. They found that for Mandarin syllables in noisy and mismatched conditions
(additive white noise and microphone mismatch) the regions of importance were between

4-8 Hz and between 8-12 Hz.

Ben Milner interpreted temporal filtering techniques as simply a matrix multi-
plication between a temporal filtering matrix and a “stacked” matrix of features formed
by concatenating successive feature vectors [89, 90]. If the temporal filtering matrix con-
sisted of a set of Discrete Cosine Transform (DCT) basis functions and the stacked matrix
consisted of cepstral vectors, Milner called their product Cepstral-Time Matrices (CTMs).
A subset of the elements in CTMs can be used as front-end features for ASR. Keeping a
particular element in a CTM corresponded to choosing which modulation frequencies at
which quefrencies to preserve. He empirically optimized the choices of elements in CTMs
on different tasks and showed that 3.9-11.7 Hz in modulation frequency is best for isolated
digits, 2.84-8.5 Hz is best for connected digits, and 3.9-15.6 Hz is best for a sub-word town

names task [90].

Finally, Yuo et al. developed a robust feature for ASR by temporal filtering of the
autocorrelation trajectories in speech [132]. They reasoned that if noise is uncorrelated
with speech and if the noise is stationary*, then the rate of change of the autocorrela-
tion of noisy speech is equal to the rate of change of the autocorrelation of clean speech;
therefore, this rate of change in the autocorrelation of noisy speech is a good feature to
calculate if you want to get a noise-free representation of the clean speech. Calculating the
rate of change in the autocorrelation sequences is analogous to applying a difference filter
to the autocorrelation trajectories. These authors showed, unsurprisingly, that on artifi-
cially added noisy speech, their temporal filtering technique gave great ASR performance

improvements.

4A big assumption because most noises are nonstationary.
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Data-Driven Temporal Filters

All Neural TRAP-like systems, including the extensions to Neural TRAP pre-
sented in this thesis, are examples of data-derived temporal filters. The hidden units of
the critical-band MLPs learn hyperplane separations in the long-term log energy trajectory
feature space. These hyperplane separations are in fact discriminant temporal filters that
help separate various phonetic sounds within the long-term log energy trajectories. These
discriminant temporal filters are derived from the data because they are learned as a result

of the error-back propagation algorithm with speech training data.

Others have tried to derive temporal filters from data in much the same way as the
TRAP-like systems. Generally, the steps are as follows: first, form either spectral energy
trajectories (spectral energy measurements over a sequence of frames) or feature component
trajectories (like a particular PLP coefficient over a sequence of frames). Next, learn a
linear projection in the space of these spectral energy/feature component trajectories to
maximize (minimize) some goodness (error) function on training data. Finally, use these

linear projections as temporal filters by applying them to incoming trajectories.

Here are a sampling of common linear transformation techniques that researchers
have tried. Principal component analysis (PCA), also known as Karhunen Loeve Transform
(KLT), finds the linear transformation that projects the data onto axes in the directions of
the maximal variation within the data [30]. Linear Discriminant Analysis (LDA) finds a
linear projection that best maximizes the ratio of the between-class scatter to the within-
class scatter of the projected data [30]. When applied to ASR, people generally use sub-
word units like phones or HMM states as class labels for LDA. Independent Component
Analysis (ICA) projects the data into dimensions that are as statistically independent
from each other as possible [79]. Minimum Classification Error (MCE) [66] can be used
to find the linear projection that minimizes the classification error function which is the
likelihood ratio of the correct class models to the incorrect class models, where the classes
are sub-word units like phones.

All of the above linear transformation techniques have been applied in the context
of deriving temporal filters for ASR [10, 124, 81, 115, 117, 116, 61, 60]. These temporal
filters can be applied on individual trajectories of MFCCs as in [81, 61, 60], or on indi-
vidual log critical-band energies as in [10, 124, 115, 117, 116]. These temporal filters can
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also be designed to have built-in robustness to certain environmental conditions by using
training data corrupted by these environmental conditions as in [117]. In general, these
data-driven linear transformation techniques for deriving temporal filters improved ASR
performance more than other knowledge-driven temporal filtering techniques like velocity
and acceleration features or RASTA-PLP. Unlike Neural TRAP and other TRAP-like ex-
tensions, these techniques only involve a linear transformation, while the temporal filters
learned by Neural TRAP are nonlinear transformations capable of capturing more complex

separations in temporal trajectories.

While there has been a lot of activity on deriving temporal filters within each
MFCC coefficient or each critical-band energy trajectory, there is a body of work that allows
for the learning of filters that span regions in the spectro-temporal plane. A simple example
of such systems are the conventional hybrid HMM/ANN MLPs that take 9 frames of PLP
feature vectores as input features and outputs phone probabilities [18]. The hidden units
learn spectro-temporal filters or hyperplane separations in time and frequency. The neural
nets developed by Antoniou et al. also uses more frames as inputs to learn discriminative
spectro-temporal information [4, 3]. Recurrent Neural Nets are similar to these feed-
forward MLPs, except that they allow for feed-back connections that can be used to learn
temporal relations between successive feature vectors [106]. Time-Delay Neural Networks
(TDNNSs) [125] are similar to the standard hybrid HMM/ANN MLP in that they both can

learn temporal relations in the input space of MFCC or PLP features.

Other activity on learning spectro-temporal filters include: Kajarekar’s applica-
tion of LDA jointly in both time and frequency in [67], Somervuo’s experiments with other
types of time-frequency transformations [119, 120], and work by Kleinschmidt et al. [73, 72]
in deriving a set of Gabor shaped filters in time and frequency motivated by the existence of
spectro-temporal receptive fields of neurons in the primary auditory cortex. Kleinschmidt
et al. started from a pool of Gabor filter functions, each of which is defined by a product of
a 2-dimensional Gaussian envelope and a complex exponential function which gives the the
Gabor filter a ripple. From this pool, he picked a subset of these Gabor filters that gave
the best performance on development data. In [73], Kleinschmidt and Gelbart reported a

7% relative improvement on the Aurora2 noisy digits task using this approach.
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Chapter 3

Development of Novel TRAP-Like

Classifiers

Chapter 1 motivated the approach of learning useful information within long
spans of narrow-frequency channels in speech for ASR, and Chapter 2 reviewed previous
related approaches. In this chapter, we introduce two new neural net architectures for the
learning of phonetically discriminant critical-band temporal patterns. The first is called
Hidden Activation TRAP (HAT) and the second is called Tonotopic Multi-Layer Percep-
tron (TMLP). We will describe both of these neural net architectures and the motivation
leading to their design. This chapter also contains a set of initial experiments on a widely
used continuous phone recognition task: TIMIT. We will show how HAT and TMLP re-
duce phone error rates on TIMIT while using 84% fewer parameters than a comparable

Neural TRAP system.

3.1 Improving the Original Neural TRAP

As described in Chapter 2, Neural TRAP [52]! takes a radically alternative ap-
proach to extracting phonetically discriminant information from speech. Instead of ex-
tracting phonetic information from spectral slices of short amounts of time (about 25 mil-
liseconds), as conventional ASR systems do, Neural TRAP extracts phonetic information

from separate frequency channels (critical-bands) spanning the full spectrum over a large

"Recall from Chapter 2 that TRAP is a mnemonic for TempoRAI Pattern.
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Figure 3.1: The Neural TRAP acoustic model with zoomed in view of a critical-band MLP.

amount of time (0.5 second to 1 second). In other words, Neural TRAP learns phonetically
discriminant temporal information within narrow-frequency bands. It is capable of achiev-
ing comparable performance to conventional ASR systems, but using it in combination
with conventional features, researchers have shown significant performance improvements

in many conditions, especially in high noise conditions [53, 64].

Before developing the two new neural net extensions to Neural TRAP, we briefly
review how the Neural TRAP system works. A Neural TRAP acoustic model as shown
in Figure 3.1 consists of two stages of 3-layer fully-connected Multi-Layer Perceptrons
(MLPs). The first stage is a nonlinear mapping from log critical-band energy time trajec-
tories? to critical-band level phonetic probabilities, and the second stage consists of another
MLP that combines these critical-band phonetic probabilities (one set per critical-band)

to obtain the overall phonetic probabilities.

Let us focus our attention on the first stage of the Neural TRAP acoustic model.
For each critical-band, there is an MLP trained using the standard error back-propagation
algorithm [108] to learn phone posteriors by minimizing the cross-entropy [15] between
the network output and target vectors. Each net takes, as input, a half second (or a 1
second as in [53, 112]) long log critical-band energy temporal trajectory consisting of 51

consecutive frames (one frame per 10 milliseconds calculated using a short-term FFT over

2A log critical-band energy time trajectory refers to a time sequence of log critical-band energy values.



36 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERS

25 milliseconds), and the training target is the phone label for the current frame. After
training converges to a minimum, we can interpret the transformations happening in each

of the layers.

Webb and Lowe in [129] derived a general result for nonlinear adaptive feed-
forward layered networks, of which these critical-band MLPs are an example. Their cen-
tral claim was that “minimising the error at the output of the network is equivalent to
maximising a particular norm, the network discriminant function, at the outputs of the
hidden units. The first part of the network is explicitly performing a nonlinear transfor-
mation of the data into a space in which the classes may be more easily separated. The
specific nature of this transformation is constrained to maximise the network discriminant
function.” Although their result was derived with linear output units and sum of squares
error function, a similar result can be derived for softmax output units and cross-entropy
error criterion. According to Webb, the hidden units transform the input into a space that
makes the classes more separate, while the output units map from this hidden space to
the output class (or class probabilities in our case). Applying this interpretation to Neural
TRAP, the hidden units of the first stage critical-band MLPs learn hyperplane separations
in the input space of the 0.5 second long log critical-band energy trajectories. Another
way to look at it is that they learn matched temporal filters on the temporal evolution of
log critical-band energies useful for separating phonetic classes on the temporal evolution
of the log critical-band energy, while the output units map the outputs of the matched

temporal filters to phone probabilities.

In the original Neural TRAP system [52, 112] these critical-band MLPs learn 300
such matched filters for each critical-band. The hidden-to-output layer of these critical-
band MLPs combine the outputs of the matched filters to form phone probabilities. The
actual performance of these critical-band MLPs on phone classification is actually quite
low. One way to see this is by measuring the frame classification accuracy. To compute
the frame classification accuracy (or conversely, the frame classification error rate), we
count how many times the maximum output (i.e., the class with the greatest posterior
probability) of the MLP corresponds to the correct or labeled phone over all the frames in

a test set. The accuracy is the ratio of this count divided by the total number of frames?.

3(Classification error is the ratio of the total number of frames minus this count divided by the total
number of frames.
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‘ Critical-Band H Frequency Range (Hz) H MLP Frame Accuracy (%) ‘

1 18-163 30.99
2 118-267 28.39
3 220-379 29.97
4 329-502 31.69
5 446-637 33.42
6 575-790 33.68
7 720-965 33.07
8 885-1165 32.93
9 1073-1397 31.72
10 1290-1667 30.73
11 1542-1982 29.58
12 1836-2350 30.48
13 2180-2782 28.80
14 2582-3289 27.82
15 3055-3885 27.93
16 3609-4587 28.67
17 4262-5412 29.54
18 5030-6383 30.33
19 5933-7527 29.37
1-19 [ 18-7527 [ 61.85

Table 3.1: Frame classification accuracy for first stage Neural TRAP critical-band MLP
classifiers on the TIMIT cross-validation set. The half power cut-off points of each critical-
band are also displayed. The MLPs are trained to classify 1 of 61 phones and each net has
300 hidden units. Chance performance is 12.13%. The last line in the table is the frame
accuracy for the second stage Neural TRAP merger MLP.
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Table 3.1 shows the frame classification accuracies of first stage Neural TRAP
critical-band MLPs on the cross-validation data from TIMIT. For comparison sake, the
frame classification accuracy from the Neural TRAP merger MLP is also shown. The frame
accuracies for the critical-band MLPs range from 27.82% to 33.68% which is significantly
greater than the chance performance of 12.13%*. Although the frame accuracies for the
critical-band MLPs are much better than chance, they are much lower than the frame
accuracy for the merger MLP which integrates information from the entire frequency range
of the speech data. It seems that there is not enough information within a 0.5 second
long log critical-band trajectory to accurately classify all phones, which is not surprising
considering that different phones may look quite similar within a single narrow-frequency

band.

To improve the Neural TRAP system, we think it is important to further examine
and redesign the critical-band level classifiers. More specifically, we believe that mapping
to phone probabilities at the critical-band level may not be optimal. This leads us to ask

two questions:

1. Can we skip the mapping from the outputs of the matched filters to critical-band

phone posteriors?

2. Is there a better way to train critical-band matched filters?

3.1.1 Can we skip the mapping from the outputs of the matched filters

to critical-band phone posteriors?

We have noted how the low frame classification accuracies suggest that we cannot
make all phone distinctions given only a single critical-band temporal energy trajectory.
We hypothesize that whatever important phonetic information that can be gleaned from
the critical-band trajectory is already captured by the matched filters (critical-band MLP
hidden units). The additional mapping from the matched filters to phone posteriors may
be an extraneous and inaccurate mapping. Why not skip this intermediate mapping and

instead use the outputs from the matched filters from every critical-band as inputs for

“Chance performance assumes a classifier that always chooses the class with the highest prior probability
in the training set. In the TIMIT training data, the silence phone is the class with the highest prior
probability, and it makes up 12.13% of the cross-validation set.
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the second stage merger? In this way, we hope to find a more accurate and parsimonious

model.

3.1.2 Is there a better way to train critical-band matched filters?

Because training MLPs to learn phone posteriors from log critical-band temporal
trajectories is too difficult a task, what categories, instead of phones, should we train the
first stage Neural TRAP MLPs to learn? In [64] the critical-band classifiers are trained to
learn six broad categories based on manner of articulation. One can also imagine training
the critical-band classifiers to other linguistic feature-like classes that can be better distin-
guished at the critical-band level; however, it would be better to learn what categories are
important from data. Furthermore, any training labels that we can specify at the sub-band
level based on full-band phonetic labels may be inaccurate because of potential asynchrony
among the sub-bands [93]. We experiment with a new model for Neural TRAP which con-
sists of a single 4-layer neural network whose architecture resembles Neural TRAP and
whose training procedure obviates the need to specify critical-band categorical targets -
the log critical-band matched filters are learned automatically from data without specifying

critical-band level labels.

3.2 Hidden Activation TRAP (HAT)

To answer the first question above, we have developed a variant of the Neural
TRAP acoustic model that we call Hidden Activation TRAP (HAT). The HAT architecture
is very similar to the Neural TRAP architecture, but it differs in one crucial aspect: the
mappings from the critical-band hidden units to critical-band level phone posterior prob-
abilities are discarded. More specifically, we train a bank of critical-band MLPs whose
inputs are 51 frames of log critical-band energies and target labels are the labeled phone
for the center frame. This training procedure is identical to the first stage training for
the critical-band MLPs of Neural TRAP; however, the choice of how many hidden units is
determined from frame accuracy curves (more about this below). Once the critical-band
MLPs are trained, we “chop off” the hidden-to-output layer of every critical-band MLP,
leaving only the outputs (“activations”) of the hidden layer (hence, Hidden Activation

TRAP). After error back-propagation training, one can interpret these hidden layer acti-
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Figure 3.2: Hidden Activation TRAP (Note: MLP-OL stands for MLP minus the output
layer).

vations as the outputs of discriminatively trained critical-band matched filters. The second
stage of HAT is just like Neural TRAP: a merger MLP (trained using the same training
set and cross-validation set as in the first stage critical-band training) takes the hidden
activations from all the critical-band MLPs and learns the mapping to phone posteriors.

The HAT setup is shown in Figure 3.2.

It may seem that we don’t gain much from this HAT approach except reducing
the number of parameters via the chopping off procedure, but we can further reduce the
number of parameters significantly by reducing the number of matched filters required per
critical-band. In conventional Neural TRAP this number was set to 300 per critical-band.
There are two ways to determine an optimal number of hidden units (or matched filters)
per critical-band. One way is to train a series of critical-band MLPs with an increasing
number of hidden units for every critical-band and then examine where the “knees” in
the frame accuracy curves occur. For every critical-band, we have plotted the MLP frame
accuracy on a cross-validation set versus the number of hidden units in Figure 3.3. From
this figure, we notice that most of the steepest increases in accuracy have already occurred

when the number of hidden units has been increased to 20 or 25.

Another way to determine an optimal number of matched filters for HAT, is to
train several complete HAT models that differ only in the number of matched filters per

critical-band. For fair comparison, we kept the total number of parameters constant (about
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Figure 3.3: Frame accuracies of 19 critical-band MLPs on the TIMIT cross-validation data
as a function of number of hidden units per critical-band.
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Figure 3.4: HAT frame accuracy on the TIMIT cross-validation data as a function of
number of hidden units per critical-band.

160,000 total neural net weights and biases with 1.12 million frames of training data). The
frame classification accuracy of these HAT models on the TIMIT cross-validation data

set has an optimal performance peak at 20 matched filters per critical-band as seen in
Figure 3.4.

3.3 Omne Stage Training: Tonotopic Multi-Layer Percep-
tron(TMLP)

To examine question 2 from above, we have also created a 4-layer MLP that trains
the critical-band matched filter without the need for specifying critical-band level targets.
We call this MLP the Tonotopic Multi-Layer Perceptron (TMLP), which is inspired by the
tonotopic organization of the human peripheral auditory system, where different positions

in the cochlea are sensitive to different frequencies. The first hidden layer of the TMLP is



3.3. ONE STAGE TRAINING: TONOTOPIC MULTI-LAYER PERCEPTRON(TMLP)43

... Tonotopic
Critical-Band Spectrum Layer )
«~—51 Frames (~0.5 sec.)— e o Merging
. ] > o o Layer
[ e T '®) Output:
L d
5 . : O O e '®) Phoneme
3 [ o .
! © © o & o Posterior
g Wiayer3jk Probabiliti
= . E S robabilities
time —_ " o o At Frame f
frame=f layer2,j Outy r

B layer2,j

layerl,i

inﬁ*eq(i) =band 1,t

Figure 3.5: Tonotopic Multi-Layer Perceptron.

tonotopically organized into several sets of hidden units. Each of these sets is constrained
to see inputs coming only from a single critical-band, and together, all of the sets span
the frequency range of speech. The second hidden layer, as well as the output layer are
fully-connected with their previous layers. Figure 3.5 shows the structure of a TMLP. We

also refer to the first layer hidden units as critical-band hidden units.

As in HAT and Neural TRAP we use log critical-band energies as inputs to the
TMLP. After computing the log critical-band energies of speech every 10 milliseconds and
normalizing these energies by subtracting/dividing the mean/standard deviation calcu-
lated over each utterance, we take 51 consecutive frames (about 500 milliseconds) of these
normalized energies as the input layer of the TMLP. The output of the ith first layer hidden
unit for frame f is given by Equation 3.1:

) F4+25

def . .

Olayerl,i = sig Z anreq(i),thayerl,t,i +Blayer1,i (3'1)
t=f—25

where sig(x) is the logistic sigmoid function given in Equation 3.2. N freq(i)t 18 the fth
frame of energy in the one and only one frequency band that the ith first layer hidden unit
is constrained to see. Wiqyer1,1,; and Bjayer1,i are the trainable weights and bias respectively

for the ith unit.

. def 1
sig(z) = T o) (3.2)

The second layer of hidden units takes the outputs of all first layer hidden units
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as inputs. The output of the jth second layer hidden units is given by Equation 3.3:

def .
Olayer2,j = St9 (Z Olayerl,inayeTZ,i,j + BlayerQ,j) (33)
1

Wiayer2,i,j and Bigyero j are the trainable weights and bias respectively for the jth second

layer hidden unit. Finally, the outputs of the TMLP are given by Equation 3.4:

def  exp(Zy)

Outp y = =———=— 3.4
I Y exn(Zi) (34)
where Zj, is given by Equation 3.5:
def
Zk = Z OlayerQ,leayer3,j,k + BlayerS,k (35)
J

Wiayers,jk and Bigyer3 . are the trainable weights and bias for the kth output unit.

Just like the HAT and Neural TRAP merger training, the TMLP is trained with
output targets that are “1.0” corresponding to the phone labeled in the current frame, and
“0” for all others. The TMLP is also trained to minimize cross-entropy error by using the
error back propagation algorithm. Unlike HAT and Neural TRAP, the critical-band level
categories of the TMLP corresponding to the critical-band hidden units are learned as a
part of the overall error back-propagation. This obviates the need to specify any kind of
critical-band training targets because the one stage training learns what is important for

phone discrimination.

3.4 Discussion: Learning in HAT and TMLP

Having described the two new architectures for learning discriminant temporal
information, it is instructive to discuss the nature of the speech information that these
two models can extract. Just as in the Neural TRAP case, both HAT and TMLP are
designed to learn phonetically discriminant information within long spanning (around 500
milliseconds) narrow-frequency channel (critical-bands) energy trajectories. All of these
models first constrain the learning within critical-bands, and then integrate the discrimi-
nant information from all critical-bands. Another way to say this is that Neural TRAP,

HAT, and TMLP impose a constraint upon the learning of temporal information from the
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time-frequency plane: correlations among individual frames of energies from different fre-
quency bands are not directly modeled. Instead, they model correlation between long-term

energy trajectories from different frequency bands.

It is also interesting to note that TMLP places less constraints on the learning
of discriminant temporal trajectory information than HAT and Neural TRAP. Because
TMLP is a single neural network whose parameters are learned via the gradient descent
error back-propagation algorithm, the critical-band hyperplane separators in TMLP are
not constrained to learn discriminants that are optimal for separating phone targets at
the critical-band level. They can learn whatever is best for the next hidden layer to do its
job. HAT and Neural TRAP learn the critical-band hyperplane separators that are best for
separating the phones based on the critical-band level labels that we provide. As described
in Sub-section 3.1.2, our critical-band level phone labels may not be the right classes to
learn, and they may also be inaccurate. Because HAT is a more constrained model than
TMLP, the family of distributions that TMLP can learn is larger, and because HAT has
the same connections as TMLP, the family of distributions that HAT can learn is a subset
of that for TMLP. Figure 3.6 shows a cartoon picture of the family of distributions learned

by these two new Neural TRAP extensions.

While it is true that TMLP can potentially model a richer family of distributions
compared with HAT, sometimes constraints can be helpful. In cases when training data is
sparse, constraints can help the classifier focus on learning the important details. Also, in
cases when there is noise in the data, constraints can help the classifier ignore irrelevant

and misleading information.

3.5 Experimental Setup

In subsequent sections, we will present experiments demonstrating the perfor-
mance of HAT and TMLP on a small phone recognition speech task, so in this section, we
describe our experimental setup. We use the TIMIT database [40] for the experimental
work in this chapter. The TIMIT speech database, recorded at TT and transcribed at MIT
(hence TIMIT), consists of about 4.27 hours of speech spoken by 630 different speakers
from the 8 major dialect regions in the United States. It was recorded at 16,000 Hz with a

close talking microphone in the studio. The prompts spoken by the speakers were designed
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Space of Distributions
Capable of Being Modeled
by TMLP

Space of Distributions
Capable of Being Modeled
by HAT

Figure 3.6: Cartoon of the family of distributions modeled by TMLP and HAT.

to provide a good coverage of pairs of phones and to be diverse in sentence types and pho-
netic contexts. See timit.readme file found in [40] for more details. There are a total of
2,342 unique prompts found in TIMIT, and they do not sound completely like sentences
people would naturally utter. For example, the most famous TIMIT prompt is: “She had
your dark suit in greasy wash water all year”. Because of the odd nature of the prompts
and because there are so few of them, speech recognition researchers have tended to use

TIMIT for phone recognition experiments only.

Using the recommended training set consisting of 3,696 utterances, we set aside
10% of these utterances (370 utterances, 111,446 frames, .31 hours) for a separate cross-
validation set, and keep the remaining 90% (3,326 utterances, 1,124,823 frames, 2.81 hours)
for training our various MLPs. The cross-validation set is used for adjusting the learning
rate during MLP training and also for determining the early stopping point to prevent
overfitting. For all of our test results we use the complete TIMIT test set consisting of

1,344 utterances (410,920 frames, 1.14 hours) and 51,664 total phone tokens.

In the experiments of this chapter, we use the hybrid ANN/HMM speech recog-
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nition framework [18] described in Chapter 2. The artificial neural nets estimate phone
posteriors. These posteriors are then scaled by the phone priors to produce the scaled like-

lihoods needed for the HMM back-end Viterbi decoder. We use the Chronos decoder [107]

as well a standard phone bigram language model during decoding.

Each of the various neural nets is trained to learn the original 61 TIMIT phones
shown in Table 3.2. The best phone sequence decoded by Chronos is at first a sequence
of these 61 original phones. In many previous studies using TIMIT, researchers map these
61 phones into a smaller set of 39 phones [77] and report their results using this smaller
phone set. Table 3.2 also shows the mapping from the original 61 phones to this smaller 39
phone set. We perform the same mapping on the best phone sequence decoded. To obtain
our final phone error rate which is the sum of %substitutions+%deletions+%insertions,
we perform a standard dynamic programming string alignment to the TIMIT test set’s

reference phone sequences which are also mapped to the 39 phone set’.

In the following sections we present results in clean condition as well as in noisy
and reverberant conditions. Please note, however, that all training was done using clean
speech, so that we can test the robustness of each of the systems to unseen conditions. We
have experimented with two noisy conditions: Mercedes Benz noise (recorded inside the
car) and exhibition hall noise (containing mainly speech babble, e.g., people talking in the
background). The noise files come from the Wall Street Journal Task for the AURORA2
evaluations [56]. We add these noises to the clean files at different signal to noise ratios.
We also convolve the clean signals with a room impulse response to give a moderately
reverberant testing condition. This room impulse response has a 60 dB reverberation time
of 0.8 seconds which means that it takes 0.8 seconds for the echoes to become 60 dB less
powerful than the original speech signal. We are grateful to Jim West, Gary Elko, and
Carlos Avendano who collected this impulse response in the Bell Labs Varechoic chamber

and made it available to our research group [126, 9].

The features fed to our various TRAP-like acoustic models are calculated from

the clean, noisy and reverberant speech waveforms. These features are log critical-band

"The phone error rates that we obtain using this simple 61 to 39 mapping are actually underestimates
of our potential performance. Lower phone error rates can be obtained by performing the mapping at an
earlier stage. By summing the posterior probabilities corresponding to phones from the 61 phone set that
are mapped to a single phone from the 39 phone set, posteriors for the 39 phone set can be obtained.
Using these 39 phone set posteriors for decoding leads to lower phone error rates, but for simplicity chose
to perform the mapping after the decoding step.
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‘ ASR Phoneme Symbols ‘

| TIMIT 61 | Example | TIMIT 39 || TIMIT 61 | Example TIMIT 39 |
b bee b 1 like 1
d day d el bottle |
g gay g r right r
p pea p wire w
t tea t y yes y
k key k hh hay hh
dx dirty dx hv ahead hh
bel (b closure) h# iy beet iy
dcl (d closure) h# ih bit ix
gel (g closure) h# eh bet eh
pcl (p closure) h# ey bait ey
tcl (t closure) h# ae bat ae
kel (k closure) h# aa father aa
jh joke jh aw about aw
ch choke ch ay bite ay
s sound s ah but ax
sh shout zh ao bought aa
z Z00 z oy boy oy
zh azure zh ow boat ow
f fish f uh book uh
th thin th uw boot uw
v vote v ux toot uw
dh then dh er bird er
m moon m axr butter er
em bottom m ax about ax
n noon n ax-h suspect ax
nx winner n ix debit ix
ng sing ng h# (non-speech events) h#
eng washington ng pau (pause) h#
en button n epi (epenthetic silence) h#
q (glottal stop) h#

Table 3.2: The 61 original TIMIT phones, their 39 phone equivalents, and an example of
the phone.
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energies calculated for every critical-band and for each frame every 10 milliseconds. The
mean and standard deviation of the energies from each critical-band are calculated and
subtracted (divided in the case of standard deviation) on a per utterance basis. 51 con-
secutive frames of the log energies from each critical-band form the input features for our
systems at the time corresponding to the 26th frame. These 51 consecutive log energy val-
ues form critical-band energy trajectories spanning a time context of half a second which

is twice as long as the average syllable duration of 250 milliseconds.

3.6 Clean Results

In order to demonstrate the performance of our two new temporal ASR systems
in clean conditions, we trained and tested four systems according to the experimental setup
described in section 3.5. This section presents results of experiments in clean conditions,
where “clean” refers to the fact that we did not artificially contaminate either the training
or test sets with noise nor reverberation. Speaker and speaking variations, however, are

still present within the recordings.

We trained a Neural TRAP baseline, a HAT, a TMLP, and a conventional hybrid
ANN/HMM ASR system that uses 9 frames of PLP features. The baseline Neural TRAP
system is similar to the one presented in [53]. This Neural TRAP system has 300 hidden
units per critical-band MLP and a merger MLP with 317 hidden units for a total of
1,032,377 trainable parameters. The HAT system has 20 hidden units per critical-band
and also 317 hidden units for the merger. The total number of parameters for the HAT
system is 159,935. The TMLP system also contains 20 hidden units per critical-band, 317
hidden units for the merger and has the same number of parameters as the HAT system.
Finally, for comparison with a conventional ANN/HMM system, we made a PLP system
that uses 12th order PLP [48] plus energy and first and second derivatives as input features.
These features undergo a per-utterance mean and variance normalization and are then fed
to an MLP with 9 frames of input context which estimates the phone posteriors and
contains roughly 160,000 parameters also. The results on the uncorrupted TIMIT test set
are shown in Table 3.3 where PLP denotes the conventional ANN/HMM system. We have
also added a column for relative improvements of the new temporal systems compared with

the baseline Neural TRAP. Because PLP differs significantly from the temporal systems
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System Phone Error Relative
Description Rate (%) | Improvement (%)
Baseline:
Neural TRAP 32.7 -
HAT 29.8 8.9
TMLP 31.0 5.2
PLP | 297 N/A

Table 3.3: Phone error rates of 3 different temporal ASR systems and a typical ASR system
on the full TIMIT test set mapped to 39 phones under clean conditions.

System Phone Error Relative
Description Rate (%) | Improvement (%)
Baseline:
PLP 29.7 -
PLP+Neural TRAP 27.2 8.4
PLP+HAT 26.5 10.8
PLP+TMLP 26.8 9.8

Table 3.4: Phone error rates of the frame-wise product of posterior combination of 3
temporal MLPs and a PLP MLP on the full TIMIT test set under clean conditions.

which focus on learning long narrow-frequency patterns rather than short spectral slices,

the relative improvement comparison to Neural TRAP is not appropriate.

In addition to these stand-alone results, we have also tried combining all tem-
poral systems with the conventional PLP system. Because the PLP system is extracting
information from spectral slices and not from critical-band energy trajectories, we expect
to see great improvements when the temporal systems are combined with PLP. Although
there are more elaborate ways to combine posterior probabilities, we simply multiplied the
posterior probabilities from the two different systems and scaled them by the square of the
priors for each phone. This implies the that the two probability streams are conditionally
independent given the underlying phone. This combination technique has worked well in
prior combination studies [65]. The phone error rates of the combination systems on the

TIMIT test set are shown in Table 3.4.
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3.7 Clean Discussion

HAT outperforms Neural TRAP by 2.9% absolute on the TIMIT test set consist-
ing of 51,664 phone tokens. This result is significant at the 0.05 level using a “difference
of proportions” significance test. This particular significance test assumes that the two
error rates are samples from a binomial distribution, and then tests the two binomials
for being significantly different using a Z-score. TMLP also outperforms Neural TRAP,
but this time by only 1.7% absolute. This too is statistically significant at the 0.05 level.
The difference in performance between HAT and TMLP is also statistically significant at
the 0.05 level; however, the difference between HAT and the conventional PLP system is
not statistically significant. From this, we see that both of the two new temporal systems
outperform Neural TRAP, and HAT is comparable in phone recognition performance to

the conventional PLP system.

With only 20 discriminative patterns per critical-band in the HAT and TMLP
systems, we can achieve better phone recognition performance in clean conditions than
Neural TRAP which uses 300 discriminative patterns per critical-band. Additionally, the
HAT and TMLP systems have 84% fewer parameters than Neural TRAP. Because HAT
outperforms Neural TRAP, we can begin to answer question 1 from above; dropping the
additional mapping from hidden unit activations to critical-band phone posteriors helps.
Unfortunately, in clean conditions, it does not yet seem helpful to unconstrain the critical-
band learning targets because TMLP does not outperform HAT. Constraints are often
useful when there is not enough data, suggesting perhaps that TMLP might not be getting

enough data for training.

The combination of all of these temporal systems with the conventional PLP
system all give wonderful performance improvements over the PLP system alone (8.4% -
10.8% relative improvements). The difference in performance between the combination of
HAT with PLP and the combination of Neural TRAP with PLP is statistically significant
at the 0.05 level; however, the difference between the Neural TRAP combination and the
TMLP combination is only significant at the 0.01 level. HAT gives the most improvement

of all the temporal systems in combination with PLP.
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Test System Description
Condition Neural TRAP | HAT | TMLP | PLP
Reverberant 56.3% 54.2% | 58.0% | 59.2%
Benz Noise
20 dB 35.9% 33.8% | 35.5% | 36.5%
10 dB 42.7% 42.2% | 42.8% | 42.2%
0 dB 55.0% 56.7% | 54.2% | 50.5%
Exhib. Noise
20 dB 41.6% 39.9% | 41.8% | 40.4%
10 dB 61.4% 63.4% | 62.0% | 60.0%
0 dB 102.2% 95.7% | 86.5% | 95.9%

Table 3.5: Phone error rates of the four systems on the TIMIT test set mapped to 39
phones under various noise and reverberant conditions. The noises are added at 3 different
signal-to-noise ratios (20 dB, 10 dB, and 0 dB), and the best system performances are in
bold.

3.8 Noisy and Reverberation Results

We have also tested our new temporal systems in noisy and reverberant con-
ditions. For noisy test conditions, we artificially added two types of noises at different
signal-to-noise ratios. For the reverberant conditions, we convolved a room impulse re-
sponse to the test sets as described in Section 3.5. Table 3.5 shows the stand-alone phone
error rates of Neural TRAP, HAT, TMLP, and PLP, while Table 3.6 shows the phone error

rates for the three temporal systems in combination with PLP.

3.9 Noisy and Reverberation Discussion

It has been shown in [114], that in reverberant conditions, systems that use dis-
criminant temporal filters are more effective than conventional features. Here, we see that
all of the other temporal systems significantly outperform PLP in moderate reverberation.
HAT performs the best at 54.2%, and Neural TRAP is better than TMLP. Again, in combi-
nation with PLP, these temporal systems add additional improvements to PLP alone. The
combination of HAT and PLP is the best followed by Neural TRAP and PLP, and TMLP
and PLP. From this, we conclude that the long-term temporal processing techniques are

more effective in dealing with reverberation than the shorter-term spectral processing of
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Test Combination System
Condition PLP+ Neural TRAP | PLP+HAT | PLP+TMLP
Reverberant 52.9% 52.4% 54.1%
Benz Noise
20 dB 30.9% 30.7% 30.9%
10 dB 35.9% 36.2% 36.3%
0 dB 44.9% 45.8% 44.9%
Exhib. Noise
20 dB 36.2% 35.8% 36.5%
10 dB 54.4% 55.7% 55.6%
0 dB 79.9% 65.8% 81.3%

93

Table 3.6: Phone error rates of the combined systems on the TIMIT test set mapped to
39 phones under noise and reverberant conditions. The noises are added at 3 different
signal-to-noise ratios (20 dB, 10 dB, and 0 dB), and the best system performances are in
bold.

PLP. Constraining the critical-band hidden units to learn discriminants useful for critical-
band phone targets as we do with HAT and Neural TRAP is more effective than TMLP’s

global optimization in reverberant conditions.

When corrupting the test set with Mercedes Benz noise which predominantly has
spectral energy in the low frequencies, we see that the performance depends on the signal-
to-noise ratio (SNR). In 20 dB and 10 dB SNRs, HAT outperforms both Neural TRAP and
TMLP, but in 0 dB SNR, both Neural TRAP and TMLP outperform HAT. Compared with
PLP, the temporal systems only show better results in 20 dB SNR. The combination results
are quite comparable with none of the temporal systems showing significant advantages over
one another except both the Neural TRAP and TMLP combinations with PL.P outperform
the HAT combination at 0 dB SNR. As in all previous conditions including the clean
condition, the combination of the temporal systems with PLP greatly reduces the phone

error rates compared to non-combined systems.

Exhibition hall noise is the toughest noise condition because the noise is speech.
Among the temporal systems, there is no clear winner because HAT does best at the 20
dB SNR level, and Neural TRAP is the winner at the 10 dB SNR level, and TMLP wins
at the 0 dB SNR level. PLP also performs at roughly the same levels as the temporal
systems. Finally, the combination of PLP with the temporal systems provide a huge boost

in performance, lowering the phone error rates greatly.
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3.10 Narrow-Band Discriminant Temporal Patterns

As described in Section 3.1, one can consider that the critical-band hidden units
of HAT and TMLP learn matched temporal filters useful for phonetic classification on
the temporal evolution of the log critical-band energy. These matched filters detect cer-
tain narrow-band discriminant temporal patterns for phonetic classification; when these
patterns are present in the speech, critical-band hidden units tuned to detect these pat-
terns output high activation values. As with any filter, these matched filters also have a
frequency response. Since these matched filters operate on the time evolution of energy
within a frequency band of speech, their frequency response shows which rates of change
in the energy trajectory a matched filter is sensitive to. These rates are called modula-
tion frequencies and are described further in Section 2.1.5. It has been shown by many
researchers that modulation frequencies between 0 and about 16 Hz are important for

speech recognition [58, 59, 29, 5, 68].

It is interesting to see what are the narrow-band discriminant temporal patterns
that HAT and TMLP have learned after training them to perform phonetic classification on
TIMIT. In Appendix C we plot cluster centroids of these patterns for both HAT and TMLP.
More specifically, we take the input-to-hidden unit weights of each critical-band hidden
units (these are the matched filters), and then cluster them agglomeratively since there are
too many of them to display and since many of them resemble each other. We then plot
these patterns and their corresponding modulation frequency responses. Figures 3.7, 3.8
show examples of discriminant temporal patterns and corresponding modulation frequency
responses learned by the HAT trained on TIMIT, and Figures 3.9, 3.10 show examples for
the TMLP trained on TIMIT. The discriminant temporal patterns are centered at frame
0 (x-axis) and range from 25 frames in the past (-25) to 25 frames in the future (25).
There are 51 total frames which spans about 500 milliseconds of context. The y-axis for
the patterns is the magnitude. The x-axis for the corresponding modulation frequency

response is the modulation frequency, while the y-axis is the filter gain in decibels.

From these examples and others like them in Appendix C, we observe that all
of the patterns are sensitive to modulation frequencies between 0 and about 20 Hz. This
is nearly consistent with previous findings about the importance of low modulation fre-

quencies for speech recognition. Another interesting observation is that some of these



3.10. NARROW-BAND DISCRIMINANT TEMPORAL PATTERNS 55

Matched Filter Frequency Response
(O t 1

2 /\ : -3dB
(]
©
= -10
= 1 o
o) ©
[§°]
= . A ~20

Vi
-25-15 -5 5 15 25 0 20 40
Frames Modulation Frequency

Figure 3.7: An example input to critical-band hidden unit weight pattern (matched filter)
for the HAT trained on TIMIT and its corresponding frequency response.
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Figure 3.8: An example input to critical-band hidden unit weight pattern (matched filter)
for the HAT trained on TIMIT and its corresponding frequency response.
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Figure 3.9: An example input to critical-band hidden unit weight pattern (matched filter)
for the TMLP trained on TIMIT and its corresponding frequency response.
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Figure 3.10: An example input to critical-band hidden unit weight pattern (matched filter)
for the TMLP trained on TIMIT and its corresponding frequency response.
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patterns resemble temporal patterns used by other researchers for the temporal filtering of
speech. Figures 3.7 and 3.9 resemble the “Mexican hat” filters which detect high energy,
and Figures 3.8 and 3.10 resemble the “derivative” filters which detect onsets of energy.
Both of these patterns were learned when applying Linear Discriminant Analysis (LDA)
to temporal energy trajectories in [10, 124, 115, 67]; moreover, some of the patterns in Ap-
pendix C look similar to the Mean TRAPs found in [112]. From a reusability standpoint,
the similarity of these patterns in future applications important. Since certain temporal
patterns seem to appear over and over again as a result of training using different ap-
proaches on different training databases, it would be reasonable to fix them and reuse
them in future ASR applications on different tasks as a preprocessing step in feature ex-
traction. In Chapter 5 we look at the patterns learned by HAT and TMLP trained on
conversational telephone speech and also compare them to patterns learned using both

Principal Components Analysis (PCA) and LDA.

3.11 Conclusions

In this chapter we have developed two new variants to Neural TRAP: Hidden Ac-
tivation TRAP (HAT) and Tonotopic Multi-Layer Perceptron (TMLP). Both have been
shown to drastically reduce the number of parameters required while improving the phone
recognition performance under clean condition compared to Neural TRAP. We have found
that approximately 20 discriminative temporal filters per critical-band is sufficient to per-
form TIMIT phone recognition. By showing how HAT outperforms Neural TRAP, we have
shown that skipping the mapping from the outputs of the discriminant matched filters to
critical-band phone posteriors is helpful. So far, we have not noticed any significant ad-
vantages to allowing the critical-band filters to be globally optimized (as in TMLP) and

not constrained to learn separators for critical-band level phone targets (as in HAT).

In noisy and reverberant conditions, these temporal systems (Neural TRAP, HAT,
and TMLP) show varying degrees of improvements. Under additive noise conditions all
temporal systems are comparable to the PLP system. In a moderately reverberant condi-

tion, all temporal systems outperform the traditional PLP system.

We have also seen how effective it is to combine the temporal systems which learn

discriminant long-term narrow-frequency patterns with conventional systems which learn



58 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERS

discriminants in spectral slices. All combination results in every condition tested outper-
form all uncombined results. Our clean combination results are close to the best published
TIMIT phone recognition error rate that we are aware of. The PLP4+HAT combination
error rate on clean, 26.5%, is slightly greater than the best published TIMIT phone recog-
nition error rate of 24.2% in [3]. Finally, the narrow-band discriminant temporal patterns
learned by both HAT and TMLP in this chapter preserve the low modulation frequencies

of speech which are important for recognition.
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Chapter 4

Temporal Systems for CTS

In the previous chapter, we introduced two new temporal ASR systems, HAT
and TMLP, and showed promising improvements over Neural TRAP on a small phone
recognition task. In this chapter, we explore the integration of Neural TRAP into a state-
of-the-art Gaussian mixtures-based HMM recognizer. Our goal is to develop a baseline
temporal ASR system setup that is capable of competitive performance on the challenging
task of conversational telephone speech (CTS). Once this baseline setup is developed, we
will be able to compare various temporal feature extraction techniques like HAT and TMLP

to Neural TRAP on CTS in subsequent chapters.

Our basic approach to the baseline setup uses the phone posteriors estimated
by Neural TRAP to augment conventional front-end features. This chapter presents a
series of experiments on progressively more difficult speech recognition tasks that we use
to guide the design of our baseline setup and to show how our approach can improve ASR

performance over a wide range of speech data.

4.1 Posterior Probabilities as Features

For decades, the feature extraction component of speech recognition engines has
consisted of some form of local spectral envelope estimation, typically with some simple
transformation. Current typical front-ends consist largely of the Mel cepstrum [87] or
PLP [48] computed from an analysis window of roughly 25 or 30 ms surrounding a central

signal point, stepped along every 10 ms. These features are often augmented by delta
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Figure 4.1: Block diagram of a conventional ASR system using PLP front-end features for
a standard Gaussian mixtures-based HMM system.

features [38] and transformed by various linear transformations (e.g., linear discriminant
analysis and heteroskedastic discriminant analysis) which makes the effective temporal
context of these features around 90 milliseconds. A picture of the conventional ASR system

using PLP features is shown in Figure 4.1.

These standard front-end features were designed based on expert knowledge. In
recent years, there has been a push for more data-driven approaches for deriving front-
end features. One such approach, Tandem acoustic modeling [49, 34, 32] as described in
Chapter 2, uses an MLP to learn posterior probabilities of phonetic units. These posterior
probabilities are then transformed and used as features for a standard Gaussian mixtures-
based hidden Markov model (GMHMM). The transformations applied to the posteriors
are designed to make the resulting features more Gaussian and decorrelated which tend to
help the Gaussian mixture models with diagonal covariance matrices better model these
features. The transformations are the logarithm followed by principal components analysis

(PCA). Figure 4.2 shows a typical Tandem ASR system.

MLPs learning posterior probabilities of sub-word units are excellent feature ex-
tractors. The ideal feature for ASR is one in which variabilities such as speaker differences
are suppressed, while variabilities in phonetic units are enhanced. Phonetic posterior
probabilities possess these qualities. In [134], Zhu et al. calculated the variance of speaker
adaptive transform (SAT) matrices across all speakers in a CTS test set for standard PLP
features as well as for MLP-based features. The variance of each component in the SAT
matrix is directly proportional to the amount of speaker variability present in the corre-
sponding feature component. The components in the PLP features showed much higher

speaker variability than the components in the MLP-based features.
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Figure 4.2: Block diagram of the Tandem ASR system. It uses transformed posterior prob-
abilities estimated by an MLP as data-derived front-end features for a standard Gaussian
mixtures-based HMM system.

Another benefit of the Tandem setup is how it is readily amenable to classifier
combination. Multiple MLPs can be trained to extract discriminant speech information
in vastly different ways and then combined to give much better estimates of phonetic
posteriors. In Chapter 3, we found that combining a standard spectral MLP classifier with
each of the temporal MLP classifiers (Neural TRAP, HAT, and TMLP) gave significant
performance improvements. Using simple combination techniques within the Tandem setup
is straightforward and can lead to significant reductions in word error rates. Figure 4.3
shows the combination of a spectral MLP classifier and a temporal MLP classifier in the

Tandem setup.

One weakness of the Tandem setup which was observed when researchers at the
International Computer Science Institute tried to use the Tandem setup for recognizing
digits in noisy test conditions was that the feature extracting MLPs trained in clean con-
ditions did not always estimate the phone posteriors very well in noisy test conditions. As
with many discriminative training techniques, the resulting classifiers can be susceptible
to mismatch between training and testing conditions. To alleviate some of the effects of
mismatch, Stephane Dupont proposed to use the MLP-based features to augment the ex-

isting conventional features instead of replacing them [12]. When the MLP-based features
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Figure 4.3: Block diagram of a multi-stream Tandem ASR system. Two MLPs extracting
discriminant speech information in different yet complementary ways are used to derive
posterior probability-based front-end features. The outputs of these MLPs are combined,
transformed, and then used as front-end features for a standard Gaussian mixtures-based
HMM system.

give poor estimates of phone posteriors, the original PLP features might help the HMM
back-end to still come up with the correct classification. Figure 4.4 shows the augmen-
tation of standard PLP features with MLP-based features coming from a combination of

two different MLPs.

By combining MLP classifiers that extract information differently than conven-
tional features, the resulting augmented Tandem ASR system can capture speech infor-
mation from three (or more when combining more than two MLP classifiers) different
snapshots. The first snapshot comes from the conventional features which allows the rec-
ognizer to capture information from narrow spectral slices. The second and third snapshots
come from the different MLP approaches. We will test the effectiveness of the combination
of an MLP recieving 9 frames of conventional PLP features with Neural TRAP in the fol-
lowing sections. The 9 frame PLP/MLP can capture speech information from intermediate
width spectral slices (100 ms), while Neural TRAP extracts information from long-term

narrow-frequency log energy trajectories.

This Tandem augmentation approach proved to be very effective in reducing word
error rates on small digit recognition tasks [12]; however, success in small recognition tasks

does not necessarily scale to more difficult tasks where the vocabulary is much larger and
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Figure 4.4: Block diagram of a multi-stream augmented Tandem ASR system. Two MLPs
extracting discriminant speech information in different yet complementary ways are used to
derive posterior probability-based front-end features. The outputs of these MLPs are com-
bined, transformed, dimensionality reduced, and then concatenated to conventional front-
end features. The resulting augmented front-end feature is input to a standard Gaussian
mixtures-based HMM system.

the speaker variabilities are much greater and the systems used tend to model much more
detail and use more elaborate techniques that can be incorporated given large amounts
of training data. Our goal in the rest of this chapter is to test the effectiveness of this
Tandem augmentation approach on a series of more difficult speech recognition tasks as
well as to determine a good operating configuration for the setup. When using this Tandem
augmentation approach there are some system issues that must be addressed for optimal
performance. The first one is what type of combination technique should be used for the
MLP classifiers. The second one is to determine the best number of MLP-based feature
dimensions to keep after PCA. Keeping too many features may require much more training
data and parameters for the GMHMM, while too few may mean a loss in useful information

for recognition.
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4.2 Combination Techniques and Dimensionality Reduction

We are interested in testing out several simple frame-wise posterior combina-
tion techniques that have performed comparably to more complicated combination tech-
niques [65, 94]. All of these frame-wise posterior combination techniques can be represented
by a weighted sum of posteriors or log posteriors. Generally, the combined posterior prob-

ability of the kth phone, g, given the features X can be written as Equation 4.1:
P(qg|X) = w1 P(gr|X1) + waP(qx|X2) (4.1)

where P(gx|X1) and P(qx|X2) are the posterior probabilities (or log posterior probabilities)
of the phone class g given evidence from stream 1 (X7) and stream 2 (X3) respectively
for a single frame of speech. w; and ws are the stream weights which depend on the

combination technique used.

We have tested three frame-wise posterior combination methods: the average of
the posteriors combination (AVG); the average of log posteriors combination (AVGLog),
and finally, the inverse entropy weighted combination (INVENT) [94]. The first two com-
bination methods essentially assume that each MLP feature stream is equally important,
while the entropy-based combination assumes that the MLP feature with lower entropy is
more important than an MLP feature with high entropy. This is intuitively correct, since
a low entropy posterior distribution (such as would occur with a high single peak) implies

strong confidence in class identity.

For both the average combination and the average of the log combinations |,
w1=wy=0.5, but in the average of the log combinations, we first apply log to the posteriors
before the weighted sum in Equation 4.1. In the inverse entropy-based posterior combina-
tion, w; is the inverse entropy computed over one frame for the MLP output from stream 3.
Then all of the ’w’s are normalized so that they sum to one. A threshold of 1.0 is applied
for all entropy calculations. If the entropy for a frame from an MLP is greater than 1.0,
it is set to a large value (e.g., 10,000) so that the weight is a very small number. Note
that the inverse entropy combination technique dynamically weights each stream. The
calculated entropies change from frame to frame, but in both average combinations the

weights remain fixed at 0.5.

The other main issue for the augmented Tandem setup is the optimal dimen-

sionality of the MLP-based features. Our neural nets are trained to learn posteriors of
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46 monophones, so without truncating the number of features after PCA the total aug-
mented feature vector will have a size of 85 (39 original PLP features + 46 posterior-based
features = 85 augmented features). Increasing the number of features can potentially in-
crease separability of the classes, but adding too many features may lead to the curse of
dimensionality: the number of training examples and parameters in the model required for
high performance grows exponentially with respect to the number of feature dimensions.
Keeping all 46 posterior-based features may also not be necessary because some features

contain more information than others.

Another technical detail that we encountered when implementing our augmented
Tandem setup is the effect of a tuning parameter called the Gaussian weight!. In the SRI
recognition system, this weight controls the relative contribution of each of the Gaussian
components in the Gaussian mixture model to the overall likelihood score. The likelihood

of a particular frame of features X is given by Equation 4.2.

P(X|q) = miPi(X|q)” (4.2)

where m; is the ith mixture weight, P;(X|qg) is the ith Gaussian, and ~y is the Gaussian
weight parameter. There are other tuning parameters like the Gaussian weight that are
important in practice for good recognition performance. Some of these include the lan-
guage model weight and word transition weight which balance the relative influence of the
language model scores and word transitions respectively on the scores of possible sentence
hypotheses. We investigate the effect of tuning the Gaussian weight, while varying the

number of dimensions of the MLP-based features on recognition performance.

4.3 Experimental Setup

In all of the experiments we perform in this chapter, our baseline feature vector
consists of 12th order PLP coefficients plus energy computed over a 25 ms frame window
every 10 ms. 1st and 2nd order deltas are calculated and appended together to yield a
39 dimensional baseline feature. We also normalize the PLP features by subtracting the

mean and dividing by the standard deviation calculated over an entire conversation side.

'This is a tuning parameter that is found in the SRI recognition system and may not exist in other large
vocabulary recognition systems.
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For contrast, we augment the baseline PLP features with a combination of two
probability-based feature streams: PLP/MLP features and Neural TRAP features. For
the PLP/MLP stream, we train an MLP using 9 consecutive frames of the baseline PLP
features as inputs and 46 phone targets generated from forced alignments using SRI In-
ternational’s state-of-the-art Gaussian mixtures-based HMM ASR system. For the Neural
TRAP stream, the first stage MLPs take PCA transformed log critical-band energy tra-
jectories formed by taking 51 consecutive frames of log critical-band energies every 10ms.
These critical-band MLPs are trained with the same phone targets as used for training the
PLP/MLP stream. A merger MLP (trained with these same phoneme targets) combines

the critical-band MLPs’ outputs to give one estimate of phone posteriors every 10 ms.

We combine the outputs of the Neural TRAP classifier and the PLP/MLP using
one of the frame-wise posterior probability combination techniques described above. After
combination, we take the log of the posterior vector to reduce its skew (in practice this
makes the posterior vector more Gaussian), and then orthogonalize and reduce the dimen-
sionality of the posterior vector using PCA. The resulting variables are then appended to
the original PLP cepstra to form the augmented feature vector. It is important to note that
this combined-augmented feature integrates information about speech from three different
time scales. The original PLP features capture short-term information (about 25 millisec-
onds), the PLP/MLP stream captures intermediate-term information (approximately 100
milliseconds), and the Neural TRAP stream captures long-term information (around 500

milliseconds). Refer to Figure 4.4 for a block diagram of this process.

In  what follows, we refer to these augmented features as
PLP-+combomethod(Streams) features, where combomethod can be one of the three
frame-wise posterior combination methods: the average of the posteriors combination
(AVG); the average of log posteriors combination (AVGLog), and finally, the inverse
entropy weighted combination (INVENT). Streams refers to the PLP/MLP feature stream
and the Neural TRAP feature stream. These features serve as the front-end features for
our recognition experiments. We use a stripped-down version of SRI’s state-of-the-art
Hub-5 conversational speech transcription system for our HMM back-end. In particular,
the back-end that we used was similar to the first pass of the system described in [122],
using a bigram language model and within-word triphone acoustic models. For fairness

of comparison, all HMMs have roughly the same number of trainable parameters. The
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HMMs also share the same training set with all of the neural net systems.

4.4 Stage 1: The Numbers Task

As noted previously, all the basic techniques employed here were originally de-
veloped using quite small tasks. In particular, prior to the experiments reported here,
the MLP-based feature transformations, the temporal features (Neural TRAP), and the
methods used to combine and use them within the augmented Tandem approach were all
trained and tested on a number of smaller tasks including the OGI Numbers task [20] (the
Numbers95 corpus). In these earlier Numbers experiments, Numbers data was used for
both training and testing. As explained earlier augmenting the baseline features with a
combination of PLP/MLP and Neural TRAP-based features improves ASR performance.

Whether this result scales to larger tasks is an open question.

In the remaining sections of this chapter, we want to apply this augmented Tan-
dem approach to a series of larger and more difficult ASR tasks. Our final goal is to create
an augmented Tandem system for the difficult task of conversational telephone speech
(CTS). Simply taking the features and applying them to the CTS task risked failure with-
out obvious diagnostic potential. Consequently, we designed a three-stage approach to the
development process. Our initial step was to train on a combination of CTS data and read

speech, and then test on OGI Numbers.

4.4.1 The Numbers Task Description

The training set for this stage was an 18.7 hour subset of the old “short” SRI
Hubb training set for CTS. 48% of the training data was male and 52% female. 4.4 hours
of this training set comes from English CallHome [19], 2.7 hours from Hand Transcribed
Switchboard [45], 2.0 hours from Switchboard Credit Card Corpus [42], and 9.6 hours from
Macrophone [13] (read speech which contains many examples of continuous numbers). All
of these training sources are large vocabulary corpora (consisting of more than 25,000
different words). In contrast, the OGI Numbers corpus which we use as the test data

consists of only 32 words.

We divided the entire OGI Numbers corpus into three sets. One was used for
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system parameter tuning, one for development testing, and another for final testing. We
used the official dev set (0.6 hours) of the Numbers95 corpus to tune the language model
weight and word transition weight. We report our results on the final test set which

contains 1.3 hours of speech (2,519 utterances and 9,699 word tokens).

After training MLPs for posterior estimation, we calculated the classification ac-
curacy on the development set. For PLP/MLP, this accuracy was 67% computed over
415,985 frames, and for Neural TRAP it was 68%. Combining the two using inverse en-
tropy weighting or simply averaging the posterior gave roughly the same frame classification
accuracy of about 70.9%. Thus the two MLPs can be simply combined to significantly im-

prove frame accuracy, which suggests that they provide information that is complementary.

4.4.2 Results on the Numbers Task

Using the training set defined above, we trained triphone gender-independent
HMMs using the SRI speech recognition system. Although the recognition task was num-
bers, the HMMs were trained for broader vocabulary and speaker coverage. Thus we hoped
that the conclusions reached with this training data might generalize better to other tasks.
The testing dictionary contained thirty words for numbers and two words for hesitation,

and we used a simple bigram language model trained on our Numbers tuning set.

Relative
System Numbers Test || Reduction
Set WER WER
PLP Baseline 4.0% -
PLP+AVG(Streams) 3.3% 17.5%
PLP+AVGLog(Streams) 3.2% 20.0%
PLP+INVENT(Streams) 3.3% 17.5%

Table 4.1: Word error rate (WER) and relative reduction of WER on Numbers using
different combination approaches. Streams denotes the PLP/MLP feature stream and the
Neural TRAP feature stream.

We incorporated PLP/MLP and Neural TRAP features by frame-wise poste-
rior combination. The combined features were then reduced in dimension to 17 us-
ing PCA and concatenated to the baseline PLP features to create an augmented fea-

ture vector of dimension 56. As noted previously, we used several frame-wise poste-
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Figure 4.5: Word error rate on the Numbers 95 test set as a function of the number of
PCA dimensions kept in the PLP+INVENT(Streams) system without tuning the Gaussian
weight.

rior combination methods: the average of posteriors PLP+AVG(Streams), the average
of log posteriors PLP+AVGLog(Streams), and the inverse entropy weighted combination
PLP+INVENT(Streams) (see Table 4.1). All three performed roughly the same, achieving

a 17.5-20% relative reduction in word error rate.

Note, before we tried tuning the Gaussian weight, truncation of the PCA output
(that is, eliminating some low-variance components) was critical to performance. Keeping
the top 17 dimensions was the optimal length on all of our tuning data without changing
the Gaussian weight. Figure 4.5 shows the effect of the PCA dimensions kept on word
error rate on the Numbers95 test set without changing the Gaussian weight. The per-
formance curve is from the augmented Tandem system using inverse entropy combination
(PLP4+INVENT(Streams)). Notice that the WER is quite sensitive to the number of di-
mensions. Just changing the number of dimensions by two can cause degradations of .4%

absolute.
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These experiments showed that the combination of the three features (baseline
PLP, PLP/MLP, and Neural TRAP) can improve the recognition performance over using
the baseline PLP features alone. On the other hand, all the approaches to posterior
combination were roughly equivalent in this case. These preliminary conclusions would

later be tested on tasks of increasing complexity.

4.5 Stage 2: The Top-500 Word CTS Task

Our methods continued to work well on the small vocabulary continuous numbers
task even when we did not train explicitly only on continuous numbers. Before applying
our approaches to the full vocabulary Switchboard task, we considered a second stage
task, that of recognizing the 500 most common words? in Switchboard 1 [41]. There were
several advantages to using this intermediate task. First, since the recognition vocabulary
consisted of common words from Switchboard, it was likely that error rate reduction would
apply to the larger task as well. Second, there were many examples of these 500 words in
the training data, so less training data was required than would be needed for the full task.
This in turn reduced training time accordingly. Lastly, recognition complexity in this task

was smaller, which also reduced experimental turn-around time.

4.5.1 Top-500 Words Task Description

For training, we created a subset of the “short” training set used at SRI for CTS
system development, which we referred to as the Random Utterances of Short Hub or the
RUSH set. This RUSH set consists of utterances from 217 female and 205 male speakers,
which was the same number of speakers as the short CTS training set, but contains one
third of the total number of utterances. The female speech consists of 0.92 hours from
English CallHome, 10.63 hours from Switchboard I [41] with transcriptions from Mississippi
State [28], and 0.69 hours from the Switchboard Cellular Database [43]. The male speech
consists of 0.19 hours from English CallHome, 10.08 hours from Switchboard I, 0.59 hours
from Switchboard Cellular, and 0.06 hours from the Switchboard Credit Card Corpus.

The top-500 word test set was a subset of the 2001 Hub-5 evaluation data

2This task was proposed by our colleague George Doddington.
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(Eval2001). Given the 500 most common words in Switchboard I, we chose utterances®

from the Eval2001 data in which 90% or more of the words in the utterance were on the
word list. In other words, we allowed at most 10% of the words in an utterance to be
out of vocabulary (OOV) words. 49.6% of the utterances in the Eval2001 data met this
requirement, and the total OOV rate was 3.2%. We partitioned this set into a tuning set
(0.97 hours, 8242 total word tokens) and a test set (1.42 hours, 11845 total word tokens).
We used the tuning set to tune system parameters like word transition weight and language
model weight, and we determined word error rates on the test set. The language model
used in both the 500 word task as well as the full vocabulary task was the first-pass bigram

language model used by SRI for the large vocabulary evaluations in 2000.

4.5.2 Results on Top-500 Words Task

Using the baseline PLP features, we trained gender dependent triphone HMMs
on the 23 hour RUSH training set, and then tested this system on the 500 word test
set achieving a 43.8% word error rate (see Table 4.2, which shows the word error rates
of our various systems on the top-500 word test set). As seen in the table, the word
error rate was reduced about 10% relative by augmenting the baseline features with the
combined PLP/MLP and Neural TRAP features. In this case, we trained gender dependent
PLP/MLP feature nets and Neural TRAP systems.

500 Word || Relative
System Test Set || Reduction
WER WER
PLP Baseline 43.8% -
PLP+AVG(Streams) 39.4% 10.0%
PLP+AVGLog(Streams) 39.5% 9.8%
PLP+INVENT(Streams) 39.2% 10.5%

Table 4.2: Word error rate (WER) and relative reduction of WER on the top-500 word test
set of systems trained on the RUSH set using different combination approaches. Streams
denotes the PLP/MLP feature stream and the Neural TRAP feature stream.

All three combination methods performed roughly the same. Even though the

more complicated inverse entropy combination technique performed only slightly better

3 An utterance is defined to be a string of words separated by less than 0.3 seconds, and greater than
0.3 seconds of separation at the beginning and end.
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than the simple average combination methods, both styles have their appeal. The averaging
methods are certainly simple and don’t rely on any estimation method. On the other hand,
the inverse entropy combination technique is potentially robust to poor classifier streams.
We experienced this property for one of our later (CTS) experiments. Due to a bug in our
procedures, we unintentionally combined a badly degraded Neural TRAP stream with the
other features using both methods. When probabilities were combined using the AVG and
AVGLog methods, the degraded stream hurt performance badly. On the other hand, the
inverse entropy-weighting reduced the importance of the poor stream so that the overall
performance essentially matched what we had for a feature that consisted of the baseline
PLP features concatenated with the PLP/MLP feature alone. Thus, the entropy-based
approach to combination appears to be more robust to unexpectedly poor streams. We
expect that this property might be particularly useful for future efforts in which we might
combine a larger number of streams where some streams may sometimes provide less useful

information.

As in the numbers task stage, we plot the WER curve showing the effect of the
number of dimensions after PCA for the PLP+INVENT(Streams) system in Figure 4.6.
Without tuning the Gaussian weight, we again see that the best choice of number of
dimensions is still at 17, and the WER is quite sensitive to this choice (especially to
overestimates of the dimension). When changing the number of dimensions kept from 17

to 19 the WER jumps from 39.6% to 40.4% on the top-500 word tuning set.

4.6 Stage 3: Full CTS Vocabulary

Having seen how our approaches scaled with increasing test set complexity, we

applied these approaches to the third and last stage: full vocabulary CTS task.

4.6.1 The Full CTS Task Description

We tried using our previously defined RUSH training set for this task and found
it inadequate for training given the increase in vocabulary. Error rates on Switchboard
test sets were unacceptably high for the RUSH training set. Instead, we used SRI’s entire
“Short” CTS training set from which RUSH was derived. This set contained a total of
68.95 hours of CTS. 2.75 hours of English CallHome, 31.30 hours from Mississippi State
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PCA dimensions kept in the PLP+INVENT(Streams) system without tuning the Gaussian
weight.
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transcribed Switchboard I, and 2.03 hours of Switchboard Cellular form the data from
female speakers. The male speaker data came from 0.56 hours of English CallHome,
30.28 hours from Switchboard I, 1.83 hours from Switchboard Cellular, and 0.20 hours of
Switchboard Credit Card Corpus. As in the 500 word task, we trained triphone gender
dependent HMMs as well as gender dependent PLP/MLP and Neural TRAP systems.

For testing, we used the 2001 Hub-5 Switchboard evaluation set (Eval2001) from
which our top-500 word test set was derived. This evaluation set contains a total of 6.33
hours of speech, 62,890 total word tokens. For tuning our system parameters, we used a

subset of the 2001 Hub-5 development set.

4.6.2 Results on the Full CTS Task

The baseline system achieved a 43.8% word error rate on the Eval2001 set (see
Table 4.3, which shows the word error rates of our various systems on the Eval2001 set).
The augmented features reduced the error rate by about 7% relative. For this task, there

was a small penalty for the AVGLog combination method in comparison to the other

approaches.
Hub-5 Relative
System EVAL2001 || Reduction
WER WER
PLP Baseline 43.8% -
PLP+AVG(Streams) 40.5% 7.5%
PLP+AVGLog(Streams) 41.0% 6.4%
PLP+INVENT(Streams) 40.6% 7.3%

Table 4.3: Word error rate (WER) and relative reduction of WER on the 2001 Hub-
5 evaluation set of systems trained on SRI's “Short” CTS training set using different
combination approaches. Streams denotes the PLP/MLP feature stream and the Neural
TRAP feature stream.

4.7 Dimensionality Tuning

In the previous sections we showed how all the various frame-wise posterior com-

bination techniques yielded similar results. Now, we want to further investigate the effect
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Description Dimensions Retained
15 | 17 | 19 | 25 | 35

RUSH Training
Top-500 Test WER (%) || 38.4 | 38.5 | 39.0 | 39.2 | 394
NSHS5 Training
Eval 2001 WER (%) 39.7 | 39.6 | 39.4 | 39.1 | 39.3

Table 4.4: The effect on word error rates from the PLP+INVENT(Streams) features while
varying the number of dimensions retained after PCA and tuning the Gaussian weight.

on performance when modifying both the number of dimensions kept after PCA and the
value of the Gaussian weight in the SRI recognition system. In previous experiments, we
found that performance was optimal when keeping only the top 17 dimensions after PCA
and that small changes in the dimensionality led to large changes in performance. In the
experiments below, we find that this effect can be lessened by tuning the Gaussian weight.
To tune this Gaussian weight parameter, we simply set the Gaussian weight to various
values and ran the recognizer on our tuning data. Then we picked the Gaussian weight
value that gave the smallest WER and used this value for recognition of the test set. Ta-
ble 4.4 shows the effects on WER when tuning both the number of dimensions after PCA
and the Gaussian weight. The features used are the baseline 39-dimensional PLP features

augmented with the inverse entropy combination of PLP/MLP and Neural TRAP.

The differences in WER for different dimensions range from 1.0% absolute in
the top-500 word test to 0.6% absolute on the Eval 2001 test set. These differences are
statistically significant which means that the number of dimensions kept after PCA is still
vital for good performance; however, the absolute differences in WER when the number of
dimensions is close to the minimum is quite small and statistically insignificant. For the
top-500 word test the minimum WER is achieved with 15 dimensions, while in the case of
Eval 2001 the best number of dimensions is 25. Compare, for example, the WER for the
top-500 word test at 15 and 17 dimensions. These only differ by .1% absolute (38.4% vs.
38.5%). Also compare the WER on Eval 2001 at 25, 19, and 35 dimensions. The absolute
differences are only .2%-.3% which is quite small considering the large jump in number of
dimensions. When tuning the Gaussian weight and the number of dimensions concurrently,
performance still depends to a large degree on the number of dimensions kept, but once

the number of dimensions is near the optimal, the WER differences are not significant.
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4.8 Conclusion

We applied the PLP/MLP and the Neural TRAP features, developed for a very

small task, to a series of successively larger problems. We found that:

1. Word error rate was significantly reduced for the small tasks as well as the larger

tasks,

2. The combination methods, which gave equivalent performance for the smaller task,

were also comparable on the larger tasks,

3. And tuning the Gaussian weight concurrently with the number of dimensions was an

important step to achieve optimal performance.

Regarding the first point, the approach of using a combination of PLP/MLP and
Neural TRAP features to augment the baseline PLP features consistently improves ASR
performance on a variety of training/testing sets. An absolute error rate reduction of over
3% on Switchboard is quite significant. However, the typical relative reduction in error is
somewhat smaller for the larger tasks (ranging from 20% on the Numbers task to 7% on the
full CTS task). Thus, having statistically significant error rate reduction may scale, but
the degree of improvement may not without further work using the CTS task. Nonetheless,
even a 7% relative improvement is often of significant interest for larger tasks like CTS.
For such tasks, sizable improvements are typically only obtained by a combination of many

small innovations.

The second observation seems to be unequivocally confirmed in these three stages
of experiments - we observed no consistent (scalable) advantage to using any of the three
chosen methods for combining posteriors as part of the process of generating probability-
based front-end features. On the other hand, as noted earlier, the inverse entropy method
appears to be quite robust to catastrophic degradations of feature streams. We also should
emphasize the limitation of this experiment, in which we were only combining two streams,
both of which were fairly effective for phonetic discrimination. If we begin to use a signifi-
cantly larger number of streams, some streams will be more likely to be ineffective at least
some of the time, and a dynamic weighting method like the inverse entropy approach may

show a clearer advantage. This view seems to be supported by earlier work at IDTAP [94].
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The third observation is a practical matter of tweaking the system to achieve the
best possible results. While we cannot make any generalization about the exact number
of dimensions to keep after PCA for any other speech recognition task, we can say that
the number of dimensions to keep should be tuned. Furthermore, tuning the Gaussian
weight in conjunction with the dimensionality can lessen the importance of getting the

exact optimal dimensionality.

Finally, we have achieved our goal of setting up a competitive baseline recognizer
for CTS. The word error rates reported in this chapter are around 40% on Eval 2001
which is similar to the performance of a typical state-of-the-art recognizer performing only
a first-pass decode (i.e., a simple Viterbi decode using a bigram language model without
later adaptation, 4-gram language model, system combination, etc.) on similar CTS test

data [35].



78

Chapter 5

Comparison of Temporal Systems

for CTS

In Chapter 2 we introduced several new temporal systems based on the Neu-
ral TRAP idea: Hidden Activation TRAP (HAT) and Tonotopic Multi-Layer Perceptron
(TMLP). Each of these temporal systems learn discriminant phonetic information within
long-spanning narrow-frequency channels. We developed ASR system configurations that
utilize Neural TRAP for improving performance on conversational telephone speech (CTS)
in Chapter 4. Now we are poised to undertake a comparative study between various ap-
proaches incorporating information from long time spans (about 500 milliseconds) using the
ASR system configurations introduced in Chapter 4 for the improvement of performance

on CTS. Specifically, we are interested in comparing;:

1. The narrow-band constraint of learning long-term information versus unconstrained

versions,

2. The nonlinear approach to learning phonetically discriminant critical-band informa-

tion versus various linear approaches,

3. And various nonlinear MLP-based approaches with each other.

We also corroborate one of the key findings about temporal systems in the previous chapters
as well as in previous work: temporal systems offer complementary phonetic information

in combination with conventional systems that extract phonetic information from shorter
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time spans over the entire spectrum. We find that the combination of a conventional front-
end feature (spanning approximately 25 milliseconds), a conventional MLP-based feature
(spanning about 100 milliseconds), and a temporal system-based feature (spanning around

500 milliseconds) achieves impressive performance improvements on CTS.

5.1 Various Temporal Systems

In this section we describe all of the different approaches to learning long-term
speech information for phonetic classification. Because these approaches extract informa-
tion in time, we refer to these approaches as temporal systems. Typical ASR front-end
features extract information from short-term spectral slices of about 25 milliseconds, while
traditional hybrid ANN/HMMs model medium-term spectral chunks spanning about 100
milliseconds by learning transformations over 9 consecutive frames of features. All the
temporal systems below extract information from long-term speech energies spanning ap-
proximately 500 milliseconds. Each of the temporal systems can be grouped into one of
three categories based on whether there is a narrow-frequency band constraint and whether

the initial transformation on the spectral energies is linear or nonlinear.

The starting point for all of these temporal systems is the log critical-band energy
spectrum of speech. Every 10 milliseconds in the speech signal, we apply a centered 25-
millisecond Hamming window and then calculate the squared magnitude of a 256-point
FFT. 15 Critical-band energies are calculated from these squared magnitudes by averaging
adjacent magnitudes within each of the 15 critical-band filters. We then apply the log and
normalize by subtracting the mean and dividing by the standard deviation calculated over
all frames' within a single utterance. See Figure 1.2 in Chapter 1 for an illustration of this

process.

5.1.1 Unconstrained Approaches

In the unconstrained approaches, we allow the MLP classifiers to learn any infor-
mation contained within the 15 critical-bands x 51 frames of log critical-band energy input.

Essentially, we simply feed 51 consecutive frames (about 500 milliseconds) of log critical-

'A frame corresponds to the speech measurements calculated every 10 milliseconds.
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Figure 5.1: Architecture for unconstrained approach.

band energies from all 15 critical-bands to the MLP classifier and let it learn what it needs
to estimate the phone posteriors. We have experimented with two different fully-connected
MLPs: a 3-layer MLP consisting of a single hidden layer, and a 4-layer MLP consisting
of two hidden layers. Figure 5.1 illustrates the unconstrained approach for building a

temporal system.

It is important to note that these unconstrained temporal systems can learn
any kind of relationship among all of the 15x51=765 log energy values. For example,
these unconstrained temporal systems can directly model events such as high energy at
low frequencies 20 frames before the current frame concurrently with high energy at high
frequencies 23 frames after the current frame. The main difference between the 3-layer
and 4-layer MLP is an extra hidden layer in the 4-layer MLP which may simplify the
job of learning phone posteriors by breaking the intermediate modeling into two stages.
The number of first and second layer hidden units in the 4-layer MLP was determined
by optimizing the frame classification accuracy under the constraint of keeping the total
number of weights and biases the same as the total for the 3-layer MLP (516,000 weights
and biases). The 3-layer MLP has 765 input units, 636 hidden units, and 46 output units,
while the 4-layer MLP has 765 input units, 318 first hidden layer units, 750 second hidden
layer units, and 46 output units. In what follows we refer to the 3-layer MLP system by
“15 ¢ 51 MLP3 and the 4-layer MLP system by “15 « 51 MLP}”".

All MLPs in this chapter are trained on 46 phone targets derived from forced
aligned phone labels provided by SRI’s state-of-the-art ASR system [121]. The training

procedure proceeds as explained in Chapter 2 where the weights and biases are modified
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to reduce an error measurement between the training targets and MLP outputs. After
training, the outputs approximate posterior probabilities of the target classes which are
phones in our case. For fairness of comparison, all temporal systems have the same number
of trainable parameters (516,000 trainable parameters on about 30 hours of speech per
gender, corresponding to approximately 12,000,000 frames, for frames-to-parameters ratio
of about 23.). Also, for all MLPs, the hidden units have a sigmoid nonlinearity and the

output units have a softmax nonlinearity.

5.1.2 Constrained Linear Approaches

In contrast to the unconstrained approaches, the constrained approaches first re-
strict the classifiers to learn information within critical-band energy trajectories spanning
half a second. These constrained architectures are forced to represent temporal struc-
ture. We investigate several architectures that partition the learning into two constrained
stages. The first stage learns what is important for phonetic classification given individual
critical-band energy trajectories of 51 frames (about 500 milliseconds), and the second stage
combines what was learned at each critical-band to learn overall phone posteriors. This
“divide and conquer” approach to learning splits the task into two smaller and possibly

simpler sub-learning tasks.

In this subsection we describe linear approaches to learning narrow-frequency
temporal information. The first of these two-stage architectures calculates principal com-
ponent analysis (PCA) transforms on successive 51-frame log critical-band energy trajecto-
ries for each of the 15 bands. We use the resulting transform matrices to orthogonalize the
temporal trajectory in each band, retaining only the top 40 dimensions per critical-band.
PCA projects the original 51 dimensional energy trajectory in directions of maximal vari-
ance. Figure 5.2 shows how we then use these transformed (and dimensionally reduced)
critical-band “features” as input to an MLP that estimates phone posteriors. This merger

MLP has 750 hidden units.

In a related approach, we replace PCA with linear discriminant analysis (LDA)
“trained” on the same phone targets used for MLP training. This transform projects the log
critical-band energy trajectories of a single band onto vectors that maximize the between-

class variance and minimize the within-class variance for phone classes. We also keep the



82 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTS

Stage 1:
Critical-Band
. Stage 2:
Linear Tranforms Merger MLP

Critical-Band Spectrum

—~<——51 Frames (~0.5 sec.) —>

Merging
MLP Output:
Phone

Posterior
Probabilities
at Time t

frequency

Figure 5.2: Architecture for constrained linear approaches.

top 40 dimensions after the LDA projection and send them into a merger MLP with 750
hidden units. We henceforth denote the two two-stage linear approaches as “PCA4(0" and
“LDA4 respectively.

5.1.3 Constrained Nonlinear Approaches

We also experiment with five constrained nonlinear approaches. The first four of
these approaches are based on the Neural TRAP architecture where critical-band MLPs
are trained to learn phone probabilities separately on each of the 15 bands of 51-frame
log critical-band energy trajectories. Once trained, we use the outputs at different points
in these critical-band MLPs as inputs for a second stage merger MLP that combines and
transforms this critical-band information into estimates of phone posteriors. The goal of
comparing these first four approaches is to discover what form of critical-band informa-
tion is most suitable for the second stage merger MLP. Are the hidden activations the
most suitable, are the critical-band level phone probabilities the best for classification per-
formance, or something else? The fifth constrained nonlinear approach is the Tonotopic
Multi-Layer Perceptron (TMLP) which learns all of the discriminant critical-band hidden

unit parameters as a result of a single global error back-propagation algorithm.

Figure 5.3 shows the first four nonlinear two-stage architectures. In the first of

these architectures, the input to the second stage is the dot product of the log critical-



5.1. VARIOUS TEMPORAL SYSTEMS

Stage 1:

Critical-Band MLPs Stage 2:

Merger MLP

Critical-Band Spectrum MLP

«— 51 Frames (~0.5 sec.) —

; Output:
Mergin
7;\%;) g Phone
Posterior

frequency —

Probabilities
at Time t

ogcnmea. CPitical-Band MLP (Zoomed View)

Band Energy Critical-Band
‘Inputs Hidden Units
n

t+25 "‘MaTched Filters"
t+1
t
t-1
I +-25 ()

Sigmoidal Hidden
Unit (Zoomed)

Output:

. Critical-Band
¢ Class Posterior
Probabilities

Use outputs after:
@for’ HAT Before Sigmoid,

@for HAT,

for Neural TRAP, or
@for Neural TRAP Post Softmax

Softmax Output
Unit (Zoomed)

Figure 5.3: Architecture for constrained nonlinear approaches.
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band energy inputs with the input to hidden unit weights of the corresponding critical-band
MLP. Another way to say this is that the values before the sigmoid in each critical-band
hidden unit are used as the inputs to the second stage merger MLP. We refer to this
architecture as “HAT Before Sigmoid’ because it uses the hidden activations before the
sigmoid nonlinearity as inputs to the merger. While this first approach consists of a linear
matrix multiply, we categorize it in this subsection because the matrix is learned as part
of a structure that includes nonlinear sigmoid functions, which have a significant effect on

the values learned.

The second approach, Hidden Activation TRAP or “HAT”, takes the outputs of
each hidden unit as the input to the merger MLP. The third approach takes the values
after the hidden-to-output weight matrix multiplication, but just before the final softmax
nonlinearity of the critical-band MLPs. This approach is equivalent to the Neural TRAP
architecture, so it is denoted as “Neural TRAP”. The fourth approach uses the regular acti-
vations from the critical-band MLPs that are phoneme posterior probabilities conditioned
on the log critical-band energy inputs. This nonlinear approach is denoted as “Neural

TRAP Post Softmax”.

As discussed in more detail in Chapter 3, the critical-band MLPs trained to
approximate critical-band phone posterior probabilities do not achieve high classification
accuracy suggesting that phone classification at the critical-band level is very difficult. We
developed HAT to show that whatever useful information within the critical-band is already
captured in the critical-band hidden unit representations, and that further mapping from
this hidden representation to critical-band phone probabilities is unnecessary and leads
to poorer overall classification accuracy. The comparisons of these Neural TRAP-based

temporal systems corroborate these earlier findings in the context of ASR on CTS.

The last of the nonlinear approaches to learning temporal information is the
TMLP which is fully described in Chapter 3. Figure 5.4 shows the TMLP setup. TMLP
has the same connections as HAT except that the critical-band hidden units are learned via
a global error back-propagation algorithm. This allows the TMLP to learn a richer class
of distributions because the critical-band hidden units are not constrained to minimize

classification error of critical-band level phone targets.

The choice of number of critical-band level hidden units as well as the number

of merger hidden units for the five systems described above is optimized for HAT while



5.2. TWO CONVENTIONAL FEATURES 85

- N
Critical-Band Spectrum
—~——51 Frames (~0.5 sec.) —>

T Output:

& Phone

3 Posterior

g Probabilities

e at Time t

Critical-Band TMLP
\ Layer Y.

g J
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fixing the total number of trainable parameter to about 516,000. Using 40 hidden units
per critical-band and 750 hidden units in the merger achieves the best frame accuracy
result for HAT on the 2001 Hub-5 evaluation data (Eval2001). This choice may not be
optimal for Neural TRA P systems, but we will explore the effect of having a larger number

of critical-band units for Neural TRAP in Section 5.4.8.

5.2 Two Conventional Features

The typical choice for front-end features in state-of-the-art ASR systems is ei-
ther Mel-Frequency Cepstral Coefficients (MFCC) or Perceptual Linear Predictive (PLP)
features. Both derive features from very short time spans (about 25 milliseconds). In
the Tandem ASR system as described in [49], MLP-based features are derived from 9
consecutive frames of PLP features which span an intermediate time context (about 100
ms). In the experiments that follow, we compare each of the various temporal systems in
configurations that augment the conventional short time span features with and without

frame-wise combination with the intermediate time MLP-based features.

We use the SRI 2003 evaluation system’s conventional front-end feature for the
short time span features. These features come from 12th order PLP features plus energy
with the first three derivatives. This 52 dimensional feature is transformed and reduced

in dimension to 39 via a heteroskedastic linear discriminant analysis (HLDA) transforma-



86 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTS

tion trained on Gaussian state targets. We denote this short-term conventional feature
as “HLDA(PLP+3d)”. Our intermediate time MLP-based features come from a fully-
connected 3-layer MLP trained on the same phone targets used to train the temporal
systems. This MLP takes 9 frames of 12th order PLP features plus energy with the first
two derivatives as input, and we refer to this as “9 Frame PLP MLP”. The PLP features
are mean and variance normalized over an entire conversation side before being used as
inputs to the MLP. This MLP has about 516,000 parameters for fair comparisons with the

temporal systems.

5.3 ASR System Configurations

5.3.1 Experimental Setup

For all of the experiments reported in this chapter, we show test results on the
2001 Hub-5 evaluation data (Eval2001), a large vocabulary conversational telephone speech
test set consisting of a total of 2,255,609 frames (6.27 hours) and 62,890 words. We
use the 2001 Hub-5 development data (Devel2001) to tune the language model weight,
word transition weight, and the Gaussian weight. We optimize these weights to maximize

performance on Devel2001, and then use the optimal values for recognition on Eval2001.

The training set that we use for both MLP and HMM training consists of about
68 hours of conversational telephone speech data from four sources: English CallHome,
Switchboard I with transcriptions from Mississippi State, and Switchboard Cellular. This
training set corresponds to the one used in [97] without Switchboard Credit Card data.
Training for both MLPs and HMMs was done separately for each gender, and the test
results presented later reflect the overall performance on both genders. We hold out 10%
of the training data as a cross-validation set in MLP training. For fairness in comparison,
all MLP-based feature extractors have roughly the same number trainable parameters
(about 516,000 on about 30 hours of speech per gender, corresponding to approximately

12,000,000 frames, for a frames-to-parameters ratio of about 23.).

Once the MLPs are trained, we use them to generate various front-end features
for the back-end SRI recognizer in a similar manner as was done in [34]. More specifically,

we use these MLP-based features in one of three system configurations:
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Figure 5.5: In the stand-alone Tandem ASR system configuration, the phone posterior
probabilities of an MLP classifier are transformed and used as front-end features for the
SRI Gaussian mixtures-based HMM recognizer.

1. stand-alone Tandem features,

2. augmenting standard short-term HLDA (PLP+3d) features,

3. and in combination with the intermediate-term 9 Frame PLP MLP features and

augmenting standard short-term HLDA (PLP+3d) features.

The back-end SRI recognizer that we use is similar to the first pass of the system described

in [122] with a bigram language model and within-word triphone acoustic models.

5.3.2 Stand-Alone Tandem

The first ASR configuration that we use for our comparison tests is the stand-
alone Tandem feature setup. This setup allows us to test how well a particular MLP
is at extracting useful phonetic information by itself. The MLP’s phone posteriors are
transformed and used as the front-end feature for the back-end Gaussian mixtures-based
HMM recognizer. This stand-alone setup is pictured in 5.5. The box labeled “Temporal

Classifier” is one of the various temporal systems described earlier.
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Figure 5.6: In the augmented feature ASR system configuration, the phone posterior
probabilities of an MLP classifier are transformed, dimensionality reduced, concatenated
with the short-term HLDA(PLP+3d) features, and used as front-end features for the SRI
Gaussian mixtures-based HMM recognizer.

5.3.3 Augmented Feature

In the augmented feature configuration, the MLP-based feature extractor is used
to augment the standard short-term HLDA(PLP+3d) features. Specifically, we take the
phone posterior outputs, apply the log, and perform PCA. In Chapter 4 we found that
keeping the top 25 dimensions from the MLP feature stream gives the best recognition
performance. In this chapter, we continue to keep the top 25 dimensions after PCA, and
then concatenate these MLP-based features to the standard short-term HLDA (PLP+3d)
features. The resulting 64 dimensional feature is used as the input features for the SRI
Gaussian mixtures-based HMM recognizer. This configuration allows us to see how much
improvement can be achieved by augmenting a short-term information stream with a long-
term information stream. Figure 5.6 shows a block diagram of this augmented feature

configuration.

5.3.4 Combined-Augmented Feature

The combined-augmented feature configuration utilizes all three temporal con-
texts: short (around 25 milliseconds), intermediate (about 100 milliseconds), and long

(approximately 500 ms). First, the intermediate-term 9 Frame PLP MLP phone poste-



5.4. RESULTS 89

Gaussian Mixtures-
Based

e | 1 Frame of Concatenate Hidden Markov

Analysis PLP Features Model:
SRI's ASR System

1 Frame of
9 Frames of PLP MLP-Based Features

PCA (25)
Dimensionality
Reduction

Spectral Classifier:
PLP MLP

Speech

Single Frame

Posterior Combination
Log

—>| Critical-Band

EnergyAnalysis

15 Bands x 51 Frames
Log Critical-Band
Spectrum

Temporal Classifier

Figure 5.7: In the combined-augmented feature ASR system configuration, the phone
posterior probabilities of a long-term MLP classifier are combined with the posteriors of
an intermediate-term MLP classifier, transformed, dimensionality reduced, concatenated
with the short-term HLDA (PLP+3d) features, and used as front-end features for the SRI
Gaussian mixtures-based HMM recognizer.

rior probabilities are combined with the long-term temporal system posteriors using the
inverse entropy combination method [94] described in Chapter 4. We then apply the log
and reduce the dimensionality to 25 via PCA. Finally, we concatenate this 25 dimensional
MLP-based feature with the short-term HLDA (PLP+3d) features and use the resulting 64
dimensional feature as inputs to the SRI Gaussian mixtures-based HMM recognizer. This
configuration makes it possible to test the additional performance improvements we get

when combining all three temporal contexts. This configuration is depicted in Figure 5.7.

5.4 Results

In what follows, we report the word error rate results on Eval2001 for all of the
various feature configurations. We use a difference of proportions significance test with 0.05
as the default level to determine statistical significance in our comparisons. For example,
anytime we say that system A is significantly better than system B, we mean that the
difference in performance between system A and B is statistically significant under this
significance test at the 0.05 level. For all of the MLP-based features, we include the frame

accuracy which is a measure of how well an MLP classifies the phone classes at the frame
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System WER on
Description Eval2001
(%)

Non-Augmented
HLDA(PLP+3d) 37.2

Table 5.1: Word error rate performance on Eval2001 of a system using conventional feature
extraction based on modeling spectral slices.

level. Also note that for fairness of comparisons, the back-end Gaussian mixtures-based

HMMs all have roughly the same number of trainable parameters.

5.4.1 Conventional Features

When using the conventional short-term HLDA (PLP+3d) features, a simple for-
ward decoding of Eval2001 by the SRI recognizer achieves a 37.2% word error rate (WER)
as shown in Table 5.1. For a simple forward decoding pass without adaptation and system
combination, 37.2% on Eval2001 is respectable. Indeed, this was state-of-the-art perfor-

mance a few years ago.

Table 5.2 summarizes the results when using the intermediate-term (about 100
milliseconds) 9 Frame PLP MLP feature. It has a frame accuracy of 67.57%, which is pretty
good for MLP classifiers on Eval2001. When we use the transformed posteriors from the
9 Frame PLP MLP as features, the SRI recognizer scores a 41.2% WER on Eval2001.
This is much worse than the short-term feature alone (41.2% vs. 37.2%), but when we
concatenate the dimensionality reduced 9 Frame PLP MLP feature with HLDA (PLP+3d),
the system reduces the WER to 35.6%. This is a 4.3% relative reduction in WER from
the system that uses the HLDA(PLP+3d) features alone. Relative reductions of 3% or
more are typically considered successes when trying to improve system performance on the

challenging CTS tasks.

5.4.2 Unconstrained Approaches

The unconstrained approaches for temporal systems ideally could learn any clas-
sification function within the 15 critical-bands x 51 frames of log energies. The 3-layer

fully-connected 15 2 51 MLPS classifies 64.73% of the frames correctly, achieves 48.0%
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System Frames | Stand-Alone | Augment
Description Correct | WER (%) | WER (%)
(%)
| 9 Frame PLP MLP || 6757 | 412 | 356 |

Table 5.2: Conventional 9 Frame PLP MLP system performances on Eval2001.

System Frames | Stand-Alone | Augment | Combined-
Description || Correct | WER (%) | WER (%) | Augment
(%) WER (%)
15 2 51 MLP3 64.73 48.0 36.6 34.8
15z 51 MLP4 67.88 44.3 35.6 34.3

Table 5.3: Unconstrained temporal system performances on Eval2001.

WER in stand-alone feature configuration, performs at 36.6% WER when augmenting
HLDA(PLP+3d), and reduces WER to 34.8% in combination with 9 Frame PLP MLP
and augmenting HLDA(PLP+3d). In contrast, the 4-layer fully-connected 15 x 51 MLP/
classifies 67.88% of the frames correctly, achieves 44.3% WER in stand-alone feature con-
figuration, performs at 35.6% WER when augmenting HLDA (PLP+3d), and reduces WER
to 34.3% in combination with 9 Frame PLP MLP and augmenting HLDA(PLP+3d). Ta-

ble 5.3 lists the results for these unconstrained approaches.

15 z 51 MLP/ significantly outperforms 15 z 51 MLP3 in all feature configurations
as well as in frame classification. Although, both have the same total number of parameters,
the 4-layer 15 x 51 MLP/ is better able to leverage these parameters for the learning of
phonetically discriminant information. Theoretically a 3-layer MLP can learn any mapping
function given a sufficient amount of hidden units; however, in practice when there may
be constraints in the total number of parameters allowable, a 4-layer MLLP can outperform
the 3-layer MLP because the extra hidden layer can make the modeling job of later layers

easier?.

2We also tried 5-layer MLPs but were unable to achieve comparable performance.
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System Frames | Stand-Alone | Augment | Combined-
Description || Correct | WER (%) | WER (%) | Augment

(%) WER (%)
PCA40 65.50 45.3 36.2 34.6
LDA4O 65.52 46.5 36.4 34.5

Table 5.4: Constrained linear temporal system performances on Eval2001.

5.4.3 Constrained Linear Approaches

Table 5.4 shows the performance results for the constrained linear approaches
for temporal system design. Both PCA40 and LDA/0 perform at roughly the same levels
except for the stand-alone feature configuration where PCA40 significantly outperforms
LDAJ0 (45.3% vs 46.5%). As previously discussed, PCA transforms data in directions of
maximal spread, while LDA transforms data in directions of maximal class separability.
From these results, performance does not improve by transforming the log critical-band en-
ergy trajectories in directions of maximal class separability compared to simply projecting

the trajectories along directions of maximal spread.

5.4.4 Constrained Nonlinear Approaches

The first four constrained nonlinear approaches are based on the two-stage Neural
TRAP architecture and differ only in the point at which to take the inputs for the second
stage merger MLP. All of these two-stage Neural TRAP-based systems learn discriminant
information at the critical-band level useful for classifying critical-band level phone targets.
On the other hand the TMLP learns critical-band level information useful for classifying

full-band phone targets. The results of these five approaches are summarized in Table 5.5.

Looking at the Table 5.5, we notice that two systems perform at noticeably higher
levels than the other three systems in all feature configurations and frame accuracy. HAT
and TMLP both outperform HAT Before Sigmoid, Neural TRAP, and Neural TRAP Post
Softmaz. In terms of frame accuracy, HAT and TMLP perform similarly (66.91% for HAT
and 67.12% for TMLP). The closest competitor is Neural TRA P which performs at 65.85%
accuracy. When using these five systems in stand-alone feature configuration, HAT and

TMLP have a 44.5% and 44.9% WER respectively. The closest any other system gets to
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this performance level is 45.9% WER achieved by both Neural TRAP and HAT Before

Sigmoid which is statistically significantly worse.

The story is consistent when augmenting the HLDA(PLP+3d) features with
the constrained nonlinear temporal features. Using HAT and TMLP to augment
HLDA(PLP+3d), the WER is 35.6% and 35.5% respectively. The others temporal systems
get as close as 36.3% WER achieved by the HAT Before Sigmoid system which is still statis-
tically significantly worse. Finally, in the combined and augmented feature configuration,
HAT and TMLP achieve a 34.1% and 33.9% WER on Eval2001. The other systems still
underperform HAT and TMLP, but this time only TMLP is significantly better than the
others at the 0.05 level. Another .1% absolute difference would make HAT’s performance

improvement significant.

One of the main findings in Chapter 4 is that HAT and TMLP perform better
than Neural TRAP in clean conditions on the TIMIT phone recognition task. The above
results on CTS also corroborate these finding; HAT and TMLP outperform all other Neural

TRAP-based systems in clean conditions.

In this chapter we can also make some comments about which critical-band mea-
surements to use as inputs to a merger MLP. Comparing HAT Before Sigmoid, HAT,
Neural TRAP, and Neural TRAP Post Softmaz, we have already commented that HAT
significantly outperforms all the others. The only difference between HAT and HAT Before
Sigmoid is the sigmoid nonlinearity. Both learn critical-band energy trajectory patterns,
but HAT uses the sigmoid to transform the inner product of the learned energy trajec-

tory patterns and the input energy trajectories into °

‘probabilities” of these learned energy
trajectory patterns. Neural TRAP differs from HAT by adding an additional mapping
from the critical-band hidden unit output space to critical-band level phones. This ex-
tra mapping to phones reduces performance, suggesting that phone categories are not the
best targets at the critical-band level. Neural TRAP Post Softmaz normalizes the Neural
TRAP inputs to the merger MLP to sum to one in each critical-band. The merger MLP
in Neural TRAP Post Softmaz uses critical-band phone posteriors as input features. This

also, does not work very well and compared to Neural TRAP performance suffers when

performing this normalization.

Comparing TMLP with HAT, we do see a slight improvement from TMLP aug-
menting the short-term HLDA(PLP+3d) features as well as in combination with the
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System Frames | Stand-Alone | Augment | Combined-
Description Correct | WER (%) | WER (%) | Augment
(%) WER (%)
HAT Before Sigmoid 65.80 45.9 36.3 34.9
HAT 66.91 44.5 35.6 34.1
Neural TRAP 65.85 45.9 36.5 34.5
Neural TRAP Post Softmazx 63.96 48.2 36.8 34.5
TMLP 67.12 44.9 35.5 33.9

Table 5.5: Nonlinear temporal system performances on Eval2001.

intermediate-term 9 Frame PLP MLP and augmenting HLDA (PLP+3d) features. How-
ever, as a stand-alone feature TMLP performs worse than HAT. From this, it seems that
the more unconstrained TMLP learns information that is marginally more complementary

to the conventional features than HAT.

5.4.5 Augmenting Conventional Features

In this subsection we take a closer look at the improvements that each of the MLP-
based systems bring when augmenting the short-term HLDA (PLP+3d) features. Table 5.6
summarizes the WER results and relative improvements over using HLDA (PLP+3d) fea-
tures alone for the various MLP-based features augmenting the HLDA (PLP+3d) features.
9 Frame PLP MLP, 15 x 51 MLP}, HAT, and TMLP all outperform the other ML.P-based
features obtaining a 35.6%, 35.6%, 35.6%, and 35.5% WER respectively on Eval2001. The
rest of the systems perform considerably worse at 36.2% and higher. As commented before,
a 3% relative reduction or more in WER is considered impressive for such a difficult task
as CTS. All long-term systems improve WER compared to HLDA (PLP+3d) alone. The
intermediate-term 9 Frame PLP MLP also improves performance significantly, and it does

so to the same extent as the long-term systems of 15 x 51 MLPJ, HAT, and TMLP.

5.4.6 Combined-Augmented Features

Table 5.7 displays the WER results for all of the temporal systems-based features
in combination with the 9 Frame PLP MLP features which are then used to augment the

HLDA(PLP+3d) features. From these results, we can see how much more improvement
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System Eval2001 Relative
Description WER (%) | Improvement
(%)
Baseline: -
Non-Augmented 37.2
HLDA(PLP+35d)
9 Frame PLP MLP ||  35.6 | 4.3 |
15 x 51 MLP3 36.6 1.6
15 x 51 MLP/ 35.6 4.3
PCALO 36.2 2.7
LDAL0 36.4 2.2
HAT Before Sigmoid 36.3 2.4
HAT 35.6 4.3
Neural TRAP 36.5 1.9
Neural TRAP Post Softmax 36.8 1.1
TMLP 35.5 4.6

Table 5.6: Comparison of all MLP-based features used to augment the short-term
HLDA(PLP+3d) features. WER results as well as relative improvement over the
HLDA(PLP+3d) features alone reported for Eval2001.

we can obtain by combining the long-term information to the medium and short-term
information streams. The baseline performance comes from the augmenting the short-
term features with the intermediate-term features of 9 Frame PLP MLP. This baseline

system gets a 35.6% WER on Eval2001.

Combining the any of the long-term information streams to the short and
intermediate-term streams improves performance. The best long-term information stream
comes from TMLP followed closely by HAT. The unconstrained 15 x 51 MLP/ is slightly
worse than TMLP and HAT, but slightly better than all of the other temporal systems.
We surmise that the narrow-band frequency constraints imposed by HAT and TMLP help
it to learn more complementary information to the 9 Frame PLP MLP system than that
learned by the unconstrained 15 z 51 MLP/ system. From this, we conclude that the
narrow-band frequency constraint in the long-term systems is useful in combination with
the conventional 9 Frame PLP MLP system, but it must be implemented appropriately
(for example, in the form of HAT or TMLP or perhaps other improved Neural TRAP-based

extensions that we did not test here).
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System Eval2001 Relative
Description WER (%) | Improvement

(%)

Baseline: 9 Frame PLP MLP || 356 | - |
15 2 51 MLP3 34.8 2.2
15 2 51 MLP/ 34.3 3.7
PCA40 34.6 2.8
LDA40 34.5 3.1
HAT Before Sigmoid 34.9 2.0
HAT 34.1 4.2
Neural TRAP 34.5 3.1
Neural TRAP Post Softmazx 34.5 3.1
TMLP 33.9 4.8

Table 5.7: Table of results for systems combined with the 9 Frame PLP MLP features
and augmenting the HLDA (PLP+3d) features. WER and relative improvements over the
baseline 9 Frame PLP MLP augmented system on Eval2001 are reported.

5.4.7 Overall Comparison of Temporal Systems

Table 5.8 shows the rankings for each of the various temporal systems in all of the
different feature configurations and their frame accuracies. The 15 z 51 MLP/ system does
the best at the frame level as well as in the stand-alone feature configuration; however,
when combined with the other full-band features, HAT and TMLP perform better than
the 15 « 51 MLP/ system. We mention again that this is because of the narrow-frequency
constraints imposed by the HAT and TMLP systems, which force these two systems to
model critical-band temporal patterns. The 15 2 51 MLP3 and Neural TRAP Post Softmax
systems almost always perform the worse, while all the other systems show no predictable
pattern of performance. The nonlinear constrained approaches consistently perform better
than their linear counterparts only when using HAT and TMLP. To summarize these

findings:

1. The narrow-band constraints are most helpful in combination with either the full-
band short and intermediate-term feature streams if implemented in the form of HAT

or TMLP.

2. The HAT and TMLP nonlinear constrained systems perform better in all feature

configurations than the linear constrained systems.
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System Frames | Stand-Alone | Augment | Combined-
Description Correct Rank Rank Augment
Rank Rank
15 2 51 MLP3 8 8 8 8
15 2 51 MLP/ 1 1 2 3
PCA40 7 4 4 7
LDA4O 6 7 6 4
HAT Before Sigmoid 5 5 ) 9
HAT 3 2 2 2
Neural TRAP 4 5 7 4
Neural TRAP Post Softmax 9 9 9 4
TMLP 2 3 1 1

Table 5.8: Rankings of the various temporal systems on Eval2001

5.4.8 Neural TRAP With More Hidden Units

In previous implementations of Neural TRAP (e.g [53, 112, 62]), researchers use
many more hidden units than the 40 hidden unit implementations in this chapter. Table 5.9
shows the performance of Neural TRAP systems with both 40 and 300 hidden units per
critical-band. The TRAP systems with 300 hidden units per critical-band have about
380,000 more total parameters than the ones with 40. In general both the 40 and 300 hidden
unit versions perform equally except in two cases: 1) Neural TRAP in the augmented
feature configuration where the 300 hidden unit version is significantly better (36.0% versus
36.5%), and 2) Neural TRAP Post Softmaz in the stand-alone feature configuration where
the 300 hidden unit version is much worse. We cannot conclude that increasing the number
of critical-band hidden units to 300 always improves performance for Neural TRAP Post
Softmazx, but in the Neural TRAP systems increasing to 300 never leads to performance

degradation.
5.5 Frame Accuracy Analysis of the Best Temporal Systems
In the previous sections we have seen how the MLP-based features derived from

temporal systems have complemented both the intermediate and short-term features, lead-

ing to substantial reductions in the word error rate on a CTS task. In this section we would
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System Frames | Stand-Alone | Augment | Combined-
Description Correct | WER (%) | WER (%) | Augment
(%) WER (%)
40 Neural TRAP 65.85 45.9 36.5 34.5
300 Neural TRAP 66.43 45.9 36.0 34.3
40 Neural TRAP Post Softmax 63.96 48.2 36.8 34.5
300 Neural TRAP Post Softmax 63.73 49.1 36.6 34.2

Table 5.9: System performances on Eval2001 of Neural TRAP with 40 hidden units versus
Neural TRAP with 300 hidden units per critical-band. With 300 hidden units per critical-
band Neural TRAP and Neural TRAP Post Softmax perform at about the same level as
HAT in the combined-augmented configuration using 380,000 more parameters.

like to dig a little deeper and find out what phone categories these temporal systems do
particularly well on compared to the intermediate-term 9 Frame PLP MLP as well as to

each other. Because HAT, TMLP, and 15 z 51 MLP/, outperformed all other temporal

systems, we focus our attention on these three temporal systems in our analysis.

All temporal systems and the intermediate-term 9 Frame PLP MLP system are
MLP-based classifiers that we train to learn 46 phone classes. As described earlier, the
phone targets for MLP training come from forced-alignments from the SRI recognizer
whose dictionary of words consists of sequences of these 46 phones. Table 5.10 lists all
of the phone classes (as well as an example or description of its usage) that we train our
MLPs on. Once trained, our MLP-based classifiers output a phone probability distribution
for every frame of speech. We consider a classifier to have correctly classified a particular
frame of speech when the maximum phone probability output corresponds to the labeled
phone target. As described in Section 3.1, frame accuracy is calculated by counting how

many frames a classifier gets correct divided by the total number of test frames.

When comparing two classifiers at the frame level, we can do better than simply
comparing the gross frame accuracy measure. We can calculate accuracy measures on a
per phone class basis to see which classifier does better on what phone. For any frame,
one of four outcomes is possible: 1) both classifiers get the frame correct, 2) only the
first classifier gets it correct, 3) only the second classifier gets it correct, or 4) both get it
wrong. If we sum up the counts of these outcomes for frames labeled a certain phone, we
can immediately see which classifier is better at classifying this phone. For example, the

first classifier is better for this phone if the counts of case 2 outcomes is greater than the
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‘ ASR Phoneme Symbols ‘

| SRI46 | Example [ SRI 46 | Example \
sil (silence) k key
aa father | like
ae bat lau (laughter)
ah but m moon
ao bought n noon
aw about ng sing
ax about ow boat
ay bite oy boy
b bee p pea
ch choke puh | (filled-pause vowel)
d day pum | (filled-pause nasal)
dh then T right
dx dirty S sound
eh bet sh shout
er bird t tea
ey bait th thin
f fish uh book
(word fragment
fip interruption uw boot
point)
g gay v vote
hh hay w wire
ih bit y yes
iy beet z Z00
jh joke zh azure

Table 5.10: The 46 monophone targets used for MLP training.as defined for SRI’s recog-
nition system.



100 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTS

counts of case 3 outcomes. The counts of case 1 and case 4 outcomes reveal the difficulty
of classifying a particular phone and possibly the inaccuracy of the labeling of the phone
that we use as ground truth. Mostly, we are interested in the counts of case 2 and case 3

because they give us an indication of which classifier is better.

In Tables 5.11-5.13, we calculate the counts for all of the above cases normalized
by the total number of frames for a particular phone. The result is the percentage of frames
that the outcome occurs for a particular phone. The phone are listed in order of how well
the temporal system does on that phone compared with the 9 Frame PLP MLP system,
and we only list those phones for which the temporal system is better. The tables also list
the average phone duration in frames and the total number of frames labeled with that

phone on the Eval2001 set. Using these tables, we address the following questions:

1. Do the temporal systems perform better on longer phones?

2. What phones do the temporal systems do consistently better on than the 9 Frame
PLP MLP system?

3. As we remove constraints in the learning of long-term information, what phones are

more accurately classified?

4. As we add constraints in the learning of long-term information, what phones are

more accurately classified?

5.5.1 Temporal Systems and Longer Phones

To answer the first question, we calculate the average phone durations for all the
phones that a particular temporal system is better at classifying than the 9 Frame PLP
MLP system and vice versa. When comparing HAT and 9 Frame PLP MLP, the average
phone duration of all the phones that HAT is better at classifying is 13.0 frames, while
the the average phone duration for the phones that 9 Frame PLP MLP is better at is
8.7 frames. The phones that TMLP is better at classifying have an average duration of
11.1 frames compared to 9.4 frames for the phones that 9 Frame PLP MLP is better at.
Finally, when comparing 15 = 51 MLP/ with 9 Frame PLP MLP, the average durations
are 10.5 frames for 15 x 51 MLP/ and 10.0 frames for 9 Frame PLP MLP. Overall, the

temporal systems do perform better on longer phones. These results are consistent with
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Avg. Both | HAT | PLP MLP | Both Total
Phone Dur. Right | Right Right Wrong | Phone
(Frames) | (%) (%) (%) (%) | Counts
oy 14.00 11.0 17.6 8.5 63.0 2028
ae 11.00 49.6 17.4 9.6 234 73780
hh 5.00 25.6 14.3 8.8 51.3 32070
zh 10.00 24.3 14.8 10.2 50.7 391
ay 15.00 53.8 13.2 9.5 23.5 73458
7 3.00 38.3 14.8 11.4 35.5 32521
ey 12.00 40.7 | 14.5 11.6 33.1 35987
ow 11.00 34.8 16.2 13.3 35.6 56401
puh 19.00 48.7 | 14.8 12.2 24.3 45210
dx 5.00 28.7 | 12.1 10.1 49.1 5284
pum 11.00 30.4 15.9 14.7 39.0 33913
ax 5.00 34.2 11.9 10.7 43.2 75242
th 21.00 23.3 13.2 12.0 51.5 10507
lau 41.00 45.5 13.8 13.2 27.5 38014
aw 21.00 20.5 14.8 14.3 50.5 14675
fip 3.00 0.2 2.0 1.8 95.9 4351

Table 5.11: Frame level classification statistics for HAT versus 9 Frame PLP MLP.

what we would expect because the long-term systems are learning patterns spanning 51
frames, while the 9 Frame PLP MLP system only gets 9 frames of input context to work
with.

Recall, that we can view the progression of going from HAT to TMLP to 15 z
51 MLP/J as a progression of loosening constraints. As we move from HAT to TMLP, we
are loosening the constraint of learning critical-band level phone labels. As we move from
TMLPto 15 2 51 MLP/, we remove the narrow-frequency channel constraint. As we loosen
the constraints on the learning of long-term patterns (i.e., going from HAT to TMLP to
15 z 51 MLPJ), the difference between the average duration from the temporal system
and the average duration from 9 Frame PLP MLP decreases. It seems that the each of
the constraints help the temporal systems better focus on learning long-term information

from phones that have higher average durations.
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Avg. Both | TMLP | PLP MLP | Both Total
Phone Dur. Right | Right Right Wrong | Phone
(Frames) | (%) (%) (%) (%) | Counts
ae 11.00 50.4 18.0 8.8 22.8 73780
oy 14.00 10.2 16.1 9.3 64.4 2028
puh 19.00 51.0 16.4 9.9 22.7 45210
ow 11.00 36.7 17.0 11.5 34.9 56401
th 21.00 25.6 15.0 9.6 49.9 10507
hh 5.00 26.0 13.5 8.4 52.0 32070
ay 15.00 54.2 13.4 9.0 234 73458
ey 12.00 41.6 14.9 10.7 32.8 35987
z 3.00 39.4 14.5 10.3 35.9 32521
lau 41.00 47.9 14.9 10.8 26.4 38014
aw 21.00 22.5 16.2 12.3 49.0 14675
ax 5.00 35.7 13.0 9.2 42.1 75242
t 7.00 40.8 14.5 11.5 33.1 24710
dh 3.00 33.2 14.5 12.4 40.0 29534
dx 5.00 29.2 11.7 9.7 49.4 5284
pum 11.00 30.7 15.9 14.4 39.0 33913
y 9.00 54.1 12.2 10.7 23.1 38136
uw 3.00 36.7 12.4 11.5 39.4 29316
d 6.00 22.8 10.9 10.2 56.2 35311
aa 9.00 24.7 14.7 14.1 46.6 24764
jh 13.00 40.5 11.9 11.5 36.1 8795
fip 3.00 0.1 2.2 1.9 95.8 4351
sil 16.00 92.0 2.7 24 3.0 762542
ng 11.00 37.8 10.6 10.3 41.3 17417
ah 3.00 22.3 12.4 12.3 53.0 30033

Table 5.12: Frame level classification statistics for TMLP versus 9 Frame PLP MLP
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Avg. Both | MLP4 | PLP MLP | Both Total
Phone Dur. Right | Right Right Wrong | Phone
(Frames) | (%) (%) (%) (%) | Counts
oy 14.00 11.2 19.8 8.2 60.8 2028
aw 21.00 24.8 19.9 10.1 45.3 14675
ae 11.00 50.3 17.5 8.9 23.3 73780
ow 11.00 37.0 18.0 11.1 33.9 56401
puh 19.00 49.7 16.4 11.2 22.7 45210
ay 15.00 54.5 13.7 8.8 231 73458
ey 12.00 42.2 14.8 10.1 32.9 35987
hh 5.00 26.1 12.4 8.4 53.2 32070
z 3.00 38.6 14.3 11.0 36.1 32521
ax 5.00 35.3 12.9 9.6 42.3 75242
dx 5.00 29.2 12.7 9.6 48.5 5284
lau 41.00 47.2 14.4 11.4 27.0 38014
pum 11.00 32.1 15.9 13.1 39.1 33913
aa 9.00 25.4 15.6 13.3 45.6 24764
th 21.00 23.7 13.7 11.5 51.1 10507
s 6.00 54.2 13.2 11.2 21.4 70534
T 6.00 47.4 14.6 12.6 25.4 51308
y 9.00 53.9 12.2 10.8 231 38136
eh 5.00 21.0 12.9 11.8 54.3 33454
dh 3.00 32.5 14.0 13.0 404 29534
f 7.00 40.0 13.3 12.4 34.3 24710
ah 3.00 22.2 13.3 12.4 52.1 30033
zh 10.00 21.5 13.8 13.0 51.7 391
d 6.00 22.5 11.1 10.5 55.9 35311
jh 13.00 40.5 11.8 11.6 36.2 8795
uw 3.00 36.2 12.2 12.0 39.6 29316
t 4.00 33.4 11.5 11.3 43.8 73020
sil 16.00 91.9 2.5 24 3.1 762542

103

Table 5.13: Frame level classification statistics for 15 © 51 MLP/ vs. 9 Frame PLP MLP
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5.5.2 Temporal Systems Versus 9 Frame PLP MLP

To answer the second question of what phones the temporal systems are generally
better at classifying than 9 Frame PLP MLP, we examined the intersection of the phones
that appear in Tables 5.11, 5.12, and 5.13. These phones are the phones for which all three
temporal systems are better at classifying than 9 Frame PLP MLP. The most prominent
observation from this is that all of the temporal systems consistently classify diphthongs
(Jaw/, Jay/, Jey/, Jow/, and Joy/) better than 9 Frame PLP MLP. Diphthongs are phones
that start off sounding like one vowel and end sounding like another vowel. The average
duration of diphthongs is 13.6 frames in the Eval2001 data set, which is 4.6 frames more
than the input context to 9 Frame PLP MLP. Because the temporal systems have 51

frames of context to work with, they can better model these diphthongs.

Other phones which these temporal systems are consistently better at classifying
include: /ae/, /puh/, /pum/, /hh/, /th/, /z/, Jax/, [lau/, and /dx/. [ae/, /puh/,
/pum/, /th/, and /lau/ have average durations longer than 9 frames. The filled paused
vowel /puh/ (as used when people say “uh”) and the filled paused nasal /pum/ (as used
when people say “ummm”), seem like phones that can be easily confused with regular
phones like /ah/ and /m/. With more temporal context, HAT, TMLP, and 15 = 51 MLP/,
seem to be able to disambiguate these filled pause phones better than the 9 Frame PLP
MLP system. It is interesting that these temporal systems outperform 9 Frame PLP MLP
on some short phones also (i.e., /hh/, /z/, /ax/, and /dx/). Perhaps, there is a lot of
contextual information about these phones that the temporal systems are able to capture

and exploit.

5.5.3 Temporal Systems Versus Each Other

In the context of our augmented combination system, where we combine the
outputs of one of the temporal systems with the outputs from the intermediate-term 9
Frame PLP MLP system, and use this combination to augment the conventional short-
term features, it is interesting to analyze what happens when we remove or add learning
constraints on the temporal systems. As we move from HAT to TMLP to 15 z 51 MLP/, we
are removing constraints on the learning of long-term information. We can see the effect

of removing constraints on performance by looking at all the phones for which a more
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constrained temporal system performs better at than 9 Frame PLP MLP but that the
less constrained temporal system does not perform better at than 9 Frame PLP MLP. For
example, by looking for phones that appear in Table 5.12 but do not appear in Table 5.11,
we can see which phones are better classified when removing the constraint of learning
critical-band phone labels. Similarly, by looking for phones that appear in Table 5.13 but
do not appear in Table 5.12, we can see which phones are better classified when removing
the constraint of learning within critical-bands. To see the effect of adding constraints, we
simply reverse the order of our table comparisons and look for phones which appear in the
table for the more constrained system but do not appear in the less constrained system’s

table.

Comparing HAT to TMLP, we see from Tables 5.11 and 5.12 that the following
phones appear in Table 5.12 but not in Table 5.11: /f/, /dh/, /y/, /uw/, /d/, [aa/, /jh/,
/sil/, /ng/, and /ah/. Removing the critical-band constraints (going from TMLP to 15
z 51 MLP/, we see from Tables 5.12 and 5.13 that the phones /s/, /r/, /eh/, /zh/, and
/t/ are better classified. When tightening the constraints from 15 z 51 MLPj to TMLP,
/ng/ is the only phone that is improved, while going from TMLP to HAT only /zh/
is improved. Generally, loosening the constraints helps the temporal systems to better
classify phones, but we have also noticed that in combination with 15 « 51 MLP/, the
narrow-band constraint does make the temporal systems more complementary leading to

larger reductions in word error rates (e.g., compare the combined-augmented results for

TMLP, 33.9%, versus 15 z 51 MLP/, 34.3%).

5.6 Narrow-Band Discriminant Temporal Patterns

In Section 3.10, we discussed the nature of the discriminant temporal patterns
learned by HAT and TMLP on TIMIT speech data. In this section, we not only examine
what was learned by HAT and TMLP on CTS data, but we also look at what temporal
patterns were learned by PCA/(0 and LDA/0. As explained in Section 3.10, the critical-
band hidden units of HAT and TMLP perform filtering operations on the log critical-band
energy trajectories of speech. When trained on TIMIT data these matched temporal filters
coming from both HAT and TMLP tended to filter out modulation frequencies above 20
Hz. The PCA40 and LDAJ0 transformations that we trained on the log critical-band
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energy trajectories can similarly be considered as matched temporal filters as well. In
Appendix D, we show plots of the cluster centroids of input-to-hidden weights of critical-
band hidden units for the HAT and TMLP systems trained on the female portion of the
CTS training set in this chapter. In Appendix E, we show plots of the cluster centroids of
the PCA40 and LDA/0 transformation vectors trained on the female portion of the CTS

training set in this chapter.

Comments similar to the ones in Section 3.10 can be made here also. The HAT
and TMLP discriminant temporal patterns mostly tend to emphasize only modulation
frequencies below 20 Hz which has been shown to be important for speech recognition.
TMLP patterns tend to also exhibit more shifting in time than the HAT patterns: there
seem to be more patterns where the regions of varying magnitudes are not centered at
frame 0. Like the patterns in Section 3.10 and Appendix C, the patterns learned by HAT
and TMLP in this chapter do resemble previous patterns found in literature [10, 124, 115,
67, 112]. There are onset detector patterns, “Mexican hat” energy detector patterns, and

patterns that resemble Mean TRAPSs.

The most striking differences come from looking at the patterns learned by HAT
and TMLP versus those learned by PCA40 and LDA40. The first main difference between
the sets is that both PCA/0 and LDA/0 have learned some patterns that are sensitive to
modulation frequencies greater than 20 Hz. These patterns are capturing temporal infor-
mation that is not necessarily essential for speech recognition which explains to some extent
why the PCA/0 and LDA/0 temporal systems in this chapter were less effective than the
HAT and TMLP systems for improving performance. The next striking difference is that
all of the PCA40 patterns look like sinusoids of different frequencies. What this implies
about speech within narrow-frequency bands is interesting: this means that the directions
of highest variance all correspond to sinusoidal functions with different oscillation frequen-
cies. Finally, the LDA40 patterns look somewhat like a mix between PCA/(0 patterns and
HAT patterns. Of all the LDAJ0 patterns some also look like rapidly varying sinusoids,
but there are other patterns that more resemble those learned by HAT and TMLP. We
have also observed that the top LDA/0 discriminants (i.e., the ones corresponding to the
highest eigenvalues) look like the onset detectors and “Mexican hat” patterns consistent

with previous LDA studies.



5.7. HAT AND TMLP PRACTICAL TRADE-OFFS 107

5.7 HAT and TMLP Practical Trade-offs

There are some notable observations concerning the training process of HAT and
TMLP. As explained earlier, the training of HAT proceeds in two stages. The first stage
is to train all the critical-band MLPs. In the second stage, we first compute the hidden
unit outputs of all critical-band MLPs from the input critical-band energy trajectories of
the training data. The set of all of these hidden unit outputs becomes the input training
data for the second stage merger MLP training. The first stage can be parallelized to
train on several computers simultaneously. There is some savings in time by training this
first stage in parallel; however, the first stage training is much quicker than the second
stage merger training because the critical-band MLPs are rather small (only 20 hidden
units in Chapter 3 and 40 hidden units in this chapter), and so the overall training time is

dominated by the second stage merger training.

One potential drawback from our implementation of this two-stage HAT training
is the need for temporary disk space to store the hidden unit outputs from all the critical-
band MLPs on the complete training set. A small training set such as the one in Chapter 3
(about 1 million frames), requires 380 million 4 byte floats (1 million frames x 20 hidden
units per critical-band x 19 critical-bands x 4 bytes = 1.52 gigabytes) of temporary disk
storage. The CTS training sets in this chapter have about 12 million frames per gender
which means that we need about 29 gigabytes of temporary disk storage (12 million frames
x 40 hidden units per critical-band x 15 critical-bands x 4 byte floats = 28.8 gigabytes) per
gender for training HAT®. TMLP, in contrast, requires no such temporary disk space since

all critical-band hidden unit outputs are propagated within the network during training.

Although temporary disk space is not an issue for training TMLP, there is a
trade-off with the time needed for training. The time required for training TMLP is
typically longer than that for training HAT. In HAT the critical-band hidden units can
be trained in parallel, but in TMLP the critical-band hidden units are trained along with
all the other TMLP parameters within a single network optimization routine. Another
reason why TMLP trains slower than HAT is that the optimized linear algebra routines

run less efficiently because the TMLP’s band-constrained 2 hidden layer topology leads to

3The training set used for training SRI’s 2004 CTS recognizer has about 40 times more frames per
gender than the training set used in this chapter which would require over a terabyte of temporary disk
storage!
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33 Hour Set 66 Hour Set
Approx. | Temporary Approx. Temporary
System | Training Disk Training Disk
Time Space Time Space
HAT | 28.5 hours | 28.8 GB 100.5 hours | 86.4 GB
TMLP | 32.9 hours 0 140.8 hours 0

Table 5.14: A comparison of training time and disk space requirements for HAT and TMLP
trained on a 33-hour and 66-hour training set. The systems trained on the 33-hour set have
about 516,000 parameters and 40 hidden units per critical-band, and the systems trained
on the 66-hour set have about 1,032,000 parameters and 60 hidden units per critical-band.

operations on matrices that are either thin and tall or short and wide. Because each stage
of HAT training operates on single hidden layer MLPs with regular topologies, the linear

algebra routines run faster allowing for quicker HAT training.

To compare training times of HAT and TMLP, we trained both HAT and TMLP
on two different training sets. The first training set is the one used in this chapter for
training male systems (about 33 hours and 12 million frames). The second training set is
a superset of the first and contains about twice as much male speech data (about 66 hours
and 24 million frames). The HAT and TMLP systems trained on the first set have about
516,000 total parameters and 40 hidden units per critical-band, while the systems trained
on the second set have twice as many total parameters and 60 hidden units per critical-
band. Table 5.14 shows the actual training times and temporary disk space required for
training each of the four systems on an Intel Xeon 2.80GHz machine with 3 GB of memory.
The HAT training times includes the savings from parallelizing the critical-band hidden
unit training and the time needed to process the intermediate hidden unit activation files

for the second stage training.

Table 5.14 illustrates the practical trade-off of training HAT and TMLP. HAT
trainings run faster at the cost of large amounts of temporary disk space, while TMLP
trainings run slower and save in disk space as well as human operator effort required for

preparing the intermediate HAT training files.
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5.8 Conclusions

In this chapter we have compared various temporal systems for the learning of
long-term (about 500 milliseconds) information useful for ASR on CTS. We compared
their performance using three different Tandem ASR configurations: stand-alone Tandem,
augmented Tandem, and combined-augmented Tandem. The various temporal systems
constrain the learning of long-term information in different ways. The 15 z 51 MLP3
and 15 x 51 MLP4 systems do not constrain the learning within the 15 critical-bands
by 51 frames matrix of log energies. The TMLP system constrains the classifier to learn
important distinctions within individual 51-frame critical-band energy trajectories. Finally,
the PCA40, LDA40, HAT Before Sigmoid, HAT, Neural TRAP, and Neural TRAP Post
Softmaz systems constrain the learning within critical-bands, but also forces the systems to
learn transformations useful for classifying phone labels at the critical-band level (except

for the PCA/0 system which learns transformations in directions of highest variance).

We found that three temporal systems outperformed all others in all three sys-
tem configurations: the unconstrained 15 ¢ 51 MLPj, TMLP, and HAT temporal systems.
When comparing these three systems, we saw an advantage to the critical-band constrained
TMLP, and HAT temporal systems in combination with the intermediate-term 9 Frame
PLP MLP system, suggesting that the critical-band constraints help to make our tem-
poral systems more complementary to the 9 Frame PLP MLP system. Also, the two
best nonlinear critical-band constrained systems, TMLP and HAT, outperformed all lin-
ear critical-band constrained systems, PCA/0 and LDA/0, in all system configurations.
This suggests that it is important to learn “probabilities” of something fundamentally

discriminant at the critical-band level for later stages in the MLP classifier.

Performing further analysis as to which phone classes our temporal systems clas-
sify better, we found that the temporal systems tend to do better on phones that have
longer average durations. Compared with the intermediate-term 9 Frame PLP MLP sys-
tem, we also found that the temporal systems consistently perform better on diphthongs,

filled pauses, laughter, and a few other phones (/ae/, /hh/, /th/, /z/, /ax/, and /dx/).

The narrow-band frequency patterns learned by HAT and TMLP systems again
preserve the important low modulation frequencies of speech needed for recognizing words.

The patterns learned by LDA40 and PCA40 differ from those learned by HAT and TMLP
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in that they also pass modulation frequencies greater than 20 Hz. Moreover, the pat-
terns learned by PCA/0 all look like sinusoidal functions of different frequencies. Lower
order LDA/0 basis vectors look somewhat like noisy sinusoids, while the higher order ones

resemble patterns learned by HAT and TMLP.

When training HAT and TMLP systems, we commented that in general HAT
systems train faster, but TMLP systems do not require any temporary disk space for
training.

Our best system in this chapter, the combination of TMLP and 9 Frame PLP
MLP features augmenting the conventional HLDA (PLP+3d) features, achieved a WER of
33.9% on Eval2001. The conventional HLDA(PLP+3d) features get a WER of 37.2%.
This is an absolute reduction in WER of 3.3% (or 8.9% relative) compared to using
HLDA(PLP+3d) features alone, which was the state-of-the-art feature used in 2003. An
improvement of this magnitude on CTS is considered impressive and is about half the gain

achieved by most evaluation teams after a year of collective work.
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Chapter 6

Further Explorations With TMLP

In previous chapters we developed several new neural net architectures for the
learning of long-term narrow-frequency band information useful for ASR. We started by
testing HAT, TMLP, and Neural TRAP on a small recognition task - recognizing phones
from the TIMIT corpus. Then we set up a series of recognition tasks leading to the
development of a baseline system utilizing new front-end feature for the recognition of
conversational telephone speech (CTS). In Chapter 5, we compared various neural net
systems learning long-term information for recognizing CTS. In this chapter we further

explore one of the best long-term systems: the TMLP.

We begin by examining the choice in the number of critical-band hidden units
in the TMLP. Specifically, we are interested in determining how performance is affected
by the choice in the number of critical-band hidden units as the amount of training data
and total parameters are varied. Because the critical-band hidden units can be thought
of as probability estimators of discriminant temporal patterns, choosing how many of
them to use is equivalent to choosing how many discriminant temporal patterns we would
like the TMLP to learn. From previous work on Mean TRAPs, there seems to be a
finite number of important temporal patterns at the critical-band level necessary for high
accuracy. Likewise, we find that the optimal number of critical-band hidden units does

not grow when increasing the amount of training data.

In the second part of this chapter, motivated by previous work on UTRAP [50]

which hypothesized that multiple critical-bands have similar temporal patterns, we inves-
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tigate whether the discriminant temporal patterns can be shared across multiple critical-
bands. We develop TMLPs that can share the parameters of critical-band hidden units
among different critical-bands. These shared hidden units are trained and applied on
speech data coming from multiple critical-bands. We find that performance remains high
when sharing critical-band hidden units suggesting that different critical-bands share sim-

ilar discriminant temporal patterns useful for ASR.

6.1 The Growth of Critical-Band Hidden Units

When we moved to apply HAT and TMLP on CTS, the optimal number of hidden
units per critical-band jumped from 20 for the smaller TIMIT task to 40 for the CTS task.
Perhaps this comes from having much more training data in the CTS task than in TIMIT
training (3.12 hours of TIMIT training data versus about 35 hours of CTS training data

per gender'.). This leads us to the question that we wish to answer in this section:

e How does the amount of training data affect the optimal choice for the number of

hidden units per critical-band in the TMLP?

To answer this question, we created four CTS training sets differing in the total
number of hours of speech. These four CTS training sets come from the same sources used
for creating the baseline CTS training set in Chapter 5: English CallHome [19], Switch-
board I with transcriptions from Mississippi State [41, 28], and Switchboard Cellular [43].
The first new training set consists of about 124.9 hours (about 20 million frames per gender)
of speech data from the above sources. In all of the four new training sets, we maintained
an equal balance between the amount of male and female training data. Subsampling the
124.9 hour set by 2, 4, and 8 resulted in a 62.4 hour (about 10 million frames per gender),
31.2 hour (about 5 million frames per gender), and 15.6 hour (about 2.5 million frames

per gender) training set respectively.

Once these training sets were completed, we started to investigate the interactions
between the number of critical-band hidden units, the total number of trainable param-

eters, and the amount of training data. We trained TMLPs with 20, 30, 40, 50, and 60

'Recall that the TIMIT nets are gender independent nets, while the CTS nets are gender dependent
nets (one net for each gender), so for fairness of comparison, we compare how much data it takes to train
single networks.
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hidden units per critical-band, and for each of these cases, we chose the second hidden
layer size such that the total number of parameters was either 250,000, 500,000, 1,000,000,
or 2,000,000. Training for each TMLP setting was done separately for each gender, and
the performance numbers that follow reflect the average performance from both genders.
The training procedure was the same procedure used for training TMLPs in Chapter 5.
Basically, we calculated 15 log critical-band energies for every 10 milliseconds of speech,
normalized the mean and variance of these energies over every utterance, and used these as
input features for the TMLPs. Holding out 10% of the training data as a cross-validation
set, we used the error back-propagation algorithm to minimize the cross-entropy between
the TMLP outputs and the phone targets. These phone targets were the same kind of

phone targets derived from forced alignments from the SRI recognizer in Chapter 5.

Once training completed, we measured the frame accuracies on the separate
Eval2001 CTS test set as described in Subsection 5.3.1. Figure 6.1 shows four graphs
of frame accuracy on Eval2001 versus the number of hidden units per critical-band of
TMLPs for the four different amounts of training data. Each panel corresponds to one of
the four training set sizes (15.6 hours, 31.2 hours, 62.4 hours, or 124.9 hours), and within
each panel there are four curves of frame accuracies corresponding to the four TMLP sizes

(250,000, 500,000, 1,000,000, or 2,000,000).

All curves in Figure 6.1 exhibit a max accuracy between 30 and 50 hidden units
per critical-band except for the 1M parameters/15.6 hour case which has a max at 60.
Only the 500k parameters/15.6 hour and 1M parameters/15.6 hour cases show trends that
may indicate higher accuracies for greater than 60 hidden units per critical-band. To
answer whether increasing the amount of training data leads to an increasing number of
hidden units per critical-band for optimal performance, compare the lines corresponding
to TMLPs with the same number of trainable parameters in each of the four panels. The
curves for 250,000 parameters exhibit a maximum at 30 hidden units per critical-band
regardless of the amount of data. For the TMLPs with 500,000 parameters, the maximum
accuracy moves from 40, to 50, to 40, to 40 hidden units per critical-band as we double the
amount of training data. In the 1,000,000 parameters case, the maximum accuracies goes
from 60, to 60, to 40, to 40 hidden units per critical-band, and in the 2,000,000 parameters
case, the maximum goes from 50, to 50, to 40, to 40 hidden units per critical-band for each

doubling in the amount of training data.
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Figure 6.1: Frame accuracies on Eval2001 for various TMLPs.
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From these observations, we find that as we increase the amount of training data,
the optimal choice for the number of hidden units per critical-band actually decreases when
keeping the total number of parameters fixed. However, it does appear to be the case that
as the number of total parameters increases, the best number of critical-band hidden units
increases slightly. This can be seen clearly in the 62.4 and 124.9 hour panels. See how the
best number of hidden units goes from 30 for 250k parameters to between 30-40 for 500k

parameters, and to 40 for 1M and 2M parameters.

In a previous empirical study on training MLPs for use in a hybrid ANN/HMM
system on Broadcast News [33], Ellis et al. explored the optimal ratio of the number of
training examples to number of trainable MLP parameters for a fixed training time. They
found that the optimal ratio of number of training example frames to number of parameters
was in the range of 10 to 40 for a constant product of training frames and parameters. The
product of training frames and parameters gives a measure of how long it takes to train
an MLP because in each epoch of training all the parameters are updated NV times where

N is a number proportional to the number of total training frames?.

We plot the average frame accuracies for TMLPs of constant N (connection up-
dates (CUPs) per epoch) versus the ratio of frames to parameters in Figure 6.2. From this
figure we can see a slowing of accuracy improvements as the ratio of frames per parameter
increases. There is a decrease in accuracy for the 19.5 million connection updates per epoch
(19.5 MCUP) line when frames per parameter is greater than 20. Table 6.1 show word error
rate results on the Eval2001 test set for stand-alone Tandem systems using posterior-based
features from TMLPs of this constant 19.5 MCUP. Each of the TMLPs in the table have
40 hidden units per critical-band, and the SRI recognizer HMMs were trained using the
same training set as in Chapter 5. The TMLP with 80 frames-to-parameters performed the
best achieving a 43.9% WER on Eval2001. Lowering the frames-to-parameters ratio to 20,
causes WER to go up to 44.1%, while lowering this ratio to 5 and 1.25 causes WER to go
up to 45.8% and 48.1% respectively. From Figure 6.2 and Table 6.1, it is unclear where the
optimal ratio of training frames-to-parameters lies. We cannot conclude as in [33] that the
optimal range of training frames-to-parameters is between 10 and 40, but we can say that

the range is likely to begin at 40. It is interesting to note that the systems with 40 or more

2N depends on the degree to which the training is done online or in batch mode. Qur trainings are done
in a bunch (or semi-batch) mode where the parameter updates happen once every 256 training frames.
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Figure 6.2: Frame accuracies on Eval2001 for TMLPs of equal training time.

frames per parameter (i.e., 124.9 hours/250k parameters, 124.9 hours/500k parameters,
and 62.4 hours/250k parameters) have 30 or 40 as the best number of critical-band hidden

units.

To summarize the findings from this section we make several concluding state-

ments.

e Overall, the dominant conclusion that one can draw from these experiments is that
the optimal number of critical-band hidden units is not all that sensitive to the

amount of training data or the total number of parameters.

1. For a fixed number of TMLP parameters, increasing the amount of training
data does not lead to an increase in the optimal number of hidden units per
critical-band. This is true even when increasing the amount of training data by

almost 10-fold (15.6 hours versus 124.9 hours).

2. For a fixed amount of training data, increasing the number of total parameters
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Frames-to-Parameters
System 1.25 5 20 80
Description || WER (%) | WER (%) | WER (%) | WER (%)
19.5 MCUP 48.1 45.8 44.1 43.9

Table 6.1: Word error rate results on Eval2001 for stand-alone Tandem systems using
TMLPs of a constant training complexity (19.5 MCUP), 40 hidden units per critical-band,
and varying training frames-to-parameters ratio. Even though the TMLPs were trained
using different training set sizes, the SRI recognizer models were all trained using the
training set used in Chapter 5.

leads to only a slight increase in the optimal number of hidden units per critical-

band.

e For a fixed training time constraint, the optimal ratio of frames-to-parameters is
greater than 40. Furthermore, TMLPs with ratios in this range have between 30 and

40 hidden units per critical-band.

6.2 Sharing Critical-Band Hidden Units

When looking at critical-band mean temporal patterns like the ones shown
in [112, 62] and in Figure 2.5, we immediately notice that many temporal patterns are very
similar within a particular critical-band and also among different critical-bands. In [50],
Hermansky et al. developed a version of Neural TRAP called UTRAP, which used a single
critical-band MLP for all critical-bands. They reasoned that since the critical-band tem-
poral patterns are so similar even among temporal patterns from different critical-bands,
then a single “universal” MLP could be used to extract the discriminant temporal infor-
mation for all critical-bands. Besides reducing the amount of memory and computation
requirements, another reason for developing UTRAP is that sharing this one “universal”
MLP across all critical-bands in this way, offered potential for improving generalization
by lessening the sensitivity to training and test set variations. Their experiments on a
digit recognition task showed that UTRAP performed comparably to a Neural TRAP
system [62].

Another interesting observation about the temporal information learned by Neu-

ral TRAP-like systems comes from examining the input-to-hidden weights of the critical-
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Input to Hidden Weight Value

Frames

Figure 6.3: Input to hidden weights of various critical-band hidden units from a female
HAT network trained on the female CTS training data in Chapter 5. These hidden units
are gathered from different critical-bands.

band hidden units in HAT and TMLP. As described in Chapter 3, these input-to-hidden
weights are critical-band matched filters acting on the log critical-band energy trajecto-
ries of speech. Each of these filters has a frequency response which tells us how the filter
affects certain modulation frequencies. When looking at plots of these critical-band input-
to-hidden weights for HAT and TMLP, we notice that many of these weights have similar
shapes. Figures 6.3 and 6.4 show several input-to-hidden weights from hidden units at
different critical-bands for HAT and TMLP respectively. Notice how similar they are.
Appendices C and D contain many similar plots of input-to-hidden weights of critical-
band hidden units for HAT and TMLP trained on TIMIT and CTS. Appendix E has
corresponding temporal patterns learned by PCA and LDA on CTS.

The comparable performance of UTRAP to Neural TRAP and the similarity
of the input-to-hidden weights of critical-band hidden units learned by HAT and TMLP

suggest that discriminant temporal patterns can be shared across different critical-bands.
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Figure 6.4: Input to hidden weights of various critical-band hidden units from a female
TMLP network trained on the female CTS training data in Chapter 5. These hidden units
are gathered from different critical-bands.
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We further explore this suggestion in this section using our TMLP. The main idea is to
share (or tie) critical-band hidden units across multiple critical-bands in the TMLP. This
means that certain critical-band hidden units will have the same weights and biases but
appear in different positions within the TMLP. For example, if we specify that hidden unit
4 of critical-band 8 be shared with hidden unit 15 of critical-band 5, then these two critical-
band hidden units will have the same weights and biases. Training proceeds normally, but
when the parameters of hidden unit 4 of critical-band 8 are updated, the parameters of
hidden unit 15 of critical-band 5 are updated identically. In this way we effectively have
identical critical-band discriminators that are trained and applied over multiple critical-

bands.

In Chapter 5 we trained gender dependent TMLPs on a 68-hour CTS training
set. In this section we train our gender dependent TMLPs that share critical-band hidden
units on the same training set. One configuration for the sharing of critical-band hidden
units is to share each critical-band hidden unit across all critical-bands. For example, if we
choose to have 30 total hidden units per critical-band, this type of sharing means that each
of the 30 hidden units appears in every one of the critical-bands. To make this clearer,
hidden unit 1 of critical-band 1 shares parameters with hidden unit 1 of critical-bands 2-15.
Similarly, hidden unit 2 of critical-band 1 shares parameters with hidden unit 2 of critical-
bands 2-15, and so on and so forth. Figure 6.5 shows the frame accuracy performance on
Eval2001 for TMLPs whose critical-band hidden units are shared across all critical-bands.
Each of the TMLPs only differ by the total number of critical-band hidden units (each of

which is shared across all critical-bands).

Frame accuracy performance starts to plateau after 25 critical-band hidden units.
It is safe to assume that 40 shared critical-band hidden units are sufficient for achieving high
frame accuracy. We compare recognition performance between a comparable non-weight
sharing TMLP with 40 hidden units per critical-band (this is the same TMLP in Chapter 5)
with the weight sharing TMLP with 40 shared critical-band hidden units (TMLP S40) in
Table 6.2. We measure the performance in terms of frame accuracy and word error rates
(WER) on Eval2001, and the WERs come from the 3 ASR system configurations tested
in Chapter 5 (e.g., stand-alone Tandem, augmented Tandem, and combined-augmented
Tandem). The performance of TMLP S/0 is always worse than TMLP except in the case
of frame accuracy where TMLP 5S40 gives a higher accuracy than TMLP. The WERs for
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Figure 6.5: Frame accuracy on Eval2001 for TMLPs whose critical-band hidden units are
shared across all critical-bands.

TMLP S40 are worse by .4%-.6% absolute which is a statistically significant margin.

It makes sense that the weight sharing TMLP S40 would produce worse results
than the non-weight sharing TMLP because weight sharing further constrains the model
reducing the size of the family of distributions that TMLP S40 can model. However, what
is somewhat surprising is that the TMLP 540 does so well. The margins in performance
between TMLP S0 and TMLP are not very large. Our motivation for exploring weight
sharing in the TMLP came from observations that temporal patterns (either those from
Mean TRAPs or from input-to-hidden weights of critical-band hidden units in HAT and
TMLP) from different critical-bands look similar. Because TMLP 540 performs compara-
bly to TMLP, discriminant temporal patterns can indeed be shared by different critical-
bands without incurring a large penalty in performance. This may be especially crucial
in applications where the amount of memory and computation is limited (i.e., in mobile
devices). The TMLP S40 has about 30,000 fewer parameters than the TMLP. Moreover,
the TMLP S40 can potentially give better generalization performance in more mismatched

training and testing conditions because of its more parsimonious representation.
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System Frames | Stand-Alone | Augment | Combine
Description || Correct | WER (%) | WER (%) | Augment
(%) WER (%)
TMLP 67.12 44.9 35.5 33.9
TMLP S40 || 67.92 45.5 35.9 34.3

Table 6.2: Performance of TMLPs with 40 hidden units per critical-band on Eval2001.
TMLP does not have weight sharing, while TMLP S40 shares all 40 hidden units over all
critical-bands.

6.2.1 Narrow-Band Discriminant Temporal Patterns

In Section 5.6 we discussed the temporal patterns learned by HAT and TMLP
trained on CTS data. In this subsection, we do the same for the weight sharing TMLP
S540. Appendix D contains plots of the critical-band input-to-hidden unit weights of TMLP

540 as well as corresponding modulation frequency responses.

The narrow-band discriminant temporal patterns learned by TMLP 540 resem-
ble the centroids of the patterns learned by TMLP in Chapter 5 and also displayed in
Appendix D. Present are the ubiquitous onset “derivative” patterns, the energy detect-
ing “Mexican hat” patterns, and other patterns that have also been learned by HAT and
TMLP in previous chapters. What is important is that all of the modulation frequency
responses pass speech modulations between 0 and 20 Hz. Again, these low modulation

frequencies have been shown to be important for speech recognition.
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Chapter 7

Conclusion

7.1 Summary

Conventional state-of-the-art speech recognition systems typically only extract
information from speech within short-term spectral slices lasting about 25 milliseconds.
Relying solely on short-term spectral slices for the modeling of speech, these speech recog-
nition systems are vulnerable to variabilities in speech that do not affect human speech
recognition performance. The work presented in this thesis further showed a novel way of
modeling speech and integrated it within the framework of a state-of-the-art large vocab-
ulary continuous speech recognizer. Instead of using just short-term spectral slices, the
systems developed in this thesis extract information useful for automatic speech recognition

(ASR) from long-term narrow-frequency bands of speech spanning about 500 milliseconds.

The motivation for extracting information within narrow-frequency bands comes
mainly from human listening experiments that showed that human recognition performance
remains quite high when given band-limited speech. Humans can also accurately detect
certain characteristics of speech quite robustly from narrow-frequency bands of speech.
The motivation for extracting long-term information comes from human listening experi-
ments showing how humans rely on longer acoustic context for the accurate recognition of
nonsense syllables. Moreover, information theoretic analyses of speech showed that signifi-
cant amounts of discriminant information about the identity of a phone exist at times up to
several hundred milliseconds before and after. Finally, it was our hope that by extracting

speech information in this radically different way, our new long-term narrow-band (tem-
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poral) systems would be able to complement the traditional systems leading to significant

reductions in word error rates.

Prior to this work, Hermansky and Sharma developed a system that improved
ASR performance by extracting information from long-term narrow-frequency bands. The
Neural TRAP system [52] proved to be quite comparable with traditional ASR systems;
however, in combination with traditional systems, Neural TRAP further reduced word
error rates. Building off their success, we developed some Neural TRAP extensions that
addressed one of the major issues in Neural TRAP: the choice of narrow-band information
to extract. Neural TRAP uses critical-band level phone posteriors as the narrow-band in-
formation source. Multi-layer perceptrons (MLPs) are trained on critical-band level labels
of phones to learn phone posterior probabilities from critical-band log energy trajectories
of speech lasting about 500 milliseconds. Phone posteriors from all critical-bands are then
used as inputs to a merger MLP that estimates the overall phone posterior probabilities.
The problem here is that critical-band level phone posterior estimation is quite difficult
because of the dearth of information for classifying phones within critical-band log energy
trajectories. Because of these difficulties, we developed two new neural net architectures for
extracting long-term narrow-band speech information: Hidden Activation TRAP (HAT)
and Tonotopic Multi-Layer Perceptron (TMLP).

HAT was built on the premise that the mappings from the critical-band hidden
unit space to the critical-band phone posteriors of critical-band MLPs in Neural TRAP
were extraneous and inaccurate. Whatever useful information for discriminating between
phones at the critical-band level is already captured by the input-to-hidden weights of the
critical-band MLPs. These input-to-hidden weights act as matched filters on the input
critical-band log energy trajectories, and they emphasize/deemphasize certain modula-
tion frequencies of speech. Unlike Neural TRAP, HAT uses the critical-band hidden unit

activations as the input to the merger MLP instead of the critical-band phone posteriors.

TMLP has the same network connections as HAT, but in TMLP the critical-
band hidden unit connections are learned as a result of the global gradient descent error
minimization training algorithm. Instead of constraining the critical-band hidden unit
connections to learn what is best for critical-band level phone classification, TMLP critical-
band hidden unit connections are set to whatever is best for the overall phone classification.

Thus, the family of distributions that TMLP can model is greater than HAT.
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In Chapter 3, we compared the performance of HAT, TMLP, and Neural TRAP
systems on the TIMIT phone recognition task. We used the hybrid ANN/HMM ASR setup
and found that HAT and TMLP outperform standard Neural TRAP in clean conditions
while using 84% fewer parameters. We also compared these temporal systems with a more
traditional system that used 9 frames of Perceptual Linear Predictive (PLP) features plus
energy and deltas and double deltas as inputs to the MLP. The temporal systems performed
comparably in clean conditions to this PLP system, but in reverberant conditions all
temporal systems outperformed this PLP system. We also tested these systems in the
presence of additive car and exhibition hall noise at various signal-to-noise ratios. No clear
winner was declared from these tasks. The main finding which supported earlier findings on
Neural TRAP was that in combination with the PLP system, HAT and TMLP significantly
improved performance. Because HAT and TMLP performed very well compared to Neural
TRAP we concluded that is was good to skip the mapping to critical-band phones. Because
TMLP did not significantly outperform HAT, there was not yet a clear advantage from
further unconstraining the learning of critical-band hidden unit weights in TMLP; however,
TMLP did have the practical advantage of not having to use large amounts of temporary
disk space to store all of the critical-band hidden unit activations. This practical advantage

was especially clear when we worked on training sets with much more data.

In Chapter 4, we integrated the Neural TRAP system with a state-of-the-art rec-
ognizer for conversational telephone speech (CTS). In particular, we combined the phone
posteriors estimated by Neural TRAP with the phone posteriors from a 9 frame PLP MLP
and transformed the combined phone posteriors into front-end features. These features
were then concatenated with conventional PLP features, resulting in an augmented fea-
ture vector that captured speech information from multiple time scales. We tested this
setup over a series of increasingly complex recognition tasks (numbers, 500 most commonly
used words from Switchboard, and full vocabulary CTS) and found that this approach
consistently reduced recognition errors. We showed that the simple posterior combination
methods tested (e.g., averaging the posteriors, averaging the log posteriors, and inverse en-
tropy weighted averaging of the posteriors) all performed roughly the same, but the inverse
entropy weighted combination method demonstrated some robustness to catastrophic er-

rors within a single posterior stream. We also cited the importance of tuning the Gaussian
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Weight parameter! to reduce the importance of picking the optimal number of dimensions
to keep from the posterior stream. Concatenating the combined posterior features with
the conventional PLP features led to a larger dimensional front-end feature vector which

had to be compensated for by adjusting the Gaussian Weight.

After successfully integrating Neural TRAP within a state-of-the-art recognizer,
we proceeded to compare various approaches for the extraction of useful information from
long-term contexts for recognizing CTS in a variety of ASR system configurations. The

three main types of long-term or temporal systems were:

1. Totally unconstrained - These systems simply took the 15 bands by 51 frames of log
energies as inputs. 15 z 51 MLPS3 used a single hidden layer MLP, while 15 = 51
MLP/ used a double hidden layer MLP.

2. Band-constrained linear - These systems calculated linear transforms on the log
critical-band energy trajectories. PCA/0 used principal components analysis to
project the input trajectories along directions corresponding to the top forty dimen-
sions. LDA/0 used linear discriminant analysis to transform the input trajectories

along the top forty most discriminant directions.

3. Band-constrained nonlinear - These systems used some form of critical-band MLP
to extract information from the input critical-band trajectories. HAT Before Sig-
moid, HAT, Neural TRAP, Neural TRAP Post Softmaz used outputs from various
points within critical-band MLPs trained to learn critical-band level phone posteri-
ors. TMLP was like HAT except that the critical-band hidden unit connections were

learned to optimize the overall phone posterior estimate.
The three types of ASR system configurations for the comparison tests were:

1. Stand-Alone Tandem - The phone posterior outputs of the temporal systems were
transformed and used as the front-end features for a conventional Gaussian mixtures-

based HMM recognizer.

2. Augmented Tandem - The phone posterior outputs of the temporal systems were

transformed and concatenated with conventional short-term front-end features. The

'Recall that this is a specific weighting factor found in the SRI recognizer.
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resulting feature vector was then used as the front-end feature vector for a conven-

tional Gaussian mixtures-based HMM recognizer.

3. Combined-Augmented Tandem - The phone posterior outputs of the temporal sys-
tems were combined with the phone posterior outputs from an MLP whose inputs
were 9 frames of PLP features (9 Frame PLP MLP). These were transformed and
concatenated with conventional short-term front-end features. The resulting feature
vector was then used as the front-end feature vector for a conventional Gaussian

mixtures-based HMM recognizer.

We found that 15 z 51 MLPj, HAT and TMLP consistently outperformed all
other temporal systems in all ASR system configurations. The band-constrained HAT
and TMLP systems performed better in the combined-augmented Tandem configuration
than the unconstrained 15 z 51 MLP suggesting that the critical-band constraint found
in HAT and TMLP are more helpful for learning complementary information to the 9
Frame PLP MLP. HAT and TMLP outperformed band-constrained linear temporal sys-
tems, suggesting that probabilities of certain critical-band categories are important for
higher recognition performance. HAT and TMLP outperformed other band-constrained
nonlinear temporal systems, suggesting that phone posteriors at the critical-band level are
not the optimal critical-band level information to extract. Rather, it is the information
captured by the critical-band hidden units (i.e., the matched temporal filters) that is best

for the classification of phones.

Toward the end of Chapter 5, we investigated what phone categories the tem-
poral systems consistently performed better on compared with the intermediate-term 9
Frame PLP MLP. 15 © 51 MLPj, HAT and TMLP consistently classified diphthongs,
filled pauses, laughter, and a few other phones (/ae/, /hh/, /th/, /z/, /ax/, and /dx/)
better than 9 Frame PLP MLP. The very best ASR system developed, the TMLP in
combined-augmented Tandem configuration, achieved an impressive 8.9% relative reduc-
tion in word error rate on CTS compared with only using the short-term state-of-the-art
front-end feature vector alone. The scale of this relative reduction in word error rate also
carried over when using the full state-of-the-art speech recognition system on the CTS

evaluations in 2004 [135].

In Chapter 6 we further explored the settings for TMLP. We found that the
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optimal number of critical-band hidden units in TMLP does not increase with more training
data. The optimal ratio of training frames to trainable parameters in the TMLP was
greater than 40. Finally, we showed that since many critical-band matched filters learned by
TMLP and HAT looked similar across different critical-bands, it was possible to maintain
comparable performance by sharing the critical-band hidden units across all critical-bands

in the TMLP, thereby reducing the total number of parameters by 30,000.

As mentioned in Chapters 3, 5, and 6, the temporal patterns learned by HAT
and TMLP systems as well as PCA and LDA systems are displayed in Appendices C, D,
and E. Almost all of the patterns learned by HAT and TMLP systems preserve the low
modulation frequencies of speech (0 to between 16 and 20 Hz) which are important for
speech recognition. The patterns learned by PCA and LDA also pass higher modulation

frequencies. Also, patterns learned by PCA resemble sinusoidal basis functions.

7.2 Contribution

The work in this thesis further developed the techniques of extracting information
from speech over long time spans within narrow-frequency channels. Previously, all such
approaches (the original Neural TRAP and its variants) were designed and tested only
on smaller tasks of limited complexity like numbers, digits, and read speech. One of
the major contributions of this thesis was to integrate these long-term approaches within
the framework of a state-of-the-art large vocabulary continuous speech recognizer for the
recognition of conversational telephone speech. We have also developed two new Neural
TRAP-like classifiers that outperform Neural TRAP and use fewer parameters. Using HAT
and TMLP, we were able to achieve significant word error rate reductions on the challenging
task of recognizing conversational telephone speech. In fact, combined-augmented Tandem
features derived with HAT were used in SRI’s state-of-the-art 2004 recognition system [135].
With these features, system performance was improved by about 10% relative compared

to a system without HAT-based features.

In addition to reducing word error rates on a challenging ASR task, we have
gained some understanding from comparing various methods of extracting information
from long-term narrow-band speech. We have seen in many cases that extracting informa-

tion in this way leads to systems that combine well with more traditional methods that
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extract information from shorter time contexts over the entire spectrum. By comparing
various temporal systems, we learned that it is important to extract probabilities of certain
sub-phonemic categories of speech from the long-term energy trajectories. These categories
correspond to temporal patterns that are useful in discriminating between speech sounds.
Using phone posteriors at the critical-band level was consistently worse than using prob-
abilities of these temporal patterns. This work also examined what phones are better

classified by temporal systems.

Finally, this work began exploring the reuse of certain discriminant critical-band
temporal patterns for ASR. By sharing all critical-band hidden units in TMLP across all
critical-bands, we were able to show that discriminant temporal patterns can indeed be
trained and applied on different critical-bands without a gross reduction in performance.
Further studies are required, however, to determine which specific patterns can be shared
across which critical-bands. The discriminant temporal patterns learned in this thesis
further support previous studies on the importance of modulation frequencies between 0-20
Hz for ASR. The patterns learned by TMLP and HAT (displayed in Appendices C and D)

mostly have modulation frequency responses that emphasize these important frequencies.

7.3 Future Work

The work on HAT and TMLP has shown the basic effectiveness of using critical-
band hidden units to derive discriminant temporal filters. Throughout, we have been using
a constant number of hidden units per critical-band. It is likely that improvements in
performance as well as reductions in total parameters can be achieved by customizing each
critical-band with its own optimal number of hidden units. For example, high frequency
critical-bands probably do not need as many hidden units as critical-bands around 500 Hz

where a lot of phonetic information exists.

Further reductions in model size can also be achieved by exploring more weight
sharing schemes in TMLP. We tried the simplest scheme of sharing all critical-band hid-
den units across all critical-bands. Some of the filters learned by the hidden units may
not be useful for certain bands. It is also likely that only some critical-bands share certain
discriminant temporal filters. For example, adjacent critical-bands are more likely to con-

tain similar discriminant temporal filters than critical-bands separated by 2,000 Hz. An
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exhaustive study of various sharing schemes would be able to discover which bands share
which kind of temporal filters. Another useful byproduct of such a study would be that
the learned discriminant temporal filters could be fixed and reused over and over again
as a part of a preprocessing step for front-end feature extraction. This is becoming more
attractive each year as we continue to gain access to more training data, which requires

longer training times for our methods.

All of the comparisons in Chapter 5 were tested on CTS, which is a very difficult
task but has relatively little noise coming from outside sources like cars, sirens, fans, other
people, etc., so given a lot of training data, narrow-band constraints may make less of
a difference than you might see in other tasks. Therefore, it would be a great interest
to repeat some of the comparisons between the unconstrained temporal systems and the
narrow-band constrained temporal systems in Chapter 5 on a large vocabulary continuous
speech task containing more naturally occurring noises (e.g., recordings of meetings). It is

likely that the narrow-band constraints will show more of a benefit on such a task.

Finally, in all of the HAT and TMLP experiments in this thesis, we used log
critical-band speech energy trajectories lasting 51 frames or about 500 milliseconds. Fur-
ther explorations of HAT and TMLP by varying the input time context as well as widening
the frequency band (i.e., using more than one critical-band) of the inputs to the band spe-
cific hidden units may lead to additional performance improvements. HAT and TMLP
classifiers of varying time context and bandwidth can offer separate and complementary
snapshots of the speech signal leading to increased robustness. The ASR system frame-
work is already in place because we can combine any number of HAT and TMLP classifiers
using the simple posterior combination techniques explored in Chapter 4. Once combined,
these MLP-based features can augment the conventional short-term features offering an
almost limitless number of different snapshots extracting the redundant information found

in speech.
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Appendix A

Critical-Band Cuttoff Frequencies
for TIMIT

This appendix lists for reference the half power cut-off frequencies for the critical-

band filters on the TIMIT database which is sampled at 16 kHz.
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| Critical-Band || Frequency Range (Hz) ||

1 18-163
2 118-267
3 220-379
4 329-502
9 446-637
6 975-790
7 720-965
8 885-1165
9 1073-1397
10 1290-1667
11 1542-1982
12 1836-2350
13 2180-2782
14 2582-3289
15 3055-3885
16 3609-4587
17 4262-5412
18 5030-6383
19 5933-7527

Table A.1: The half power cut-off frequencies of each critical-band for speech data sampled
at 16 kHz.



133

Appendix B

Critical-Band Cuttoff Frequencies
for CTS

This appendix lists for reference the half power cut-off frequencies for the critical-

band filters on the CTS data which is sampled at 8 kHz.
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Critical-Band H Frequency Range (Hz) H

1 17-161
2 115-265
3 216-375
4 323-495
9 439-629
6 965-779
7 707-949
8 868-1144
9 1051-1370
10 1262-1632
11 1506-1937
12 1790-2293
13 2122-2709
14 2509-3197
15 2963-3769

Table B.1: The half power cut-off frequencies of each critical-band for speech data sampled
at 8 kHz.
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Appendix C

HAT and TMLP Critical-Band
Patterns for TIMIT

In Appendices C, D, and E, we display plots of critical-band temporal patterns
that our methods have learned. In the HAT and TMLP networks, these patterns come from
the input-to-hidden weights of critical-band hidden units. As described in Chapter 3, these
input-to-hidden weights are matched filters acting on the long-term, narrow-frequency log
energy input trajectories of speech. As such, each filter has a corresponding modulation
frequency response. For speech recognition, it has been shown that modulation frequencies
between 0-16 Hz are important (see Chapter 2 for a detailed discussion about modulation

frequencies and speech recognition).

In this appendix, we display pictures of critical-band discriminant temporal pat-
terns learned by the HAT and TMLP networks from Chapter 3 trained on TIMIT data.
There are a total of 380 discriminant temporal patterns (19 critical-bands times 20 hidden
units per critical-band), which is too many to plot. Since many of these discriminant tem-
poral patterns look similar, we have clustered all of them using agglomerative clustering
with the correlation based similarity measure described in Chapter 2 (Eq.2.5). We stop
clustering at 20 clusters and average all patterns belonging to a particular cluster. We call
this average pattern a centroid, and we display the tables showing which critical-bands
contain hidden unit patterns that make up a particular centroid in Table C.1 for HAT and

Table C.2 for TMLP. We also plot the centroid patterns with their corresponding modu-
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APPENDIX C. HAT AND TMLP CRITICAL-BAND PATTERNS FOR TIMIT

Centroid Critical-Band(s)

Centroid 1 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 2 1,2 3, 4,5 6,7,8 9,12, 13, 14, 15, 16, 17, 18, 19
Centroid 3 || 1, 2, 3, 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 4 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 5 19

Centroid 6 6, 11, 15, 17

Centroid 7 | 1,2,3,4,5,6,7,8,9,10, 11, 13, 14, 15, 16, 17, 18, 19
Centroid 8 2,17, 19

Centroid 9 2
Centroid 10 3.4,5,6,78,9 10, 11, 13, 14, 15, 16, 17, 18, 19
Centroid 11 12, 14
Centroid 12 4, 5,10, 11, 14

Centroid 13 1,2,3,4,5,7, 12, 13, 14, 15, 16, 17, 18
Centroid 14 3,5,7,8,9,10, 11, 12, 13, 14, 15, 16, 18, 19
Centroid 15 || 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 16 16, 17

Centroid 17 || 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 18 1,2,3,5,6,7,8,9, 11, 12, 13, 19

Centroid 19 1,3,6, 7,8, 9,10, 11, 12, 13, 14, 15, 16, 18

Centroid 20

19

Table C.1: Centroid composition table for critical-band hidden units of HAT trained on
TIMIT. The originating critical-bands of all the hidden units clustered within a particular
centroid are listed.

lation frequency responses in Figures C.1 and C.2 for HAT and in Figures C.3 and C.3 for
TMLP.
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Figure C.1: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from HAT trained on TIMIT (Centroids 1-10). The
x-axes correspond to the frame index and modulation frequency respectively, and the y-
axes correspond to the weight magnitude and gain in decibels respectively. The horizontal
line in the modulation frequency response is the -3 dB half power point.
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Figure C.2: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from HAT trained on TIMIT (Centroids 11-20). The
x-axes correspond to the frame index and modulation frequency respectively, and the y-
axes correspond to the weight magnitude and gain in decibels respectively. The horizontal
line in the modulation frequency response is the -3 dB half power point.
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Centroid Critical-Band(s)

Centroid 1 1,2,3,5,7 10, 11, 12, 14, 15, 18, 19
Centroid 2 1,5,7, 9,10, 12, 13, 17, 18

Centroid 3 2,4,5,6,7, 10, 14, 15, 17, 19

Centroid 4 2,3,4,7,8, 10, 12, 13, 14, 15, 16, 17, 19
Centroid 5 5, 16, 17

Centroid 6 2,4,7, 8,10, 13, 14

Centroid 7 1,4,5,6,12, 13, 16, 18

Centroid 8 4,17

Centroid 9 2,3,5,6,7,10, 11, 16, 18
Centroid 10 1, 2,3, 4,8, 10, 11, 12, 13, 14, 15, 18, 19
Centroid 11 || 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 12 1,2, 3,4, 7, 8, 12, 13, 14, 15, 16, 18, 19
Centroid 13 || 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 14 3, 6,10, 11, 13, 15
Centroid 15 1,2,3,4,5, 7,8 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Centroid 16 1, 5,6,9, 10, 11, 13, 14, 15, 16, 17
Centroid 17 1,4,6,7 9,11, 12, 13, 14, 16, 17, 19
Centroid 18 2,3,6,7,8,9, 11, 12, 13, 16, 18, 19
Centroid 19 3,4,6,7,8,9,19
Centroid 20 3.4,5,6,9, 11, 12,13, 16, 17, 19

Table C.2: Centroid composition table for critical-band hidden units of TMLP trained on
TIMIT. The originating critical-bands of all the hidden units clustered within a particular
centroid are listed.
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Figure C.3: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from TMLP trained on TIMIT (Centroids 1-10).
The x-axes correspond to the frame index and modulation frequency respectively, and
the y-axes correspond to the weight magnitude and gain in decibels respectively. The
horizontal line in the modulation frequency response is the -3 dB half power point.
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Figure C.4: The input-to-hidden weights
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and corresponding modulation frequency re-

sponses of critical-band hidden units from TMLP trained on TIMIT (Centroids 11-20).The
x-axes correspond to the frame index and modulation frequency respectively, and the y-
axes correspond to the weight magnitude and gain in decibels respectively. The horizontal
line in the modulation frequency response is the -3 dB half power point.
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Appendix D

HAT and TMLP Critical-Band
Patterns for CTS

In this appendix, we display pictures of critical-band discriminant temporal pat-
terns learned by HAT and TMLP networks from Chapter 5 trained on 34 hours of female
CTS data. These patterns are found in the input-to-hidden unit weights of the critical-band
hidden units. There are a total of 600 discriminant temporal patterns (15 critical-bands
times 40 hidden units per critical-band), which is too many to plot. Since many of these
discriminant temporal patterns look similar, we have clustered all of them using agglom-
erative clustering with the correlation based similarity measure described in Chapter 2
(Eq.2.5). We stop clustering at 40 clusters and average all patterns belonging to a partic-
ular cluster. We call this average pattern a centroid, and we display the tables showing
which critical-bands contain hidden unit patterns that make up a particular centroid in
Tables D.1 and D.2 for HAT and Tables D.3 and D.4 for TMLP. We also plot the centroid
patterns with their corresponding modulation frequency responses in Figures D.1, D.2,

D.3, and D.4 for HAT and in Figures D.5, D.6, D.7, and D.8 for TMLP.

In addition to the HAT and TMLP networks trained on female CTS data from
Chapter 5, we also display plots from the weight-sharing TMLP 540 in Chapter 6. There
are a total of 40 shared critical-band hidden units for TMLP S40. We plot the input-to-
hidden weights of these 40 shared critical-band hidden units (discriminant critical-band

matched filters) as well as their corresponding modulation frequency responses in Fig-
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Centroid Critical-Band(s)

Centroid 1 2, 6

Centroid 2 1, 3, 4, 5, 10, 12, 13, 14, 15
Centroid 3 8,9, 14

Centroid 4 1,2, 3

Centroid 5 1,2, 3,4,5,8, 9,10, 11, 12, 13, 14, 15
Centroid 6 1,2,3,4,5,6,7,8,9, 10, 11, 12, 15
Centroid 7 || 1, 2, 3,4, 5,6,7,8,9,10, 11, 12, 13, 14, 15
Centroid 8 4,5,6,7, 8,9, 10, 11, 12, 14
Centroid 9 1,2,3,4,13, 15
Centroid 10 1,6
Centroid 11 1, 3,4, 8,9, 10, 11, 12, 14, 15
Centroid 12 1,2, 5
Centroid 13 4, 6, 10, 11, 13, 15
Centroid 14 3
Centroid 15 1,2,3,4,5,6,7,8,10, 11, 12, 13, 14, 15
Centroid 16 3,4,5,6,7,8,9, 10, 15
Centroid 17 1, 2,8, 11, 12, 13, 14
Centroid 18 || 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15
Centroid 19 12

Centroid 20 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Table D.1: Centroid composition table (Centroids 1-20) for critical-band hidden units of
HAT trained on 34 hours of female CTS. The originating critical-bands of all the hidden
units clustered within a particular centroid are listed.

ures D.9, D.10, D.11, and D.12.
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Centroid Critical-Band(s)
Centroid 21 3,6,7 8,09, 10, 12, 13, 14, 15
Centroid 22 || 1,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15
Centroid 23 6,8,9, 11, 12, 14, 15
Centroid 24 7,8,9,12, 14
Centroid 25 || 1, 2,3,4,6,7,8,9, 10, 11, 12, 13, 14, 15
Centroid 26 1,2,3,4,5
Centroid 27 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Centroid 28 7
Centroid 29 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Centroid 30 1,2, 3,4, 5,6, 11, 13, 14, 15
Centroid 31 2,3,6,7,09, 10, 11, 12, 14, 15
Centroid 32 1,2 4,5, 11,12, 13, 15
Centroid 33 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Centroid 34 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Centroid 35 1,2,3,4,5,6,7,8,9, 12, 14

Centroid 36

Centroid 37

Centroid 38

3
3,4,5,6,78,9, 10, 15

Centroid 39

2,3,6,8,09, 10, 11, 12, 13, 14

Centroid 40

1,2,3,4,5,6, 78,9, 10, 11, 12, 13, 14, 15

Table D.2: Centroid composition table (Centroids 21-40) for critical-band hidden units of
HAT trained on 34 hours of female CTS. The originating critical-bands of all the hidden
units clustered within a particular centroid are listed.
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Figure D.1:

The input-to-hidden weights
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and corresponding modulation frequency re-

sponses of critical-band hidden units from HAT trained on 34 hours of female CTS (Cen-
troids 1-10). The x-axes correspond to the frame index and modulation frequency respec-
tively, and the y-axes correspond to the weight magnitude and gain in decibels respectively.
The horizontal line in the modulation frequency response is the -3 dB half power point.
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Figure D.2: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from HAT trained on 34 hours of female CTS (Cen-
troids 11-20). The x-axes correspond to the frame index and modulation frequency respec-
tively, and the y-axes correspond to the weight magnitude and gain in decibels respectively.
The horizontal line in the modulation frequency response is the -3 dB half power point.
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Figure D.3: The input-to-hidden weights
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and corresponding modulation frequency re-

sponses of critical-band hidden units from HAT trained on 34 hours of female CTS (Cen-
troids 21-30). The x-axes correspond to the frame index and modulation frequency respec-
tively, and the y-axes correspond to the weight magnitude and gain in decibels respectively.
The horizontal line in the modulation frequency response is the -3 dB half power point.
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Figure D.4: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from HAT trained on 34 hours of female CTS (Cen-
troids 31-40). The x-axes correspond to the frame index and modulation frequency respec-
tively, and the y-axes correspond to the weight magnitude and gain in decibels respectively.
The horizontal line in the modulation frequency response is the -3 dB half power point.



Centroid Critical-Band(s)

Centroid 1 2. 4,5,6,7,9, 11, 12, 13, 15
Centroid 2 1,2 3, 6,7 8,10, 12, 13
Centroid 3 1,3, 4,5, 12,13, 14

Centroid 4 1,2, 7

Centroid 5 1,2,3,4,6,7,13

Centroid 6 8

Centroid 7 1,2,3,4,5,6,7,8,09, 11, 13, 14, 15
Centroid 8 3,4

Centroid 9 || 1,2, 3, 4,5, 6,7,8,09, 10, 11, 12, 13, 14, 15

Centroid 10

1, 5,68, 10, 11, 12, 13, 15

Centroid 11

2,3,4,5,6, 78,09, 10, 11, 13, 14, 15

Centroid 12 4,11, 15
Centroid 13 1,3,6,7,8, 9,11, 15
Centroid 14 1,3

Centroid 15

1,2,4,5,6,7 8,9, 10, 11, 12, 13, 14, 15

Centroid 16

1,2, 3,4,5,6, 709,10, 11, 13, 14, 15

Centroid 17 1,3,6,9,12, 14
Centroid 18 1,2,4,7, 8, 10, 12, 14
Centroid 19 ,3,6,7,14, 15
Centroid 20 , 3, 8,12
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Table D.3: Centroid composition table (Centroids 1-20) for critical-band hidden units of
TMLP trained on 34 hours of female CTS. The originating critical-bands of all the hidden
units clustered within a particular centroid are listed.
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Centroid Critical-Band(s)
Centroid 21 2,5,10
Centroid 22 1,6, 709,10, 11, 13, 14, 15
Centroid 23 || 1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15
Centroid 24 3,4,6,13, 15
Centroid 25 || 1,2, 3,4,5,6,7,8,09, 10, 11, 12, 13, 14
Centroid 26 4,6, 15
Centroid 27 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Centroid 28 1,2 3, 4, 5 6,7,8,9, 10, 12, 14, 15
Centroid 29 ,5,8,9,14, 15
Centroid 30 1,2 4,5, 6, .8, 10, 11, 12, 14, 15

Centroid 31 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Centroid 32 1,2,3,4,5,7,8,9, 10, 11, 12, 13, 14, 15
Centroid 33 1,2,3,4,5,6,8,9, 10, 11, 12, 13, 14, 15
Centroid 34 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14
Centroid 35 1,3,4,5,6,7,8,10, 11, 12, 13, 14, 15

Centroid 36 1,2,3,4,5,6,7,8,9, 10, 11, 12, 14, 15
Centroid 37 14, 15

Centroid 38 4,8,9, 14

Centroid 39 1,2,3,4,5,6,7,8,9, 10, 12, 13, 14, 15
Centroid 40 2,3,4,6,7,10, 12, 14

Table D.4: Centroid composition table (Centroids 21-40) for critical-band hidden units of
TMLP trained on 34 hours of female CTS. The originating critical-bands of all the hidden
units clustered within a particular centroid are listed.
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Figure D.5: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from TMLP trained on 34 hours of female CTS
(Centroids 1-10). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the weight magnitude and gain in decibels re-

spectively.
power point.

The horizontal line in the modulation frequency response is the -3 dB half
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Figure D.6: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from TMLP trained on 34 hours of female CTS
(Centroids 11-20). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the weight magnitude and gain in decibels re-
spectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure D.7: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from TMLP trained on 34 hours of female CTS
(Centroids 21-30). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the weight magnitude and gain in decibels re-
spectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure D.8: The input-to-hidden weights and corresponding modulation frequency re-
sponses of critical-band hidden units from TMLP trained on 34 hours of female CTS
(Centroids 31-40). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the weight magnitude and gain in decibels re-
spectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.



155

Shared Unitl F. Resp.1 Shared Unit2 F. Resp.2
0 T 0 :
06 a 04
0.4 -10
-10
0.2 " 0.2
0 g 0 -20
-0.4 -0.2 -30
-25-15-5 5 15 25 0 20 40 -25-15-5 5 15 25 0 20 40
Shared Unit3 F. Resp.3 Shared Unit4 F. Resp.4
0 T 0 :

O\,V\/J\W\N,/

]l

-10

-0.5 -20

|
LN
I
w
o
I
| o
[l o o
I |
N =
o o

-30
-25-15-5 5 15 25 0 20 40 -25-15-5 5 15 25 0 20 40
Shared Unit5 F. Resp.5 Shared Unit6 F. Resp.6

1.5 -5

o =
|
=
o
o
o )] =
= .
| | |
w N =
o o o

05 -15
V. -20 N
-25-15-5 5 15 25 0 20 40 -25-15-5 5 15 25 0 20 40
Shared Unit7 F. Resp.7 Shared Unit8 F. Resp.8
0 T 2 0 ;
! 10
1 -10
0.5 -20 : 0 < A
-20
0 — \/'\/VV -30 -1
-30
-25-15-5 5 15 25 0 20 40 -25-15-5 5 15 25 0 20 40
Shared Unit9 F. Resp.9 Shared Unit10 F. Resp.10
0 ; 0 :

0.5

v

o [
—
I I
N [
o o
o [
| I |
w N =
o o o

_1 . . . .
-25-15-5 5 15 25 0 20 40 -25-15-5 5 15 25 0 20 40

Figure D.9: The input-to-hidden weights and corresponding modulation frequency re-
sponses of shared critical-band hidden units from the weight-sharing TMLP (TMLP S40)
trained on 34 hours of female CTS (shared weights 1-10). The x-axes correspond to the
frame index and modulation frequency respectively, and the y-axes correspond to the
weight magnitude and gain in decibels respectively. The horizontal line in the modulation
frequency response is the -3 dB half power point.
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Figure D.10: The input-to-hidden weights and corresponding modulation frequency re-
sponses of shared critical-band hidden units from the weight-sharing TMLP (TMLP S40)
trained on 34 hours of female CTS (shared weights 11-20). The x-axes correspond to
the frame index and modulation frequency respectively, and the y-axes correspond to the
weight magnitude and gain in decibels respectively. The horizontal line in the modulation
frequency response is the -3 dB half power point.
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Figure D.11: The input-to-hidden weights and corresponding modulation frequency re-
sponses of shared critical-band hidden units from the weight-sharing TMLP (TMLP S40)
trained on 34 hours of female CTS (shared weights 21-30).
the frame index and modulation frequency respectively, and the y-axes correspond to the
weight magnitude and gain in decibels respectively. The horizontal line in the modulation
frequency response is the -3 dB half power point.

The x-axes correspond to
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Figure D.12: The input-to-hidden weights and corresponding modulation frequency re-
sponses of shared critical-band hidden units from the weight-sharing TMLP (TMLP S40)
trained on 34 hours of female CTS (shared weights 31-40). The x-axes correspond to
the frame index and modulation frequency respectively, and the y-axes correspond to the
weight magnitude and gain in decibels respectively. The horizontal line in the modulation
frequency response is the -3 dB half power point.
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Appendix E

PCA and LDA Critical-Band
Patterns for CTS

In this appendix, we display pictures of critical-band temporal patterns learned by
PCA and LDA methods from Chapter 5 computed on 34 hours of female CTS data. These
patterns are the ones used to transform the input log critical-band energy trajectories.
There are a total of 765 temporal patterns (15 critical-bands times 51 dimensions per
critical-band), which is too many to plot. Since many of these temporal patterns look
similar, we have clustered all of them using agglomerative clustering with the correlation
based similarity measure described in Chapter 2 (Eq.2.5). We stop clustering at 40 clusters
and average all patterns belonging to a particular cluster. We call this average pattern
a centroid and plot the centroid patterns with their corresponding modulation frequency
responses in Figures E.1, E.2, E.3, and E.4 for PCA and in Figures E.5, E.6, E.7, and E.8
for LDA.
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Figure E.1: The critical-band log energy trajectory transformation vectors and corre-
sponding modulation frequency responses of PCA computed over 34 hours of female CTS
(Centroids 1-10). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure E.2: The critical-band log energy trajectory transformation vectors and corre-

sponding modulation frequency responses of PCA computed over 34 hours of female CTS

(Centroids

11-20).

The x-axes correspond to the frame index and modulation frequency

respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half

power point.
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Figure E.3: The critical-band log energy trajectory transformation vectors and corre-
sponding modulation frequency responses of PCA computed over 34 hours of female CTS
(Centroids 21-30). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure E.4: The critical-band log energy trajectory transformation vectors and corre-
sponding modulation frequency responses of PCA computed over 34 hours of female CTS
(Centroids 31-40). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure E.5: The critical-band log energy trajectory transformation vectors and corre-
sponding modulation frequency responses of LDA computed over 34 hours of female CTS
(Centroids 1-10). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure E.6: The critical-band log energy trajectory transformation vectors and corre-
sponding modulation frequency responses of LDA computed over 34 hours of female CTS
(Centroids 11-20). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure E.7: The critical-band log energy trajectory transformation vectors and corre-
sponding modulation frequency responses of LDA computed over 34 hours of female CTS
(Centroids 21-30). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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Figure E.8: The critical-band log energy trajectory transformation vectors and corre-
sponding modulation frequency responses of LDA computed over 34 hours of female CTS
(Centroids 31-40). The x-axes correspond to the frame index and modulation frequency
respectively, and the y-axes correspond to the tranform magnitude and gain in decibels
respectively. The horizontal line in the modulation frequency response is the -3 dB half
power point.
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