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1Abstra
tLearning Dis
riminant Narrow-Band Temporal Patterns for Automati
 Re
ognitionof Conversational Telephone Spee
hbyBarry Yue ChenDo
tor of Philosophy in Engineering - Ele
tri
al Engineering and ComputerS
ien
esUniversity of California, BerkeleyProfessor Nelson Morgan, ChairTypi
al automati
 spee
h re
ognition (ASR) systems extra
t features from the full spe
-trum of spee
h over relatively short time spans (from about 25 millise
onds to approx-imately 100 millise
onds). They rely on the short-term spe
tral envelope of spee
h formodeling spee
h sounds. This dependen
e on the short-term spe
tral envelope of spee
hmay a

ount for the fa
t that ASR systems still fall short of human re
ognition ability.Variabilities in the spee
h signal 
ome from environmental sour
es (su
h as noise andreverberation) as well as from the speaker herself/himself (su
h as a

ent and speakingstyle). These variabilities 
reate diÆ
ult problems for typi
al ASR systems relying onthe short-term spe
tral envelope of spee
h. This thesis further explores the extra
tion ofdis
riminant spee
h information from long-term narrow-frequen
y energy traje
tories ofspee
h. These long-term narrow-frequen
y energy traje
tories stret
h over 500 millise
-onds of spee
h and span 
riti
al-bandwidths. Previous work on extra
ting informationfrom these long-term traje
tories led to the development of a neural network ar
hite
ture
alled Neural TRAP [52, 112℄. Neural TRAP 
onsists of two stages of multi-layer per
ep-trons (MLPs), ea
h of whi
h is a single hidden layer fully-
onne
ted MLP. The �rst stageis trained to estimate the phone posterior probabilities within ea
h 
riti
al-band, while these
ond stage uses the 
riti
al-band level phone probabilities to 
ome up with an overallestimate of the full spe
trum phone posterior probabilities. This system was 
ompetitive to
onventional ASR systems, but in 
ombination with 
onventional systems, Neural TRAP



2signi�
antly improved ASR performan
e. We extend the Neural TRAP work along twomajor dire
tions in this thesis. First, we develop two new Neural TRAP-like ar
hite
turesthat extra
t di�erent 
riti
al-band level information. The �rst new ar
hite
ture, HiddenA
tivation TRAP (HAT), is like Neural TRAP ex
ept that instead of using the outputs ofthe 
riti
al-band MLPs, whi
h estimate 
riti
al-band level phone probabilities, it uses theoutputs of the 
riti
al-band hidden units, whi
h represent probabilities of 
ertain dis
rimi-nant energy traje
tories. The se
ond new ar
hite
ture, Tonotopi
 Multi-Layer Per
eptron(TMLP), has the same network topology as HAT, but the 
riti
al-band hidden unit pa-rameters and the dis
riminant energy traje
tories that they model are not 
onstrained tolearn 
riti
al-band level phone posteriors, rather they are free to learn useful 
riti
al-banddis
riminant patterns for the estimation of the full-band phone posteriors. The se
ond ma-jor extension in this thesis is the integration of the long-term narrow-band systems witha 
onventional ASR system for the re
ognition of 
onversational telephone spee
h (CTS).By augmenting 
onventional short-term features with features derived from a 
ombina-tion of phone posteriors estimated by the long-term systems and by more 
onventionalintermediate-term systems, we a
hieve word error rate redu
tions of about 9% relative onCTS, whi
h is 
onsidered impressive for this task.
Professor Nelson MorganDissertation Committee Chair
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1
Chapter 1
Introdu
tion

One of the funnier moments in a Star Trek movie happened when the 
rew ofthe starship Enterprise attempt to save the Earth by traveling ba
k hundreds of years tothe late 1980's in sear
h of whales. To ful�ll their quest, these futuristi
 travelers mustdeal with \primitive" te
hnologies. They were used to teleporting from one side of theplanet to another, and now they had to ride the buses a
ross town. In one s
ene, the 
hiefengineer of the Enterprise sits in front of a 
omputer, pi
ks up the mouse and uses it as ami
rophone to talk with the 
omputer. To his dismay, the 
omputer does not even respondwith a beep or a boop. In his time, automati
 spee
h re
ognition (ASR) had been longsolved, and people 
ould intera
t with 
omputers by simply talking. In our time, ASR, thepro
ess by whi
h a 
omputer takes what a user says and translates it into text, remains a
hallenging area of resear
h.1.1 ASR: Not a Solved ProblemYou wouldn't think that ASR still poses a 
hallenge 
onsidering that today thereare powerful ASR produ
ts in the market 
apable of performing a variety of tasks in
ludingdi
tation, 
ommand and 
ontrol, and automated telephone 
all 
enter routing. Theseprodu
ts re
ognize spee
h \pretty well" under ideal 
onditions, where an ideal 
onditionis one in whi
h the re
ognizer was trained to deal with. However, when 
ompared withhumans, ASR systems still perform mu
h more poorly. Furthermore, under non-ideal
onditions, performan
e of 
urrent state-of-the-art spee
h re
ognizers degrades sharply.
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Figure 1.1: A 
omparison of word error rates for ma
hines and humans from [84℄. Whenpossible, ma
hine word error rates are updated from a variety of sour
es [76℄, [36℄, [104℄,and [133℄.In 1997 Ri
hard Lippmann surveyed the state-of-the-art performan
e of ASR
ompared with human performan
e on various spee
h re
ognition tasks [84℄. Figure 1.1
ompares the word error rates1 of ma
hines versus that of humans on these tasks. Wherepossible, I have updated the ma
hine word error rates to re
e
t some of the progress thathas been made sin
e 1997. Spee
h re
ognition performan
e by ma
hines is still mu
h worsethan that by humans.Another way to evaluate the quality of 
urrent ASR performan
e is to 
ompareusing ASR as an input method against other 
onventional input methods su
h as typing.Spee
h resear
her Roger K. Moore has measured the number of 
orre
t words per minute2from typing and from a speaker dependent large vo
abulary 
ontinuous spee
h re
ognition(SD LVCSR) system like the ones you 
an buy from S
anSoft or IBM for home use. Hefound that an expert QWERTY typist 
an type up to 70 
orre
t words per minute, whilethe SD LVCSR system 
an only output about 30 
orre
t words per minute [95℄. It isinteresting to note that while the number of words per minute from the SD LVCSR systemis about 107, the number of 
orre
t words per minute drops down to 30. The explanation forthis drop is that the ASR system makes mistakes whi
h takes time for the user to 
orre
t,thus greatly redu
ing the number of 
orre
t words per minute. Consumers expe
ting ASRdi
tation produ
ts to be as good as a se
retary may be sorely disappointed. The worderror rates of ASR systems are still too high.The errors made by ASR systems 
ome from two major sour
es of variability:1Word error rate is a typi
al performan
e measure for ASR systems and is de�ned to be the total numberof errors (word substitutions, insertions, and deletions) divided by the total number of words.2This is a measurement of how many of the desired input words 
an be inputted per minute.



1.2. TYPICAL ASR SYSTEMS 3environmental variations, and speaker variations. Environmental variations 
an 
onsist ofsounds pi
ked up by the mi
rophone that happen in the ba
kground, e.g., a barking dog, anoisy 
omputer fan, or even other people gossiping and laughing. We refer to this kind ofenvironmental variation as \ba
kground noise". Another kind of variation 
aused by theenvironment is reverberation or the e
ho e�e
t. Sound waves 
oming from a speaker, notonly travel to the mi
rophone dire
tly from the speaker's mouth, but also indire
tly fromre
e
tions o� walls and other obje
ts. These sound re
e
tions 
ause signi�
ant perfor-man
e degradations in ASR systems. Speaker variation 
an happen both within a spe
i�
speaker (at di�erent times) or a
ross di�erent speakers (i.e., from one speaker to anotherspeaker). An example of within speaker di�eren
es o

urs when a person speaks at di�erentrates, possibly be
ause of time pressures or varying levels of ex
itement. People also tendto talk di�erently depending on the audien
e. For example, when speaking formally to aboss or a superior, one may want to enun
iate and use a more sophisti
ated vo
abulary. In
ontrast, when speaking to a friend, a person is more likely to use slang and talk 
asually.A person's spee
h may also sound di�erently when he/she is si
k or has just woken up. Theprevious examples highlight variations 
aused by vo
abulary 
hange as well as variationsin the quality of the spee
h signal. Cross speaker variability may o

ur in the pit
h oftheir voi
es, the a

ents in their spee
h, the rhythm and pa
e of their delivery, and all thesame variations that 
an happen within the same speaker. All these sour
es of speakervariability, as well as the environmental variability mentioned above, 
ontribute to makingspeaker independent large vo
abulary 
ontinuous spee
h re
ognition su
h a 
hallengingtask. Conversational telephone spee
h (CTS), 
onsisting of re
ordings of people talkingover the phone about everyday topi
s, represents one of the biggest 
hallenges fa
ing ASRtoday. One of the goals of this thesis is to address this 
hallenge and improve performan
eon CTS. Before we outline other goals of this thesis, let us �rst dis
uss the motivation forour approa
h starting with a brief explanation of 
onventional ASR systems.1.2 Typi
al ASR SystemsA typi
al state-of-the-art ASR system tries to �nd the best sequen
e of wordsgiven a set of a
ousti
 observations and modeling parameters (e.g., grammar, pronun-
iation, and phonota
ti
s). Let X = fx1;x2; : : : ;xNg denote a sequen
e of N a
ousti




4 CHAPTER 1. INTRODUCTIONobservation ve
tors or \feature" ve
tors, and let W = fword1; word2; : : : ; wordMg denotea sequen
e of M words. The ASR system outputs the word sequen
e,W�, that maximizesthe following equation: W� = argmaxW P (WjX; �) (1.1)where � represents all the trained model parameters. Instead of building an all-en
ompassing model of P (WjX; �), we 
an fa
tor this probability into several smallermodels. First, let us 
onsider words as a sequen
e of sub-word units or states. The most
ommon 
hoi
e for these sub-word states are sub-phones whi
h are portions of phones3.Without loss of generality, we will denote this sequen
e of sub-word states by a sequen
e ofphones: Q = phone1; phone2; : : : ; phoneK . Equation 1.1 
an be rewritten as Equation 1.2by summing over all the possible phone sequen
es, Q, that together make up the wordsequen
e, W.argmaxW P (WjX; �) = argmaxW XQ P (W;QjX; �) (1.2)= argmaxW XQ P (XjW;Q; �)P (W;Qj�)P (Xj�) (1.3)= argmaxW XQ P (XjW;Q; �)P (QjW; �)P (Wj�) (1.4)= argmaxW XQ P (XjQ; �AM)P (QjW; �PM)P (Wj�LM ) (1.5)Invoking Bayes' rule we arrive at Equation 1.3. Noti
e that P (Xj�) in the denominator ofEquation 1.3 is 
onstant over all word sequen
es, so we 
an drop this term in the argmax.Equation 1.4 results from this and the fa
toring the joint probability P (W;Qj�). Wethen apply the 
onditional independen
e assumption that the sequen
e of features X is
onditionally independent of the word sequen
eW given the phone sequen
eQ whi
h givesus Equation 1.5. Equation 1.5 
onsists of three probability models whi
h also happen tode�ne three major subdivisions in ASR resear
h. They are:� P (XjQ; �AM): The a
ousti
 model models how probable a sequen
e of featuresare given a sequen
e of phones.� P (QjW; �PM): The pronun
iation model models how probable a sequen
e of3A phone is de�ned as any single spee
h sound 
onsidered as a physi
al event without regard to its pla
ein the sound system of a language [47℄.



1.2. TYPICAL ASR SYSTEMS 5phones are given a sequen
e of words, essentially providing a pronun
iation di
tionarythat shows how to pronoun
e words using their 
onstituent phones.� P (W; �LM): The language model models how probable a given word sequen
e is.This is where grammati
al and semanti
 
onstraints are modeled.Many resear
hers a
tively pursue improvements in pronun
iation as well as lan-guage modeling, but this thesis primarily fo
uses on innovations in the a
ousti
 model.One important 
omponent in the a
ousti
 model is the set of a
ousti
 observations usedto represent spee
h, i.e., the front-end features. Nearly every state-of-the-art ASR systemuses features that represent some form of the spe
tral envelope of spee
h. Figure 1.2 showssome of the typi
al pro
essing steps. First, we window the spee
h waveform by applyinga 25-millise
ond Hamming window every 10 millise
onds. Next, we transform the timedomain spee
h signal into the frequen
y domain by 
omputing a 256-point fast Fouriertransformation (FFT) on ea
h of the windows every 10 millise
onds. Inspired by how thehuman peripheral auditory system works [48℄, the next two steps smooth in frequen
yand 
ompress the magnitude. The squared magnitudes of groups of FFT output bins areaveraged together to simulate an auditory-s
aled �lter bank. The output of the �lter bankis 
ompressed by applying the log. For every 10 millise
onds of spee
h, the result is asmoothed and 
ompressed representation of the spe
tral envelope of spee
h. When 
om-puting either of the typi
al features, Mel-Frequen
y Cepstral CoeÆ
ients (MFCC) [87℄ orPer
eptual Linear Predi
tive (PLP) features [48℄, additional transformations are appliedwhi
h further smooth out the spe
tral envelope. While these features are 
omputed overthe entire frequen
y range, the temporal 
ontext of the features is quite limited, 
omingfrom the original analysis window of 25 millise
onds. Most state-of-the-art ASR systemsuse front-end features that have some form of velo
ity (delta) and a

eleration (doubledelta) 
omponents or have been transformed by linear proje
tions 
omputed over several
onse
utive features. The result of su
h operations e�e
tively widens the temporal 
ontextto about 90 millise
onds. Pi
torially, the 
onventional feature extra
tion pro
esses spee
hwithin narrow verti
al re
tangles like the one shown in Figure 1.2.To represent P (XjQ; �AM), state-of-the-art a
ousti
 models use Hidden MarkovModels (HMMs). HMMs are probabilisti
 �nite state ma
hines. There are states in an
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Figure 1.2: Typi
al front-end feature 
al
ulation blo
k diagram.HMM whi
h represent portions of phones, triphones4, or some other sub-word unit. Withina state there are probabilities for transitioning to another state or to remain in the 
urrentstate. Also, within a state there is a probability asso
iated with emitting a 
ertain a
ousti
feature ve
tor. Figure 1.3 shows an HMM for the word \
at" whi
h is depi
ted as a sequen
eof phones (/k/, /ae/, and /t/). Starting in state /k/, there is a probability of staying instate /k/ given by P (qt = =k=jqt�1 = =k=) and a probability of transitioning to state /ae/represented by P (qt = =ae=jqt�1 = =k=). State /k/ also has a probability of emitting a
ertain feature ve
tor xt given by P (xtjqt = =k=). In general, the overall probability ofa sequen
e of feature ve
tors given a sequen
e of phone states from an HMM is given byEquation 1.6, where �AM is omitted for simpli
ity but assumed as a 
onditioning variablein all of the probabilities.P (XjQ) = P (x1jq1)P (q1) NYt=2P (xtjqt)P (qtjqt�1) (1.6)HMMs make two key modeling assumptions:4Triphones are 
ontextual phones de�ned by the 
urrent phone and the previous and subsequent phone.
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Figure 1.3: An example of a Hidden Markov Model for the word \
at".� A feature ve
tor at time t is 
onditionally independent of everything else given thestate at time t. In other words, the emission probability distribution doesn't 
hangefrom time to time within the same state.� The next state is 
onditionally independent of all previous states and feature ve
torsgiven the 
urrent state. Essentially, the next state depends only on what the 
urrentstate is. This assumption is often referred to as the �rst-order Markov assumption.While the se
ond modeling assumption provides a means of modeling the time evolutionof feature ve
tors when states transition, the �rst modeling assumption implies that thetime evolution of feature ve
tors is not modeled within a single state sin
e the emissionprobability distribution doesn't 
hange. This means that the probability of being in aphone state is derived from a distribution on a front-end feature that is 
omputed over avery small amount of time 
ontext.1.3 MotivationConventional ASR a
ousti
 models are based on 
apturing the representativespe
tral pro�les of spee
h sounds. While these spe
tral pro�les or spe
tral envelopes spanthe entire frequen
y bandwidth in the spee
h, they have very short temporal extents (25millise
onds - 90 millise
onds). As eviden
ed by 
urrent ASR performan
e, this short-term approa
h seems to 
apture some information about the underlying spee
h; however,
urrent ASR systems are parti
ularly sensitive to the aforementioned variations in the
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h signal that have deleterious e�e
ts on the spe
tral envelope of spee
h [113℄. Thetemporal information that is 
aptured by 
urrent ASR systems is in
orporated in a limitedway via the �rst-order Markov modeling in the HMMs.1.3.1 Narrow-Band Temporal Patterns Approa
h to ASRIt is this weakness of relying on the short-term spe
tral envelope of spee
h thatthe work in this thesis addresses. The main goal of this thesis is to 
apture long-termtemporal information in spee
h and apply it on the re
ognition of 
onversational telephonespee
h (CTS). In parti
ular, this thesis explores and dis
usses the learning of dis
riminanttemporal patterns (or temporal pro�les as opposed to spe
tral pro�les) within narrow-frequen
y bands spanning long periods of time (about 500 millise
onds). This work extendsground breaking resear
h in TempoRAl Patterns (TRAPs) 
ondu
ted by Sangita Sharma,Hynek Hermansky, and Pratibha Jain [52, 53, 54, 112, 62℄ whi
h will be dis
ussed indetail in the next 
hapter. Our approa
h to improving the state-of-the-art performan
eis to develop data-driven front-end features that extra
t information from spee
h energyin narrow-frequen
y bands over long periods of time using neural networks. Instead ofdeveloping spe
tral features from narrow verti
al re
tangles in the time/frequen
y plane,we will extra
t temporal features from long horizontal re
tangles as in Figure 1.4. Inaddition to developing these temporal features, the work in this thesis also 
ombines thesefeatures with the 
onventional spe
tral features. In this way, we use the information
aptured by the temporal features to 
omplement the information already provided by the
onventional spe
tral features for the purpose of improving ASR on CTS whi
h 
ontainslarge amounts of speaker variation.1.3.2 Why Narrow-Frequen
y Bands?We draw our motivation for learning in narrow-frequen
y bands from a series ofhuman listening experiments. Harvey Flet
her's human listening experiments [37℄ and JontAllen's summary of his work [2℄ provide the main impetus for working on narrow-frequen
ybands. Flet
her's hypothesis is that independent, narrow-frequen
y dete
tors, working inparallel, a

ount for the robustness of human auditory pro
essing. Flet
her introdu
ed the
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Figure 1.4: Proposed temporal front-end feature 
al
ulation blo
k diagram.Arti
ulation Index (AI) model for predi
ting spee
h arti
ulation5, whi
h states that thetotal arti
ulation error is equal to the produ
t of independent sub-band arti
ulation errors.Other listening experiments have also shown how humans seem to be able to dis
riminatebetween spee
h sounds given only narrow-frequen
y spee
h. Greenberg, et. al. [44, 118℄and Warren, et. al. [128, 127℄ show independently how words 
an still be re
ognized despite�ltering out all frequen
ies of spee
h ex
ept for several narrow frequen
ies. Lippmann [83℄also shows that re
ognizing 
onsonants in nonsense CVC syllables 
an still be done e�e
-tively by human listeners even when the spee
h is missing middle frequen
ies from 800Hz to 3,150 Hz. His listeners 
ould 
orre
tly identify 91.6% of the 
onsonants even whenmissing these frequen
ies.Another set of listening experiments shows eviden
e that humans 
an robustlydete
t some set of fundamental 
ategories or spee
h attributes within narrow-band signals.Miller and Ni
ely performed an analysis of 
onsonant identi�
ation experiments where lis-teners were given spee
h that had been �ltered by a series of high, low, and band-pass�lters [88℄. They found that the patterns of errors were not random. Instead, errors seem5Arti
ulation refers to the re
ognition of nonsense spee
h sounds, while intelligibility refers to the re
og-nition of meaningful spee
h.



10 CHAPTER 1. INTRODUCTIONto be grouped along several spee
h attributes like voi
ing, nasality, a�ri
ation, pla
e ofarti
ulation, and an attribute they 
all duration to distinguish between /s/, /sh/, /z/, and/zh/. Confusions between 
onsonants sharing an attribute (e.g., voi
ed 
onsonants) aremore often 
onfused with ea
h other, but not often 
onfused with 
onsonants not sharingthe attribute (e.g., unvoi
ed 
onsonants). Also, they measured the mutual information ofspoken and per
eived 
onsonants in noisy band-limited spee
h and found that the infor-mation transmitted for the voi
ing attribute is the most robust, followed by nasality, whilepla
e is the attribute that is least robust to noise. These results show that 
ertain spee
hattributes are robustly dete
ted within narrow-frequen
y bands, and these attributes aredete
ted more robustly than larger units of spee
h like 
onsonants.In this work we primarily fo
us on overlapping narrow-frequen
y bands spanninga \
riti
al bandwidth". The 
riti
al bandwidth 
omes from early hearing experimentsperformed by Harvey Flet
her whi
h showed that the threshold of hearing a pure sinusoidaltone with a noise signal 
entered at the tone in
reases as the noise signal's bandwidth iswidened up to a 
ertain bandwidth. After ex
eeding this bandwidth, whi
h he referred toas a 
riti
al bandwidth, there is no 
hange in the hearing threshold for the sinusoidal tone.In other words, only noise falling within the 
riti
al bandwidth of a narrow-band signal 
an
ontribute to the masking, and in this way one 
an 
onsider 
riti
al-bands as a series offrequen
y sele
tive �lters. Motivation for using 
riti
al-bands also 
omes from some workon deriving dis
riminant fun
tions in frequen
y for ASR. Malayath and Hermansky usedlinear dis
riminant analysis (LDA) to derive �lters in the frequen
y domain [85℄ and foundthat these �lters very mu
h resemble the bank of 
riti
al-band �lters used in traditionalfront-end pro
essing te
hniques like PLP and MFCC.1.3.3 Why Long-Term?Human re
ognition of phones in nonsense syllables has an error rate of about 1.5%a

ording to Allen's analysis of Flet
her's early listening experiments [2℄. In 
ontrast, theASR error rates on phone re
ognition tasks are still an order of magnitude worse [78, 27,106, 3℄. One reason for the dis
repan
y in performan
e between humans and ma
hines isthat humans use longer-term information about the phone whi
h is not 
aptured by the
urrent emphasis on the short-term spe
tral envelope in most ASR systems. Note, thislonger-term information does not simply 
ome from semanti
 
ontext sin
e Flet
her's study



1.4. THESIS OVERVIEW 11used nonsense syllables. There must be some important long-term 
hara
teristi
s withinthe a
ousti
s that are 
ues to the phoneti
 identity. Resear
hers have also shown, usinginformation theoreti
 analysis, that there is signi�
ant dis
riminant information about theidentity of the 
urrent phone at times up to several hundred millise
onds away [130, 14℄.1.3.4 Complementarity to Conventional FeaturesFinally, by looking for dis
riminant information in very long time 
ontexts within
riti
al-bands, �nding information that is 
omplementary to the information in the short-term 
onventional analysis is highly likely. The temporal analysis in this thesis helps moreon some spee
h sounds than the short-term 
onventional features and vi
e versa. Overthe years, many other ASR systems have greatly bene�ted by using multiple experts orstreams of information. Here is but a sampling of su

essful 
ombination approa
hes forASR: [92, 71, 52, 115, 65, 86, 31, 12, 1, 73, 94℄. Performan
e in 
lean 
onditions as wellas robustness to noisy 
onditions improves greatly when 
ombining multiple streams ofinformation. This work is yet another example of the bene�ts obtained by 
ombiningdi�erent streams of information.1.4 Thesis Overview1.4.1 Thesis GoalsIn the past few years, several systems that utilize spee
h information from narrow-frequen
y 
hannels over long periods of time have demonstrated promising re
ognitionperforman
e improvements. The main thrust of this thesis is to further improve theselong-term narrow-band ASR systems. More spe
i�
ally, this thesis has three main goals:1. To design and implement new neural network ar
hite
tures for the learning of pho-neti
ally dis
riminant patterns within 
riti
al-bands over long periods of time.2. To integrate these new ar
hite
tures with a state-of-the-art ASR system by usingthe outputs of the neural networks as a data-driven feature ve
tor for the purpose ofimproving re
ognition performan
e on 
hallenging ASR tasks, su
h as 
onversationaltelephone spee
h.



12 CHAPTER 1. INTRODUCTION3. To learn the strengths and weaknesses of these new neural network ar
hite
turesby 
omparing them to several existing methods for extra
ting information within
riti
al-bands over long periods of time.1.4.2 Thesis OutlineThis thesis pro
eeds as follows. Chapter 2 gives ba
kground information usefulfor understanding the thesis work. This in
ludes a survey of previous work to help thereader frame this work within the state-of-the-art in ASR resear
h. Chapter 3 presents twonew neural network ar
hite
tures for extra
ting information within 
riti
al-bands over longperiods of time: Hidden A
tivation TRAP (HAT) and Tonotopi
 Multi-Layer Per
eptron(TMLP). Performan
e on a phone re
ognition task for HAT, TMLP, and other temporalsystems is also presented in this 
hapter as well as their performan
e in arti�
ial noiseand reverberant 
onditions. In Chapter 4 we explain the approa
h of using fun
tions ofposterior probabilities approximated by neural nets as features for a state-of-the-art ASRsystem and des
ribe the series of experiments that lead to our best system 
on�guration forthe 
onversational telephone spee
h re
ognition task. A 
omparison of the various temporalsystems on a full 
onversational telephone spee
h re
ognition task is presented in Chapter 5.We show that HAT and TMLP signi�
antly outperform some other narrow-band temporalsystems, and we analyze where these improvements 
ome from. In Chapter 6 we presentan empiri
al study examining the optimal 
on�guration for TMLP given 
onstraints intotal parameters as well as training data. A se
tion on sharing 
riti
al-band hidden unitsin the TMLP is also presented. By sharing these parameters, we are able to show whi
hdis
riminant temporal patterns are 
ommon among di�erent 
riti
al-bands. In Chapter 7,we summarize the major themes and points in this thesis and spe
ulate on future dire
tions.Appendi
es C, D, and E 
ontains a gallery of dis
riminant temporal patterns learned inHAT and TMLP.
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Chapter 2
Ba
kground

Having motivated the general approa
h of extra
ting spee
h information withinnarrow-frequen
y bands over a relatively long amount of time, we survey the resear
hlands
ape in this ba
kground 
hapter. Spe
i�
ally, we are interested in showing how thework in this thesis \stands on the shoulders of giants"1 by reviewing relevant previouswork.2.1 Related Work2.1.1 Multi-Layer Per
eptronsMulti-Layer Per
eptrons (MLPs) are arti�
ial neural networks that have beensu

essfully used in many ASR systems over the past 15 years. They are one of the
entral tools used in this thesis, and so we provide a brief des
ription of them. MLPs
an be thought of as universal fun
tion approximators and are 
ommonly used in ASRas phoneti
 posterior probability estimators. Given a set of input features, the MLPs aretrained to learn the mapping to phoneti
 probabilities posterior on the input features.Sin
e it has been shown theoreti
ally that fully-
onne
ted 3-layer neural networkswith a single, suÆ
iently large hidden layer of units 
an approximate any fun
tion [74, 75℄,3-layer MLPs are typi
ally used. A 3-layer MLP, similar to ones used in this thesis, is1This quote is often attributed to Isaa
 Newton who wrote \If I have seen further it is by standing onye shoulders of Giants".
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tured in Figure 2.1. The inputs to the neural net are 
opied into nodes of the �rst layer,whi
h is referred to as the input layer. The input layer is fully-
onne
ted to the next layer,
alled the hidden layer, whi
h means that the output of every hidden unit is a fun
tion ofevery input node. The value at the output of the jth hidden unit, Hj, is a weighted sumof all the inputs passed through a sigmoid nonlinearity:Hj def= sig0� Xi2inputs iniWi;j +Bj1A (2.1)where ini is the ith input, Wi;j is the trainable weight parameter between the ith inputand the jth hidden unit, and Bj is the trainable bias for the jth hidden unit. The sigmoidfun
tion is given by: sig(x) def= 11 + exp(�x) (2.2)These hidden units are fully-
onne
ted to the last layer whi
h is 
alled the output layer.The output of the kth output unit is given by the softmax fun
tion:Outk def= exp(Zk)PK2outputs exp(ZK) (2.3)where Zk is given by equation (2.4):Zk def= Xj2hiddenunitsHjWj;k +Bk (2.4)Wj;k and Bk are the trainable weights and bias for the kth output unit. For every 
ategorythat we wish to 
lassify, there is an output unit whose value approximates the posteriorprobability of the 
orresponding 
ategory after training.The training pro
edure that we use for these MLPs is the gradient des
ent-basederror ba
k-propagation algorithm [108℄. We use the 
ross-entropy error 
riterion [15℄ withthe training targets in a \1-of-
 
oding". This means that there are 
 output 
lasses, andthe target ve
tor 
onsists of \0.0"s ex
ept for the single dimension 
orresponding to thelabeled 
ategory whi
h gets a value of \1.0". The learning s
hedule is a form of earlystopping with 
ross-validation. This means that ea
h epo
h's learning rate is determinedby how well the MLP is performing on a separate 
ross-validation data set. Initiallythe learning rate is high, and as improvements in a

ura
y on the 
ross-validation databe
ome smaller, the learning rate is exponentially redu
ed. Finally, when no more a

ura
yimprovements happen, the training is stopped to prevent over�tting. If the MLP has a



2.1. RELATED WORK 15

Bj

Hj

B
k

Out
k

Wj,k

in i

inputs

copy Wi,j

Input

Layer
Hidden

Layer Output

Layer

Figure 2.1: A 3-Layer Multi-Layer Per
eptronsuÆ
iently large number of hidden units to approximate the mapping fun
tion betweenthe inputs and output 
lasses, then the outputs of an MLP trained in this way 
an be
onsidered probabilities of the training 
ategories posterior on the inputs. For a detailedproof of this, as well as further des
ription of the learning approa
h, refer to [96℄.2.1.2 The Hybrid HMM/ANN and Tandem ASR Ar
hite
turesThe work presented in this thesis 
ontains many experimental results on theautomati
 re
ognition of words in various standard spee
h databases, and it uses two dis-tin
t ASR ar
hite
tures: the hybrid HMM/ANN [18℄ and the Tandem [54, 49, 34, 32℄ar
hite
tures. Both of these ar
hite
tures use feed-forward neural nets like the 3-layerMLPs des
ribed above to derive estimates of phone posterior probabilities. In the hy-brid HMM/ANN ar
hite
ture, these phone probabilities are used dire
tly in a dynami
-programming-based Viterbi sear
h [107, 105, 57℄, whi
h approximates the forward algo-rithm for HMMs [11℄, to re
ognize the best sequen
e of words. In the Tandem ar
hite
turethe MLP serves as a data-derived feature extra
tor. The estimated phone posteriors fromthe MLP are transformed and then used as front-end features to a standard Gaussianmixtures-based HMM system. A blo
k diagram for a typi
al hybrid HMM/ANN systemis depi
ted in Figure 2.2, while that for a Tandem ASR system is pi
tured in Figure 2.3.
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h of the new work in the ASR resear
h 
ommunity has fo
used on a 
ousinof the hybrid approa
h, whi
h uses Gaussian mixtures for modeling the a
ousti
 emis-sion probabilities in HMMs. Many powerful te
hniques, like adaptation based on Maxi-mum Likelihood Linear Regression (MLLR) [39℄, speaker-adaptive feature transformation(SAT) [80℄, tied 
ontext dependent triphones [131℄, et
. were developed for these Gaussianmixtures-based HMMs and led to major redu
tions in word error rates. These te
hniqueswere harder to integrate within the hybrid system, and so they were either not tried or wereonly moderately e�e
tive. As a result, the perfoman
e of many hybrid systems lagged thatof the Gaussian mixtures-based HMMs. With the advent of the Tandem system, the advan-tage of dis
riminative training of the neural nets 
ould be 
ombined with all the powerfuladaptation te
hniques developed for the Gaussian mixtures-based HMMs. In [12℄, Benitezet. al. improved the original Tandem setup by using the outputs of the MLPs to augmentthe traditional PLP features instead of repla
ing them. This led to great improvements inthe performan
e of the re
ognizer 
ompared to the baseline system that simply used thePLP features. There are several issues that arise when using the Tandem approa
h. First,the development time is greater be
ause of the additional training time needed for the neu-ral net. Also, there are issues involving the transformation of the MLP outputs (posteriorprobabilities) to features that are better suited for the modeling assumptions implied bythe Gaussian mixtures-based HMM. This involves 
hoosing suitable transformations andalso determining what amount of dimensionality redu
tion is optimal.2.1.3 TempoRAl Patterns - TRAPsThe work in this thesis is most 
losely related to the study of temporal patternsor TRAPs. For de
ades, 
onventional ASR systems have based the feature extra
tionpro
ess on the premise that ea
h of the various spee
h sounds or phones have distin
tivepatterns in frequen
y. For example, the spe
tral envelope of a typi
al /i/ sound, as in\beet", has magnitude peaks near 280, 2250, and 2900 Hz, while a typi
al /U/ sound,as in \book", has peaks near 450, 1030, and 2380 Hz. In a similar way, one 
an lookfor distin
tive patterns along time within narrow-frequen
y bands. This is exa
tly whatHynek Hermansky and Sangita Sharma did in their TRAPs work [52, 53, 112℄. Usingspee
h data that was phoneti
ally hand-trans
ribed, they �rst 
omputed frames of log
riti
al-band energies for every 10 millise
onds of spee
h. Ea
h of these frames was given a
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10 ms framesFigure 2.4: Computation of the temporal evolution of phoneme /ah/ for 
riti
al-band fifrom a labeled database. Adapted from [112℄.phone label 
orresponding to the phoneti
 trans
ription o

urring at the time in the spee
hwaveform that the frame was 
al
ulated. For ea
h frame within a single 
riti
al-band, they
on
atenated 50 
onse
utive frames before and after the frame to form a 101-frame 
riti
al-band energy traje
tory or temporal pattern2. By taking all the energy traje
tories whose
enter frame was labeled with the same phone and averaging these energy traje
tories,they were able to produ
e representative temporal patterns for ea
h of the 45 hand-labeledphones in their spee
h data. Figure 2.4 shows this pro
ess of produ
ing these representativetemporal patterns, whi
h they 
all \Mean TRAPs".Having 
al
ulated mean temporal patterns or Mean TRAPs for ea
h 
riti
al-bandand every phone, Sharma plotted these Mean TRAPs. Figure 2.5 displays the 45 Mean2This traje
tory is about 1 se
ond wide
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Figure 2.5: Mean TRAPs for 45 phonemes for 
riti
al-band 5 (446-637 Hz). The dottedline for ea
h of the TRAPs represents the 
enter frame, or time=0 millise
onds. Thepatterns separated by solid lines represent sounds with similar temporal patters. TheY-axis 
orresponds to the energy magnitude. Adapted from [112℄.
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al
ulated for 
riti
al-band 5 (446-637 Hz) adapted from [112℄. From this �gure,you 
an see how every phone has its unique temporal pattern. Some of the temporalpatterns look similar to ea
h other. Temporal patterns 
oming from vowels (/iy/, /ih/,/eh/, /ey/, /ae/, /aa/, /aw/, /ay/, /ah/, /ao/, /ow/, /uw/, /er/, and /axr/) look prettysimilar in that they all have high energy at the 
enter frame. Stop 
onsonants (/b/, /d/,/g/, /p/, /t/, and /k/) also look alike; ea
h has a low energy valley pre
eding the 
enterframe 
orresponding to the 
omplete 
losure in the vo
al tra
t.Based on these observations, Hermansky and Sharma surmised that they 
oulduse similarity measures to the Mean TRAPs in ea
h 
riti
al-band as features for a neuralnet 
lassi�er. They 
reated 101-frame energy traje
tories 
entered at every frame in thesame way as was done to 
reate the Mean TRAPs. Then they 
al
ulated the similaritys
ore (given by Equation 2.5) to ea
h of the Mean TRAPs in every 
riti
al-band.d(x; y) = �2xy�x�y (2.5)d(x; y) is the distan
e between traje
tory x and traje
tory y as of fun
tion of the 
ovarian
ebetween x and y ( �2xy) and the standard deviations of x and y (�x and �y). This resultedin a set of numbers (15 
riti
al-bands by 29 phones) that were used as inputs to a mergerMLP trained on 
orresponding phone targets. Using this MLP in the hybrid HMM/ANNre
ognition setup, they a
hieved a word error rate (WER) of 11.5% on the OGI Numbers
orpus. State-of-the-art performan
e at that time hovered around 6% for this 
orpus, but11.5% was not a terrible result for su
h a radi
ally new approa
h.Sin
e many of the Mean TRAPs looked similar, Hermansky and Sharma also
lustered them agglomeratively using the same distan
e metri
 in Equation 2.5. They
alled these 
luster 
entroids \Broad TRAPs" be
ause the Mean TRAPs automati
allygrouped into �ve broad phoneti
 
ategories: vowels, stop-
onsonants, fri
atives, s
hwas,and silen
e. A pi
ture of the Broad TRAPs for 
riti
al-band 5 as adapted from [112℄ isshown in Figure 2.6. Using these Broad TRAPs as the templates for re
ognition, theyagain 
omputed similarity measures of test spee
h to these Broad TRAPs and used thesemeasures as input to an MLP trained to learn phone probabilities. Within the hybridHMM/ANN re
ognition setup, this Broad TRAP system gave a 12.8% WER on the OGINumbers 
orpus.To improve upon these initial TRAP-based systems, they developed the Neural
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/b/, /d/, /g/, /p/, /t/, /k/, /jh/, /ch/, /hh/
/bcl/, /dcl/, /gcl/, /pcl/, /tcl/, /kcl/,

/s/, /sh/, /z/,/t/, /th/, /v/, /m/, /n/, /ng/

/l/, /r/, /w/, /iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /aw/,

/ay/, /ah/, /ao/, /ow/, /uw/, /er/, /axr/, /dx/
/ax/, /ix/

/sil/

Figure 2.6: Broad TRAP 
lusters of the �fth 
riti
al-band (438 Hz - 629 Hz) time traje
-tory. The thinner lines in ea
h plot represent the individual Mean TRAP of the phonemes
lustered in one 
ategory. The thi
ker line is the Broad TRAP and represents the weightedmean of the 
onstituent Mean TRAPs. Adapted from [112℄.



22 CHAPTER 2. BACKGROUNDSystem WERBaseline 6.5%Neural TRAP 7.6%Mean TRAP 11.5%Broad TRAP 12.8%Combined: Baseline+Mean TRAP 6.0%Combined: Baseline+Neural TRAP 5.5%Table 2.1: Word error rate results on various systems on OGI Numbers 
orpus.TRAP system. The Neural TRAP system 
onsists of two stages of MLPs. The �rst stageMLPs are a set of 
riti
al-band MLPs (one for ea
h 
riti
al-band) that estimate 
riti
al-band level phoneme probabilities from 101-frame energy traje
tories. These 
riti
al-bandMLPs repla
e the simple similarity metri
s with a powerful universal fun
tion approximatorthat is dis
riminant in nature. The se
ond stage of the Neural TRAP system 
onsists of asingle MLP that 
ombines the output of the ea
h of the 
riti
al-band MLPs to form a singleestimate for the phone posterior probability. This Neural TRAP system outperformedtheir previous Mean TRAP system by a
hieving a 7.6% word error rate on the same OGINumbers 
orpus.Table 2.1 summarizes the performan
e of the various hybrid HMM/ANN systemstested by Sharma on the OGI Numbers 
orpus [112, 52℄. The baseline system is a stan-dard HMM/ANN setup where 9 frames of 8th order PLP 
epstral 
oeÆ
ients along with9 deltas and 9 a

eleration 
oeÆ
ients are used as inputs to an MLP outputting phoneposteriors. Note that the temporal 
ontext of this baseline system is 9 frames (about 100millise
onds). By themselves, the TRAP-based systems do not outperform the baselinesystem. Neural TRAP is 
ompetitive to the baseline (7.6% vs. 6.5%), while the MeanTRAP and Broad TRAP systems are mu
h worse. However, when 
ombining the out-puts of the TRAP-based MLPs (whi
h look at temporal extents of about 1 se
ond) tothat of the baseline MLP by simply averaging them in the log domain, re
ognition per-forman
e beats that of the baseline system (6.0% for 
ombination with Mean TRAP and5.5% for 
ombination with Neural TRAP). In general TRAP-based systems are typi
ally
ompetitive with 
onventional systems that rely on the spe
tral envelope of spee
h, butwhen 
ombined with these 
onventional systems, performan
e improves over that of ei-



2.1. RELATED WORK 23ther system alone. This suggests that the method of extra
ting information from spee
hwithin long-term and narrow-frequen
y bands is providing 
omplementary information tothe 
onventional methods. Other TRAP-based studies have also shown results 
onsistentwith this generalization [54, 64, 24℄.Be
ause the work in this thesis and mu
h of the other related work on TRAPsrequires deeper understanding of the Neural TRAP system, we will now go into greaterdetail about the Neural TRAP system. Figure 2.7 shows a blo
k diagram explaining thepro
essing steps for the Neural TRAP setup. The inputs to the Neural TRAP setup are19 101-frame log 
riti
al-band energy traje
tories3. Ea
h energy traje
tory is fed into the
orresponding �rst stage 
riti
al-band MLP whose outputs are then either taken beforethe �nal softmax or transformed by log and fed into the se
ond stage merger MLP. Totrain a 
omplete Neural TRAP system, the �rst step is to train the 
riti
al-band MLPsusing the standard error ba
k-propagation algorithm. Hermansky and Sharma used theoverall phone labels as targets for ea
h of the 
riti
al-band MLPs, so that ea
h 
riti
al-band MLP would learn to gather all the eviden
e within 
riti
al-band energy traje
toriesfor phone dis
rimination. On
e these MLPs were trained, the training data was forwardpassed through them to 
reate input training data for the merger MLP. The training pairsfor the merger MLP are either the outputs before the �nal softmax or the log outputsfrom the �rst stage MLPs and the same phone labels used in the �rst stage training. These
ond stage merger MLP is also trained with the error ba
k-propagation algorithm, andits outputs approximate phone posterior probabilities.It is interesting to dis
uss the nature of the narrow-frequen
y long term energytraje
tory that is learned by these various TRAP-based ASR systems. In the Mean TRAPASR system, an underlying representation of the temporal patterns for ea
h phone inevery 
riti
al-band is 
aptured by averaging together all su
h examples in the trainingdata. The Broad TRAP ASR system further 
ollapses these Mean TRAPs into 5 
luster
entroids. Both of these systems learn basi
 
anoni
al traje
tory patterns that are thenused as a template for mat
hing during testing. In 
ontrast, the Neural TRAP systemlearns a dis
riminant mapping from the 
riti
al-band traje
tories to 
riti
al-band levelphone probabilities. Su
h mappings produ
e 
riti
al-band level eviden
e for the presen
e3There are 19 
riti
al-bands when the sampling rate is 16000 Hz and 15 when the sampling rate is 8000Hz.
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Figure 2.7: The Neural TRAP ar
hite
ture 
onsists of two stages of MLPs. The �rst stageis a set of 
riti
al-band MLPs estimating the 
riti
al-band level phone posteriors. These
ond stage is a merger MLP that 
ombines the 
riti
al-band level phone posteriors toget an overall estimate of the phone posterior probabilities.or absen
e of ea
h phone. Neural TRAP works mu
h better than either the similarity-based Mean TRAP or Broad TRAP systems, whi
h suggest that the dis
riminant mappingprodu
ed by the 
riti
al-band MLP is better able to 
apture subtle di�eren
es betweendi�erent phones not 
aptured by the similarity measure to Mean TRAPs or Broad TRAPs.It is also interesting to note that the performan
e di�eren
e between the MeanTRAP and Broad TRAP systems is not large, whi
h led Sharma to write that \full phoneme
lassi�
ation on ea
h sub-band temporal energy pattern may not be ne
essary". Addition-ally, the mapping from 
riti
al-band energy traje
tories to phone probabilities learned bythe 
riti
al-band MLPs in the Neural TRAP system is not perfe
t. The reported frame er-ror on the OGI Numbers 
orpus from [112℄ ranges from a low of 65% to a high of 69%. Onemay have expe
ted this sin
e it is really hard to distinguish one phone from another sim-ply given a 
riti
al-band spee
h signal. Still, this raises an important question: are phoneprobabilities at the 
riti
al-band level the best information to extra
t for better ASR per-forman
e? If not, then what other kind of eviden
e within 
riti
al-band traje
tories shouldbe 
olle
ted? The two new neural net ar
hite
tures presented later in this thesis addressthese questions. The �rst new ar
hite
ture, Hidden A
tivation TRAP (HAT), shows thatmapping all the way to phones at the 
riti
al-band level is not ne
essary and a
tuallyhurts performan
e. The se
ond ar
hite
ture, Tonotopi
 Multi-Layer Per
eptron (TMLP),
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ally learns what is important at the 
riti
al-band level to improve the overallphone 
lassi�
ation rate.Other work that has built upon the foundation of Sharma's work 
an be groupedinto 3 
ategories: improvements to the features presented to Neural TRAP; appli
ations toother ASR tasks or other spee
h related problems; and explorations of di�erent te
hniquesto learn important 
riti
al-band level information.The �rst 
ategory 
onsists of resear
h devoted to improving the input features toNeural TRAP. One line of work within this �rst 
ategory is to repla
e the adja
ent framesof log 
riti
al-band energies with more elegant approa
hes that avoid artifa
ts arising fromwindowing spee
h and applying the short-term FFT. In [99℄, Motl���
ek et al. derivedinputs to Neural TRAP dire
tly from the time domain signal using a bank of band-passGammatone �lters. In [7℄, Athineos et al. 
reated inputs for Neural TRAP by applyingFrequen
y Domain Linear Predi
tion to the spee
h signal whi
h essentially �tted an all-pole model to the spee
h signal's squared Hilbert envelope. Motl���
ek's approa
h did notsigni�
antly improve over the original Neural TRAP's inputs, while Athineos showed abouta 10% relative improvement on the OGI Numbers task.Another line of resear
h for improving the inputs to Neural TRAP is the prepro-
essing of the original frames of log 
riti
al-band energies with various �lters. In [46, 69℄,Grezl and Kara�at applied 1-dimensional and 2-dimensional �lters to the log 
riti
al-bandspe
trum whi
h in essen
e either averaged or di�erentiated the energy a
ross adja
ent fre-quen
y bands and adja
ent frames. After these modi�
ations, they 
on
atenated adja
entframes within ea
h 
riti
al-band for input to the Neural TRAP 
lassi�er. They found thatin 
ombination with the original Neural TRAP, this new Neural TRAP based on modi�edfeatures gave some amount of 
omplementary information and improved performan
e overun
ombined systems. Jain found in her thesis that transforming the original 
riti
al-bandenergy traje
tory by performing prin
ipal 
omponents analysis (PCA) or a dis
rete 
osinetransform (DCT) and then keeping only half of the original features also improved theperforman
e of Neural TRAP [62℄. Finally, a push to using three adja
ent 
riti
al-bandenergy traje
tories instead of one as inputs to ea
h �rst stage MLPs in Neural TRAP hasalso led to better performan
e than the original Neural TRAP. Using 3 bands, Jain andHermansky were able to beat the performan
e of the 
onventional HMM/ANN system thatused PLP features as input to the MLP on the OGI Numbers task [63℄.



26 CHAPTER 2. BACKGROUNDThe se
ond 
ategory of extensions to the original Neural TRAP system is theappli
ation of Neural TRAP to di�erent tasks, whether they be di�erent spee
h re
ognitiontest sets or other non-ASR tasks. In [64℄, Neural TRAP was used to derive front-endfeatures for a distributed spee
h re
ognition system applied to noisy digit re
ognition.S
hwarz et al. [111℄ used Neural TRAP to perform TIMIT phoneme re
ognition, andKingsbury et al. used the Neural TRAP ar
hite
ture applied on the task of robust voi
ea
tivity dete
tion [70℄.The �nal 
ategory of extensions explore alternative methods to the learning of
riti
al-band level information. More spe
i�
ally, what 
ategories of targets are appropriateto learn at the 
riti
al-band level. As dis
ussed before, the original Neural TRAP learns anonlinear dis
riminant mapping from the 
riti
al-band energy traje
tories to 
riti
al-bandlevel phone probabilities, and these mappings are not very a

urate. Jain and 
olleaguesdeveloped a modi�ed Neural TRAP that learned dis
riminant temporal patterns for 
las-sifying six broad 
ategories based on manner of arti
ulation [64℄, both at the 
riti
al-bandlevel and full-band level. Using the outputs of their new system as features to augment
onventional MFCC features, they were able to show 
onsistent improvements on theAurora-2 noisy 
ontinuous digits data. Hermansky and Jain also explored a new methodbased on Neural TRAP that was designed to learn temporal patterns that are shared byspee
h sounds within the same 
riti
al-band and a
ross di�erent 
riti
al-bands [50℄. Mo-tivated by the 
lustering of Mean TRAPs into Broad TRAPs, they developed UniversalTRAP (UTRAP), whi
h basi
ally used data-derived 
lass labels for the training of a single
riti
al-band MLP that repla
ed all the �rst stage 
riti
al-band MLPs in the Neural TRAPsetup. While the se
ond stage merger MLP was still trained using phone targets, the �rststage 
riti
al-band MLPs were trained using targets that were derived as follows: startingfrom the set of Mean TRAPs 
al
ulated for every phone in every 
riti
al-band, they per-formed an agglomerative 
lustering (the similarity metri
 was given by Equation 2.5) ofall these Mean TRAPs to 
ome up with a set of 9 
entroids. These 9 
entroids representeddistin
t spee
h events that 
ommonly o

ured in all 
riti
al-bands. Next, they relabeledea
h frame of spee
h in every 
riti
al-band with a label 
orresponding to the 
entroid thatwas most similar (as measured by Equation 2.5) to the temporal traje
tory 
entered atthat parti
ular frame. They reported that the UTRAP system performed 
omparably toa Neural TRAP system where the 
riti
al-band targets were the Broad TRAP 
ategories,



2.1. RELATED WORK 27while using many fewer parameters [50℄.2.1.4 Multi-BandThe Neural TRAP system des
ribed above is an example of a multi-band spee
hre
ognition system. In multi-band spee
h re
ognition, eviden
e of phoneti
 events are�rst analyzed in independent sub-frequen
y bands that are later merged for 
lassi�
ationof spee
h sounds. The main di�eren
e between Neural TRAP and more 
onventionalmulti-band systems is that the sub-frequen
y bands in Neural TRAP are typi
ally mu
hnarrower, and the temporal 
ontext for Neural TRAP is from 500 millise
onds to 1 se
ond
ompared with 
onventional multi-band systems that take eviden
e spanning no more than100 millise
onds.The 
ollaboration between Bourlard, Dupont, Hermansky, Tibrewala, Morgan,and Mirghafori 
reated 
omplete multi-band ASR systems for re
ognizing 
ontinuousspee
h within the hybrid HMM/ANN framework [16, 17, 55, 123, 92, 91℄. These sys-tems 
onsisted of MLPs estimating phone posteriors within sub-bands (
omprised of 2 ormore adja
ent 
riti
al-bands), a fusion step to merge sub-band phone posteriors to 
reatean overall phone posterior (usually a simple frame-wise average or produ
t), and then theHMM Viterbi de
oder. They tested their systems on various spee
h databases rangingfrom a simple digits and 
ontinuous numbers 
orpus to the large vo
abulary 
onversa-tional Swit
hboard task. They also tested the noise robustness of multi-band systems byarti�
ially 
orrupting their spee
h data. Generally, the performan
e of multi-band sys-tems were as good (and in some 
ases better) than full-band systems in 
lean 
onditions;however, in band-limited noisy 
onditions, multi-band systems signi�
antly outperformedfull-band systems. Moreover, in 
ombination with full-band systems, multi-band systemsfurther improved ASR performan
e over the baseline full-band systems. Other resear
hershave also 
orroborated these general �ndings in their own multi-band systems that werenot ne
essarily based upon the hybrid HMM/ANN framework [22, 23, 102, 103, 25, 98℄.One issue that o

urs in the design of multi-band systems is the 
hoi
e of 
ate-gories to 
lassify at the sub-band level that would lead to the best performan
e improve-ments for ASR at the full-band level. In the typi
al multi-band systems built within thehybrid HMM/ANN framework, sub-band MLPs are trained on the full-band phone targets
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riti
al-band MLPs in the Neural TRAP system are trained. Thismay not be the best kind of target be
ause sub-frequen
y bands may not 
ontain all theinformation ne
essary to do full phone 
lassi�
ation. For example, 
onsider the two fri
a-tives /f/ and /s/. At lower sub-bands, they are almost indistinguishable. Only at the highfrequen
y sub-bands 
an one easily distinguish these two fri
atives. Mirghafori in [91℄ ob-served that the sub-band MLPs do 
onfuse 
ertain phones quite often. Her hypothesis wasthat by 
ombining the most 
onfusable sub-band phone 
lasses, the sub-band MLPs 
oulddevote more trainable parameters to better model those phones for whi
h the parti
ularsub-band 
ontained the most information for 
lassi�
ation. On
e these sub-band phoneswere merged, she retrained MLPs on these new merged sub-band phone 
ategories. Shefound performan
e improvements at the frame a

ura
y level, whi
h did not translate toimprovements at the word level.Others have approa
hed this issue from a global optimization perspe
tive. Insteadof deriving merged sub-band phone 
ategories as Mirghafori does or deriving 
lusteredMean TRAP targets as Jain does in UTRAP, resear
hers have automati
ally learned whatis important at the sub-band levels via optimization pro
edures. Cerisara et al. [21℄ usedthe dis
riminant minimum 
lassi�
ation error 
riterion (MCE) [66℄ to guide the trainingof ea
h sub-band 
lassi�er. Daoudi et al. in [25℄ and Saul et al. in [109, 110℄ treatedsub-band 
ategories as hidden variables within probabilisti
 graphi
al models and used theexpe
tation maximization algorithm [26℄ to automati
ally learn the model parameters tomaximize the likelihood on the training data. In Saul's work, various sub-band dete
torsfor eviden
e of voi
ing or sonoran
e were automati
ally learned without the need for sub-band labeling of the eviden
e. One of the new neural net ar
hite
tures presented in thisthesis, the Tonotopi
 Multi-Layer Per
eptron, automati
ally learns what 
riti
al-band level
ategories are useful for phoneti
 
lassi�
ation using the error-ba
k propagation algorithm.2.1.5 Temporal FilteringThere has been a 
onsiderable amount of work devoted to the temporal �lteringof front-end features to improve ASR performan
e. Temporal �ltering in this 
ontext refersto the pro
essing of spee
h features (or spe
tral energies of spee
h) over time. All of theTRAP-based systems, in
luding the systems developed later in this thesis, are examplesof data-derived temporal �lters. One of the earliest su

essful approa
hes to the tempo-



2.1. RELATED WORK 29ral �ltering of features is Furui's velo
ity and a

eleration 
oeÆ
ients [38℄. By appendingthe 
al
ulated velo
ities and a

elerations of ea
h of the original front-end features, ASRperforman
e improves so 
onsistently that the use of velo
ity and a

eleration 
oeÆ
ientstoday is ubiquitous. Cepstral Mean Subtra
tion (CMS) [6℄ is another e�e
tive temporal�ltering te
hnique that subtra
ts out the mean of ea
h of the 
epstral 
oeÆ
ients 
al
u-lated over long periods of time (whole utteran
es, whole 
onversations, or all examples).CMS is often used to make ASR systems more robust to 
hanges in the 
hannel like theones 
aused by mi
rophone di�eren
es. RASTA-PLP is also another te
hnique that im-proves robustness to 
hannel e�e
ts [51℄ by suppressing 
onstant fa
tors in ea
h spe
tral
omponent of the spee
h signal.All of these earlier instan
es of temporal �ltering, whi
h led to in
reased ASRa

ura
ies, 
an be studied from the point of view of modulation frequen
ies. Modulationfrequen
ies [59℄ are the rates at whi
h the spe
tral amplitudes of spee
h 
hange. Justas the 
onventional spee
h spe
trum measures the energy 
ontent at various frequen
iesor rates of 
hanges in the time domain spee
h signal, a modulation spe
trum measuresthe energy 
ontent at various modulation frequen
ies or rates of 
hanges of the spe
tralenergy over time [8℄. We 
an view all temporal �ltering te
hniques as pro
esses thateither emphasize or deemphasize 
ertain modulation frequen
ies. CMS, whi
h removesun
hanging 
omponents in the 
epstrum, �lters out 0 Hz modulations; RASTA-PLP passes
omponents of the modulation spe
trum between about 1 Hz and 12 Hz; and the velo
ityand a

eleration features emphasize modulations at 10 Hz [51℄.For human spee
h per
eption, intelligibility of spoken words is dire
tly related tohow well slow 
hanges in the spee
h spe
trum (modulation frequen
ies less than 16 Hz)are preserved [58, 59℄. Others have also �ltered the spe
trum (or 
epstrum) of spee
h overtime to demonstrate in human per
eptual experiments whi
h modulation frequen
ies arerequired for high intelligibility. Drullman et al. showed that modulation frequen
ies above16 Hz are not required for good intelligibility, and that signi�
ant intelligibility remainswhen only rates less than 6 Hz are preserved [29℄. Arai et al. [5℄ extended Drullman'sresults to the logarithmi
 domain and applied various kinds of �lters (high-pass, low-pass,and band-pass) to show that modulation frequen
ies between 1 and 16 Hz are ne
essary topreserve spee
h intelligibility. Kanedera et al. measured the e�e
t of modulation �lteringto ASR performan
e and also showed the importan
e of modulation frequen
ies between



30 CHAPTER 2. BACKGROUND1 and 16 Hz [68℄.Newer temporal �ltering te
hniques 
an be roughly 
lassi�ed in one of two 
at-egories: knowledge-driven or data-driven. In knowledge-driven te
hniques, the �lters aremostly designed based on expert knowledge, i.e., whi
h modulation frequen
ies are impor-tant for ASR. In data-driven te
hniques, some part of the �lter design is guided by theminimization/maximization of an error/goodness s
ore on training data. We will brie
ysummarize newer temporal �ltering te
hniques for ASR a

ording to these rough 
lassi�-
ations.Knowledge-Driven Temporal FiltersMotivated by the per
eptual studies on the relationship between intelligibilityand preservation of low modulation frequen
ies, Kingsbury et al. developed ModulationFiltered Spe
troGram (MFSG) features [71℄. MFSG pro
essing steps were designed so thatmodulation frequen
ies outside of the range between 0 and 8 Hz were �ltered out, whilemodulations at 4 Hz were emphasized. As reported in [71℄, MFSG outperformed regularPLP features in noisy and reverberant 
onditions, but did not outperform RASTA-PLP,another temporal �ltering te
hnique that is also sensitive to slow modulations in a di�erentway. Combining systems trained on RASTA-PLP features with that of MFSG featuresyielded signi�
ant performan
e improvements.Nadeu et al. also developed temporal �lters that not only emphasize 
ertainregions in the modulation spe
trum but also 
atten out the modulation spe
trum withinthese regions [101℄. A

ording to [101℄, this equalization of the modulation spe
trummakes the �ltered features a better mat
h for the modeling assumption of typi
al HMMswhi
h model the emission of features from a single HMM state as being independentand identi
ally distributed. His �lters emphasized modulation frequen
ies at 3 Hz, whi
hhappens to be a 
ommon syllable rate of spee
h. Nadeu extended his approa
h to timeand frequen
y �ltering in [100℄. These te
hniques also led to signi�
ant ASR performan
eimprovements in both 
lean and noisy 
onditions.Measurements of the average magnitude of modulation frequen
ies at di�erentauditory frequen
ies of Mandarin syllables motivated Shen et al. to develop a bank ofRASTA-like temporal �lters [82℄. The parameters of these �lters were set to emphasize



2.1. RELATED WORK 31the important modulation frequen
ies of their spee
h data. They measured the di�eren
ebetween the magnitudes of noise and spee
h with respe
t to modulation frequen
y todetermine whi
h modulation frequen
ies were important. The lower this di�eren
e wasat a parti
ular modulation frequen
y, the more important this frequen
y was for spee
hintelligibility. They found that for Mandarin syllables in noisy and mismat
hed 
onditions(additive white noise and mi
rophone mismat
h) the regions of importan
e were between4-8 Hz and between 8-12 Hz.Ben Milner interpreted temporal �ltering te
hniques as simply a matrix multi-pli
ation between a temporal �ltering matrix and a \sta
ked" matrix of features formedby 
on
atenating su

essive feature ve
tors [89, 90℄. If the temporal �ltering matrix 
on-sisted of a set of Dis
rete Cosine Transform (DCT) basis fun
tions and the sta
ked matrix
onsisted of 
epstral ve
tors, Milner 
alled their produ
t Cepstral-Time Matri
es (CTMs).A subset of the elements in CTMs 
an be used as front-end features for ASR. Keeping aparti
ular element in a CTM 
orresponded to 
hoosing whi
h modulation frequen
ies atwhi
h quefren
ies to preserve. He empiri
ally optimized the 
hoi
es of elements in CTMson di�erent tasks and showed that 3.9-11.7 Hz in modulation frequen
y is best for isolateddigits, 2.84-8.5 Hz is best for 
onne
ted digits, and 3.9-15.6 Hz is best for a sub-word townnames task [90℄.Finally, Yuo et al. developed a robust feature for ASR by temporal �ltering of theauto
orrelation traje
tories in spee
h [132℄. They reasoned that if noise is un
orrelatedwith spee
h and if the noise is stationary4, then the rate of 
hange of the auto
orrela-tion of noisy spee
h is equal to the rate of 
hange of the auto
orrelation of 
lean spee
h;therefore, this rate of 
hange in the auto
orrelation of noisy spee
h is a good feature to
al
ulate if you want to get a noise-free representation of the 
lean spee
h. Cal
ulating therate of 
hange in the auto
orrelation sequen
es is analogous to applying a di�eren
e �lterto the auto
orrelation traje
tories. These authors showed, unsurprisingly, that on arti�-
ially added noisy spee
h, their temporal �ltering te
hnique gave great ASR performan
eimprovements.
4A big assumption be
ause most noises are nonstationary.



32 CHAPTER 2. BACKGROUNDData-Driven Temporal FiltersAll Neural TRAP-like systems, in
luding the extensions to Neural TRAP pre-sented in this thesis, are examples of data-derived temporal �lters. The hidden units ofthe 
riti
al-band MLPs learn hyperplane separations in the long-term log energy traje
toryfeature spa
e. These hyperplane separations are in fa
t dis
riminant temporal �lters thathelp separate various phoneti
 sounds within the long-term log energy traje
tories. Thesedis
riminant temporal �lters are derived from the data be
ause they are learned as a resultof the error-ba
k propagation algorithm with spee
h training data.Others have tried to derive temporal �lters from data in mu
h the same way as theTRAP-like systems. Generally, the steps are as follows: �rst, form either spe
tral energytraje
tories (spe
tral energy measurements over a sequen
e of frames) or feature 
omponenttraje
tories (like a parti
ular PLP 
oeÆ
ient over a sequen
e of frames). Next, learn alinear proje
tion in the spa
e of these spe
tral energy/feature 
omponent traje
tories tomaximize (minimize) some goodness (error) fun
tion on training data. Finally, use theselinear proje
tions as temporal �lters by applying them to in
oming traje
tories.Here are a sampling of 
ommon linear transformation te
hniques that resear
hershave tried. Prin
ipal 
omponent analysis (PCA), also known as Karhunen L�oeve Transform(KLT), �nds the linear transformation that proje
ts the data onto axes in the dire
tions ofthe maximal variation within the data [30℄. Linear Dis
riminant Analysis (LDA) �nds alinear proje
tion that best maximizes the ratio of the between-
lass s
atter to the within-
lass s
atter of the proje
ted data [30℄. When applied to ASR, people generally use sub-word units like phones or HMM states as 
lass labels for LDA. Independent ComponentAnalysis (ICA) proje
ts the data into dimensions that are as statisti
ally independentfrom ea
h other as possible [79℄. Minimum Classi�
ation Error (MCE) [66℄ 
an be usedto �nd the linear proje
tion that minimizes the 
lassi�
ation error fun
tion whi
h is thelikelihood ratio of the 
orre
t 
lass models to the in
orre
t 
lass models, where the 
lassesare sub-word units like phones.All of the above linear transformation te
hniques have been applied in the 
ontextof deriving temporal �lters for ASR [10, 124, 81, 115, 117, 116, 61, 60℄. These temporal�lters 
an be applied on individual traje
tories of MFCCs as in [81, 61, 60℄, or on indi-vidual log 
riti
al-band energies as in [10, 124, 115, 117, 116℄. These temporal �lters 
an



2.1. RELATED WORK 33also be designed to have built-in robustness to 
ertain environmental 
onditions by usingtraining data 
orrupted by these environmental 
onditions as in [117℄. In general, thesedata-driven linear transformation te
hniques for deriving temporal �lters improved ASRperforman
e more than other knowledge-driven temporal �ltering te
hniques like velo
ityand a

eleration features or RASTA-PLP. Unlike Neural TRAP and other TRAP-like ex-tensions, these te
hniques only involve a linear transformation, while the temporal �lterslearned by Neural TRAP are nonlinear transformations 
apable of 
apturing more 
omplexseparations in temporal traje
tories.While there has been a lot of a
tivity on deriving temporal �lters within ea
hMFCC 
oeÆ
ient or ea
h 
riti
al-band energy traje
tory, there is a body of work that allowsfor the learning of �lters that span regions in the spe
tro-temporal plane. A simple exampleof su
h systems are the 
onventional hybrid HMM/ANN MLPs that take 9 frames of PLPfeature ve
tores as input features and outputs phone probabilities [18℄. The hidden unitslearn spe
tro-temporal �lters or hyperplane separations in time and frequen
y. The neuralnets developed by Antoniou et al. also uses more frames as inputs to learn dis
riminativespe
tro-temporal information [4, 3℄. Re
urrent Neural Nets are similar to these feed-forward MLPs, ex
ept that they allow for feed-ba
k 
onne
tions that 
an be used to learntemporal relations between su

essive feature ve
tors [106℄. Time-Delay Neural Networks(TDNNs) [125℄ are similar to the standard hybrid HMM/ANN MLP in that they both 
anlearn temporal relations in the input spa
e of MFCC or PLP features.Other a
tivity on learning spe
tro-temporal �lters in
lude: Kajarekar's appli
a-tion of LDA jointly in both time and frequen
y in [67℄, Somervuo's experiments with othertypes of time-frequen
y transformations [119, 120℄, and work by Kleins
hmidt et al. [73, 72℄in deriving a set of Gabor shaped �lters in time and frequen
y motivated by the existen
e ofspe
tro-temporal re
eptive �elds of neurons in the primary auditory 
ortex. Kleins
hmidtet al. started from a pool of Gabor �lter fun
tions, ea
h of whi
h is de�ned by a produ
t ofa 2-dimensional Gaussian envelope and a 
omplex exponential fun
tion whi
h gives the theGabor �lter a ripple. From this pool, he pi
ked a subset of these Gabor �lters that gavethe best performan
e on development data. In [73℄, Kleins
hmidt and Gelbart reported a7% relative improvement on the Aurora2 noisy digits task using this approa
h.
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Chapter 3
Development of Novel TRAP-LikeClassi�ers

Chapter 1 motivated the approa
h of learning useful information within longspans of narrow-frequen
y 
hannels in spee
h for ASR, and Chapter 2 reviewed previousrelated approa
hes. In this 
hapter, we introdu
e two new neural net ar
hite
tures for thelearning of phoneti
ally dis
riminant 
riti
al-band temporal patterns. The �rst is 
alledHidden A
tivation TRAP (HAT) and the se
ond is 
alled Tonotopi
 Multi-Layer Per
ep-tron (TMLP). We will des
ribe both of these neural net ar
hite
tures and the motivationleading to their design. This 
hapter also 
ontains a set of initial experiments on a widelyused 
ontinuous phone re
ognition task: TIMIT. We will show how HAT and TMLP re-du
e phone error rates on TIMIT while using 84% fewer parameters than a 
omparableNeural TRAP system.3.1 Improving the Original Neural TRAPAs des
ribed in Chapter 2, Neural TRAP [52℄1 takes a radi
ally alternative ap-proa
h to extra
ting phoneti
ally dis
riminant information from spee
h. Instead of ex-tra
ting phoneti
 information from spe
tral sli
es of short amounts of time (about 25 mil-lise
onds), as 
onventional ASR systems do, Neural TRAP extra
ts phoneti
 informationfrom separate frequen
y 
hannels (
riti
al-bands) spanning the full spe
trum over a large1Re
all from Chapter 2 that TRAP is a mnemoni
 for TempoRAl Pattern.
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Figure 3.1: The Neural TRAP a
ousti
 model with zoomed in view of a 
riti
al-band MLP.amount of time (0.5 se
ond to 1 se
ond). In other words, Neural TRAP learns phoneti
allydis
riminant temporal information within narrow-frequen
y bands. It is 
apable of a
hiev-ing 
omparable performan
e to 
onventional ASR systems, but using it in 
ombinationwith 
onventional features, resear
hers have shown signi�
ant performan
e improvementsin many 
onditions, espe
ially in high noise 
onditions [53, 64℄.Before developing the two new neural net extensions to Neural TRAP, we brie
yreview how the Neural TRAP system works. A Neural TRAP a
ousti
 model as shownin Figure 3.1 
onsists of two stages of 3-layer fully-
onne
ted Multi-Layer Per
eptrons(MLPs). The �rst stage is a nonlinear mapping from log 
riti
al-band energy time traje
-tories2 to 
riti
al-band level phoneti
 probabilities, and the se
ond stage 
onsists of anotherMLP that 
ombines these 
riti
al-band phoneti
 probabilities (one set per 
riti
al-band)to obtain the overall phoneti
 probabilities.Let us fo
us our attention on the �rst stage of the Neural TRAP a
ousti
 model.For ea
h 
riti
al-band, there is an MLP trained using the standard error ba
k-propagationalgorithm [108℄ to learn phone posteriors by minimizing the 
ross-entropy [15℄ betweenthe network output and target ve
tors. Ea
h net takes, as input, a half se
ond (or a 1se
ond as in [53, 112℄) long log 
riti
al-band energy temporal traje
tory 
onsisting of 51
onse
utive frames (one frame per 10 millise
onds 
al
ulated using a short-term FFT over2A log 
riti
al-band energy time traje
tory refers to a time sequen
e of log 
riti
al-band energy values.



36 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERS25 millise
onds), and the training target is the phone label for the 
urrent frame. Aftertraining 
onverges to a minimum, we 
an interpret the transformations happening in ea
hof the layers.Webb and Lowe in [129℄ derived a general result for nonlinear adaptive feed-forward layered networks, of whi
h these 
riti
al-band MLPs are an example. Their 
en-tral 
laim was that \minimising the error at the output of the network is equivalent tomaximising a parti
ular norm, the network dis
riminant fun
tion, at the outputs of thehidden units. The �rst part of the network is expli
itly performing a nonlinear transfor-mation of the data into a spa
e in whi
h the 
lasses may be more easily separated. Thespe
i�
 nature of this transformation is 
onstrained to maximise the network dis
riminantfun
tion." Although their result was derived with linear output units and sum of squareserror fun
tion, a similar result 
an be derived for softmax output units and 
ross-entropyerror 
riterion. A

ording to Webb, the hidden units transform the input into a spa
e thatmakes the 
lasses more separate, while the output units map from this hidden spa
e tothe output 
lass (or 
lass probabilities in our 
ase). Applying this interpretation to NeuralTRAP, the hidden units of the �rst stage 
riti
al-band MLPs learn hyperplane separationsin the input spa
e of the 0.5 se
ond long log 
riti
al-band energy traje
tories. Anotherway to look at it is that they learn mat
hed temporal �lters on the temporal evolution oflog 
riti
al-band energies useful for separating phoneti
 
lasses on the temporal evolutionof the log 
riti
al-band energy, while the output units map the outputs of the mat
hedtemporal �lters to phone probabilities.In the original Neural TRAP system [52, 112℄ these 
riti
al-band MLPs learn 300su
h mat
hed �lters for ea
h 
riti
al-band. The hidden-to-output layer of these 
riti
al-band MLPs 
ombine the outputs of the mat
hed �lters to form phone probabilities. Thea
tual performan
e of these 
riti
al-band MLPs on phone 
lassi�
ation is a
tually quitelow. One way to see this is by measuring the frame 
lassi�
ation a

ura
y. To 
omputethe frame 
lassi�
ation a

ura
y (or 
onversely, the frame 
lassi�
ation error rate), we
ount how many times the maximum output (i.e., the 
lass with the greatest posteriorprobability) of the MLP 
orresponds to the 
orre
t or labeled phone over all the frames ina test set. The a

ura
y is the ratio of this 
ount divided by the total number of frames3.3Classi�
ation error is the ratio of the total number of frames minus this 
ount divided by the totalnumber of frames.
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Criti
al-Band Frequen
y Range (Hz) MLP Frame A

ura
y (%)1 18-163 30.992 118-267 28.393 220-379 29.974 329-502 31.695 446-637 33.426 575-790 33.687 720-965 33.078 885-1165 32.939 1073-1397 31.7210 1290-1667 30.7311 1542-1982 29.5812 1836-2350 30.4813 2180-2782 28.8014 2582-3289 27.8215 3055-3885 27.9316 3609-4587 28.6717 4262-5412 29.5418 5030-6383 30.3319 5933-7527 29.371-19 18-7527 61.85Table 3.1: Frame 
lassi�
ation a

ura
y for �rst stage Neural TRAP 
riti
al-band MLP
lassi�ers on the TIMIT 
ross-validation set. The half power 
ut-o� points of ea
h 
riti
al-band are also displayed. The MLPs are trained to 
lassify 1 of 61 phones and ea
h net has300 hidden units. Chan
e performan
e is 12.13%. The last line in the table is the framea

ura
y for the se
ond stage Neural TRAP merger MLP.



38 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSTable 3.1 shows the frame 
lassi�
ation a

ura
ies of �rst stage Neural TRAP
riti
al-band MLPs on the 
ross-validation data from TIMIT. For 
omparison sake, theframe 
lassi�
ation a

ura
y from the Neural TRAP merger MLP is also shown. The framea

ura
ies for the 
riti
al-band MLPs range from 27.82% to 33.68% whi
h is signi�
antlygreater than the 
han
e performan
e of 12.13%4. Although the frame a

ura
ies for the
riti
al-band MLPs are mu
h better than 
han
e, they are mu
h lower than the framea

ura
y for the merger MLP whi
h integrates information from the entire frequen
y rangeof the spee
h data. It seems that there is not enough information within a 0.5 se
ondlong log 
riti
al-band traje
tory to a

urately 
lassify all phones, whi
h is not surprising
onsidering that di�erent phones may look quite similar within a single narrow-frequen
yband. To improve the Neural TRAP system, we think it is important to further examineand redesign the 
riti
al-band level 
lassi�ers. More spe
i�
ally, we believe that mappingto phone probabilities at the 
riti
al-band level may not be optimal. This leads us to asktwo questions:1. Can we skip the mapping from the outputs of the mat
hed �lters to 
riti
al-bandphone posteriors?2. Is there a better way to train 
riti
al-band mat
hed �lters?3.1.1 Can we skip the mapping from the outputs of the mat
hed �ltersto 
riti
al-band phone posteriors?We have noted how the low frame 
lassi�
ation a

ura
ies suggest that we 
annotmake all phone distin
tions given only a single 
riti
al-band temporal energy traje
tory.We hypothesize that whatever important phoneti
 information that 
an be gleaned fromthe 
riti
al-band traje
tory is already 
aptured by the mat
hed �lters (
riti
al-band MLPhidden units). The additional mapping from the mat
hed �lters to phone posteriors maybe an extraneous and ina

urate mapping. Why not skip this intermediate mapping andinstead use the outputs from the mat
hed �lters from every 
riti
al-band as inputs for4Chan
e performan
e assumes a 
lassi�er that always 
hooses the 
lass with the highest prior probabilityin the training set. In the TIMIT training data, the silen
e phone is the 
lass with the highest priorprobability, and it makes up 12.13% of the 
ross-validation set.



3.2. HIDDEN ACTIVATION TRAP (HAT) 39the se
ond stage merger? In this way, we hope to �nd a more a

urate and parsimoniousmodel.3.1.2 Is there a better way to train 
riti
al-band mat
hed �lters?Be
ause training MLPs to learn phone posteriors from log 
riti
al-band temporaltraje
tories is too diÆ
ult a task, what 
ategories, instead of phones, should we train the�rst stage Neural TRAP MLPs to learn? In [64℄ the 
riti
al-band 
lassi�ers are trained tolearn six broad 
ategories based on manner of arti
ulation. One 
an also imagine trainingthe 
riti
al-band 
lassi�ers to other linguisti
 feature-like 
lasses that 
an be better distin-guished at the 
riti
al-band level; however, it would be better to learn what 
ategories areimportant from data. Furthermore, any training labels that we 
an spe
ify at the sub-bandlevel based on full-band phoneti
 labels may be ina

urate be
ause of potential asyn
hronyamong the sub-bands [93℄. We experiment with a new model for Neural TRAP whi
h 
on-sists of a single 4-layer neural network whose ar
hite
ture resembles Neural TRAP andwhose training pro
edure obviates the need to spe
ify 
riti
al-band 
ategori
al targets -the log 
riti
al-band mat
hed �lters are learned automati
ally from data without spe
ifying
riti
al-band level labels.3.2 Hidden A
tivation TRAP (HAT)To answer the �rst question above, we have developed a variant of the NeuralTRAP a
ousti
 model that we 
all Hidden A
tivation TRAP (HAT). The HAT ar
hite
tureis very similar to the Neural TRAP ar
hite
ture, but it di�ers in one 
ru
ial aspe
t: themappings from the 
riti
al-band hidden units to 
riti
al-band level phone posterior prob-abilities are dis
arded. More spe
i�
ally, we train a bank of 
riti
al-band MLPs whoseinputs are 51 frames of log 
riti
al-band energies and target labels are the labeled phonefor the 
enter frame. This training pro
edure is identi
al to the �rst stage training forthe 
riti
al-band MLPs of Neural TRAP; however, the 
hoi
e of how many hidden units isdetermined from frame a

ura
y 
urves (more about this below). On
e the 
riti
al-bandMLPs are trained, we \
hop o�" the hidden-to-output layer of every 
riti
al-band MLP,leaving only the outputs (\a
tivations") of the hidden layer (hen
e, Hidden A
tivationTRAP). After error ba
k-propagation training, one 
an interpret these hidden layer a
ti-
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Figure 3.2: Hidden A
tivation TRAP (Note: MLP-OL stands for MLP minus the outputlayer).vations as the outputs of dis
riminatively trained 
riti
al-band mat
hed �lters. The se
ondstage of HAT is just like Neural TRAP: a merger MLP (trained using the same trainingset and 
ross-validation set as in the �rst stage 
riti
al-band training) takes the hiddena
tivations from all the 
riti
al-band MLPs and learns the mapping to phone posteriors.The HAT setup is shown in Figure 3.2.It may seem that we don't gain mu
h from this HAT approa
h ex
ept redu
ingthe number of parameters via the 
hopping o� pro
edure, but we 
an further redu
e thenumber of parameters signi�
antly by redu
ing the number of mat
hed �lters required per
riti
al-band. In 
onventional Neural TRAP this number was set to 300 per 
riti
al-band.There are two ways to determine an optimal number of hidden units (or mat
hed �lters)per 
riti
al-band. One way is to train a series of 
riti
al-band MLPs with an in
reasingnumber of hidden units for every 
riti
al-band and then examine where the \knees" inthe frame a

ura
y 
urves o

ur. For every 
riti
al-band, we have plotted the MLP framea

ura
y on a 
ross-validation set versus the number of hidden units in Figure 3.3. Fromthis �gure, we noti
e that most of the steepest in
reases in a

ura
y have already o

urredwhen the number of hidden units has been in
reased to 20 or 25.Another way to determine an optimal number of mat
hed �lters for HAT, is totrain several 
omplete HAT models that di�er only in the number of mat
hed �lters per
riti
al-band. For fair 
omparison, we kept the total number of parameters 
onstant (about
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al-band.160,000 total neural net weights and biases with 1.12 million frames of training data). Theframe 
lassi�
ation a

ura
y of these HAT models on the TIMIT 
ross-validation dataset has an optimal performan
e peak at 20 mat
hed �lters per 
riti
al-band as seen inFigure 3.4.3.3 One Stage Training: Tonotopi
 Multi-Layer Per
ep-tron(TMLP)To examine question 2 from above, we have also 
reated a 4-layer MLP that trainsthe 
riti
al-band mat
hed �lter without the need for spe
ifying 
riti
al-band level targets.We 
all this MLP the Tonotopi
 Multi-Layer Per
eptron (TMLP), whi
h is inspired by thetonotopi
 organization of the human peripheral auditory system, where di�erent positionsin the 
o
hlea are sensitive to di�erent frequen
ies. The �rst hidden layer of the TMLP is
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Figure 3.5: Tonotopi
 Multi-Layer Per
eptron.tonotopi
ally organized into several sets of hidden units. Ea
h of these sets is 
onstrainedto see inputs 
oming only from a single 
riti
al-band, and together, all of the sets spanthe frequen
y range of spee
h. The se
ond hidden layer, as well as the output layer arefully-
onne
ted with their previous layers. Figure 3.5 shows the stru
ture of a TMLP. Wealso refer to the �rst layer hidden units as 
riti
al-band hidden units.As in HAT and Neural TRAP we use log 
riti
al-band energies as inputs to theTMLP. After 
omputing the log 
riti
al-band energies of spee
h every 10 millise
onds andnormalizing these energies by subtra
ting/dividing the mean/standard deviation 
al
u-lated over ea
h utteran
e, we take 51 
onse
utive frames (about 500 millise
onds) of thesenormalized energies as the input layer of the TMLP. The output of the ith �rst layer hiddenunit for frame f is given by Equation 3.1:Olayer1;i def= sig0� f+25Xt=f�25 infreq(i);tWlayer1;t;i +Blayer1;i1A (3.1)where sig(x) is the logisti
 sigmoid fun
tion given in Equation 3.2. infreq(i);t is the tthframe of energy in the one and only one frequen
y band that the ith �rst layer hidden unitis 
onstrained to see. Wlayer1;t;i and Blayer1;i are the trainable weights and bias respe
tivelyfor the ith unit. sig(x) def= 11 + exp(�x) (3.2)The se
ond layer of hidden units takes the outputs of all �rst layer hidden units



44 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSas inputs. The output of the jth se
ond layer hidden units is given by Equation 3.3:Olayer2;j def= sig XI Olayer1;iWlayer2;i;j +Blayer2;j! (3.3)Wlayer2;i;j and Blayer2;j are the trainable weights and bias respe
tively for the jth se
ondlayer hidden unit. Finally, the outputs of the TMLP are given by Equation 3.4:Outk;f def= exp(Zk)PK exp(Zk) (3.4)where Zk is given by Equation 3.5:Zk def= XJ Olayer2;jWlayer3;j;k +Blayer3;k (3.5)Wlayer3;j;k and Blayer3;k are the trainable weights and bias for the kth output unit.Just like the HAT and Neural TRAP merger training, the TMLP is trained withoutput targets that are \1.0" 
orresponding to the phone labeled in the 
urrent frame, and\0" for all others. The TMLP is also trained to minimize 
ross-entropy error by using theerror ba
k propagation algorithm. Unlike HAT and Neural TRAP, the 
riti
al-band level
ategories of the TMLP 
orresponding to the 
riti
al-band hidden units are learned as apart of the overall error ba
k-propagation. This obviates the need to spe
ify any kind of
riti
al-band training targets be
ause the one stage training learns what is important forphone dis
rimination.3.4 Dis
ussion: Learning in HAT and TMLPHaving des
ribed the two new ar
hite
tures for learning dis
riminant temporalinformation, it is instru
tive to dis
uss the nature of the spee
h information that thesetwo models 
an extra
t. Just as in the Neural TRAP 
ase, both HAT and TMLP aredesigned to learn phoneti
ally dis
riminant information within long spanning (around 500millise
onds) narrow-frequen
y 
hannel (
riti
al-bands) energy traje
tories. All of thesemodels �rst 
onstrain the learning within 
riti
al-bands, and then integrate the dis
rimi-nant information from all 
riti
al-bands. Another way to say this is that Neural TRAP,HAT, and TMLP impose a 
onstraint upon the learning of temporal information from the
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y plane: 
orrelations among individual frames of energies from di�erent fre-quen
y bands are not dire
tly modeled. Instead, they model 
orrelation between long-termenergy traje
tories from di�erent frequen
y bands.It is also interesting to note that TMLP pla
es less 
onstraints on the learningof dis
riminant temporal traje
tory information than HAT and Neural TRAP. Be
auseTMLP is a single neural network whose parameters are learned via the gradient des
enterror ba
k-propagation algorithm, the 
riti
al-band hyperplane separators in TMLP arenot 
onstrained to learn dis
riminants that are optimal for separating phone targets atthe 
riti
al-band level. They 
an learn whatever is best for the next hidden layer to do itsjob. HAT and Neural TRAP learn the 
riti
al-band hyperplane separators that are best forseparating the phones based on the 
riti
al-band level labels that we provide. As des
ribedin Sub-se
tion 3.1.2, our 
riti
al-band level phone labels may not be the right 
lasses tolearn, and they may also be ina

urate. Be
ause HAT is a more 
onstrained model thanTMLP, the family of distributions that TMLP 
an learn is larger, and be
ause HAT hasthe same 
onne
tions as TMLP, the family of distributions that HAT 
an learn is a subsetof that for TMLP. Figure 3.6 shows a 
artoon pi
ture of the family of distributions learnedby these two new Neural TRAP extensions.While it is true that TMLP 
an potentially model a ri
her family of distributions
ompared with HAT, sometimes 
onstraints 
an be helpful. In 
ases when training data issparse, 
onstraints 
an help the 
lassi�er fo
us on learning the important details. Also, in
ases when there is noise in the data, 
onstraints 
an help the 
lassi�er ignore irrelevantand misleading information.3.5 Experimental SetupIn subsequent se
tions, we will present experiments demonstrating the perfor-man
e of HAT and TMLP on a small phone re
ognition spee
h task, so in this se
tion, wedes
ribe our experimental setup. We use the TIMIT database [40℄ for the experimentalwork in this 
hapter. The TIMIT spee
h database, re
orded at TI and trans
ribed at MIT(hen
e TIMIT), 
onsists of about 4.27 hours of spee
h spoken by 630 di�erent speakersfrom the 8 major diale
t regions in the United States. It was re
orded at 16,000 Hz with a
lose talking mi
rophone in the studio. The prompts spoken by the speakers were designed
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Space of Distributions
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Figure 3.6: Cartoon of the family of distributions modeled by TMLP and HAT.to provide a good 
overage of pairs of phones and to be diverse in senten
e types and pho-neti
 
ontexts. See timit.readme �le found in [40℄ for more details. There are a total of2,342 unique prompts found in TIMIT, and they do not sound 
ompletely like senten
espeople would naturally utter. For example, the most famous TIMIT prompt is: \She hadyour dark suit in greasy wash water all year". Be
ause of the odd nature of the promptsand be
ause there are so few of them, spee
h re
ognition resear
hers have tended to useTIMIT for phone re
ognition experiments only.Using the re
ommended training set 
onsisting of 3,696 utteran
es, we set aside10% of these utteran
es (370 utteran
es, 111,446 frames, .31 hours) for a separate 
ross-validation set, and keep the remaining 90% (3,326 utteran
es, 1,124,823 frames, 2.81 hours)for training our various MLPs. The 
ross-validation set is used for adjusting the learningrate during MLP training and also for determining the early stopping point to preventover�tting. For all of our test results we use the 
omplete TIMIT test set 
onsisting of1,344 utteran
es (410,920 frames, 1.14 hours) and 51,664 total phone tokens.In the experiments of this 
hapter, we use the hybrid ANN/HMM spee
h re
og-



3.5. EXPERIMENTAL SETUP 47nition framework [18℄ des
ribed in Chapter 2. The arti�
ial neural nets estimate phoneposteriors. These posteriors are then s
aled by the phone priors to produ
e the s
aled like-lihoods needed for the HMM ba
k-end Viterbi de
oder. We use the Chronos de
oder [107℄as well a standard phone bigram language model during de
oding.Ea
h of the various neural nets is trained to learn the original 61 TIMIT phonesshown in Table 3.2. The best phone sequen
e de
oded by Chronos is at �rst a sequen
eof these 61 original phones. In many previous studies using TIMIT, resear
hers map these61 phones into a smaller set of 39 phones [77℄ and report their results using this smallerphone set. Table 3.2 also shows the mapping from the original 61 phones to this smaller 39phone set. We perform the same mapping on the best phone sequen
e de
oded. To obtainour �nal phone error rate whi
h is the sum of %substitutions+%deletions+%insertions,we perform a standard dynami
 programming string alignment to the TIMIT test set'sreferen
e phone sequen
es whi
h are also mapped to the 39 phone set5.In the following se
tions we present results in 
lean 
ondition as well as in noisyand reverberant 
onditions. Please note, however, that all training was done using 
leanspee
h, so that we 
an test the robustness of ea
h of the systems to unseen 
onditions. Wehave experimented with two noisy 
onditions: Mer
edes Benz noise (re
orded inside the
ar) and exhibition hall noise (
ontaining mainly spee
h babble, e.g., people talking in theba
kground). The noise �les 
ome from the Wall Street Journal Task for the AURORA2evaluations [56℄. We add these noises to the 
lean �les at di�erent signal to noise ratios.We also 
onvolve the 
lean signals with a room impulse response to give a moderatelyreverberant testing 
ondition. This room impulse response has a 60 dB reverberation timeof 0.8 se
onds whi
h means that it takes 0.8 se
onds for the e
hoes to be
ome 60 dB lesspowerful than the original spee
h signal. We are grateful to Jim West, Gary Elko, andCarlos Avenda~no who 
olle
ted this impulse response in the Bell Labs Vare
hoi
 
hamberand made it available to our resear
h group [126, 9℄.The features fed to our various TRAP-like a
ousti
 models are 
al
ulated fromthe 
lean, noisy and reverberant spee
h waveforms. These features are log 
riti
al-band5The phone error rates that we obtain using this simple 61 to 39 mapping are a
tually underestimatesof our potential performan
e. Lower phone error rates 
an be obtained by performing the mapping at anearlier stage. By summing the posterior probabilities 
orresponding to phones from the 61 phone set thatare mapped to a single phone from the 39 phone set, posteriors for the 39 phone set 
an be obtained.Using these 39 phone set posteriors for de
oding leads to lower phone error rates, but for simpli
ity 
hoseto perform the mapping after the de
oding step.
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ASR Phoneme SymbolsTIMIT 61 Example TIMIT 39 TIMIT 61 Example TIMIT 39b bee b l like ld day d el bottle lg gay g r right rp pea p w wire wt tea t y yes yk key k hh hay hhdx dirty dx hv ahead hhb
l (b 
losure) h# iy beet iyd
l (d 
losure) h# ih bit ixg
l (g 
losure) h# eh bet ehp
l (p 
losure) h# ey bait eyt
l (t 
losure) h# ae bat aek
l (k 
losure) h# aa father aajh joke jh aw about aw
h 
hoke 
h ay bite ays sound s ah but axsh shout zh ao bought aaz zoo z oy boy oyzh azure zh ow boat owf fish f uh book uhth thin th uw boot uwv vote v ux toot uwdh then dh er bird erm moon m axr butter erem bottom m ax about axn noon n ax-h suspe
t axnx winner n ix debit ixng sing ng h# (non-spee
h events) h#eng washington ng pau (pause) h#en button n epi (epentheti
 silen
e) h#q (glottal stop) h#Table 3.2: The 61 original TIMIT phones, their 39 phone equivalents, and an example ofthe phone.



3.6. CLEAN RESULTS 49energies 
al
ulated for every 
riti
al-band and for ea
h frame every 10 millise
onds. Themean and standard deviation of the energies from ea
h 
riti
al-band are 
al
ulated andsubtra
ted (divided in the 
ase of standard deviation) on a per utteran
e basis. 51 
on-se
utive frames of the log energies from ea
h 
riti
al-band form the input features for oursystems at the time 
orresponding to the 26th frame. These 51 
onse
utive log energy val-ues form 
riti
al-band energy traje
tories spanning a time 
ontext of half a se
ond whi
his twi
e as long as the average syllable duration of 250 millise
onds.3.6 Clean ResultsIn order to demonstrate the performan
e of our two new temporal ASR systemsin 
lean 
onditions, we trained and tested four systems a

ording to the experimental setupdes
ribed in se
tion 3.5. This se
tion presents results of experiments in 
lean 
onditions,where \
lean" refers to the fa
t that we did not arti�
ially 
ontaminate either the trainingor test sets with noise nor reverberation. Speaker and speaking variations, however, arestill present within the re
ordings.We trained a Neural TRAP baseline, a HAT, a TMLP, and a 
onventional hybridANN/HMM ASR system that uses 9 frames of PLP features. The baseline Neural TRAPsystem is similar to the one presented in [53℄. This Neural TRAP system has 300 hiddenunits per 
riti
al-band MLP and a merger MLP with 317 hidden units for a total of1,032,377 trainable parameters. The HAT system has 20 hidden units per 
riti
al-bandand also 317 hidden units for the merger. The total number of parameters for the HATsystem is 159,935. The TMLP system also 
ontains 20 hidden units per 
riti
al-band, 317hidden units for the merger and has the same number of parameters as the HAT system.Finally, for 
omparison with a 
onventional ANN/HMM system, we made a PLP systemthat uses 12th order PLP [48℄ plus energy and �rst and se
ond derivatives as input features.These features undergo a per-utteran
e mean and varian
e normalization and are then fedto an MLP with 9 frames of input 
ontext whi
h estimates the phone posteriors and
ontains roughly 160,000 parameters also. The results on the un
orrupted TIMIT test setare shown in Table 3.3 where PLP denotes the 
onventional ANN/HMM system. We havealso added a 
olumn for relative improvements of the new temporal systems 
ompared withthe baseline Neural TRAP. Be
ause PLP di�ers signi�
antly from the temporal systems



50 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSSystem Phone Error RelativeDes
ription Rate (%) Improvement (%)Baseline:Neural TRAP 32.7 -HAT 29.8 8.9TMLP 31.0 5.2PLP 29.7 N/ATable 3.3: Phone error rates of 3 di�erent temporal ASR systems and a typi
al ASR systemon the full TIMIT test set mapped to 39 phones under 
lean 
onditions.
System Phone Error RelativeDes
ription Rate (%) Improvement (%)Baseline:PLP 29.7 -PLP+Neural TRAP 27.2 8.4PLP+HAT 26.5 10.8PLP+TMLP 26.8 9.8Table 3.4: Phone error rates of the frame-wise produ
t of posterior 
ombination of 3temporal MLPs and a PLP MLP on the full TIMIT test set under 
lean 
onditions.

whi
h fo
us on learning long narrow-frequen
y patterns rather than short spe
tral sli
es,the relative improvement 
omparison to Neural TRAP is not appropriate.In addition to these stand-alone results, we have also tried 
ombining all tem-poral systems with the 
onventional PLP system. Be
ause the PLP system is extra
tinginformation from spe
tral sli
es and not from 
riti
al-band energy traje
tories, we expe
tto see great improvements when the temporal systems are 
ombined with PLP. Althoughthere are more elaborate ways to 
ombine posterior probabilities, we simply multiplied theposterior probabilities from the two di�erent systems and s
aled them by the square of thepriors for ea
h phone. This implies the that the two probability streams are 
onditionallyindependent given the underlying phone. This 
ombination te
hnique has worked well inprior 
ombination studies [65℄. The phone error rates of the 
ombination systems on theTIMIT test set are shown in Table 3.4.



3.7. CLEAN DISCUSSION 513.7 Clean Dis
ussion
HAT outperforms Neural TRAP by 2.9% absolute on the TIMIT test set 
onsist-ing of 51,664 phone tokens. This result is signi�
ant at the 0.05 level using a \di�eren
eof proportions" signi�
an
e test. This parti
ular signi�
an
e test assumes that the twoerror rates are samples from a binomial distribution, and then tests the two binomialsfor being signi�
antly di�erent using a Z-s
ore. TMLP also outperforms Neural TRAP,but this time by only 1.7% absolute. This too is statisti
ally signi�
ant at the 0.05 level.The di�eren
e in performan
e between HAT and TMLP is also statisti
ally signi�
ant atthe 0.05 level; however, the di�eren
e between HAT and the 
onventional PLP system isnot statisti
ally signi�
ant. From this, we see that both of the two new temporal systemsoutperform Neural TRAP, and HAT is 
omparable in phone re
ognition performan
e tothe 
onventional PLP system.With only 20 dis
riminative patterns per 
riti
al-band in the HAT and TMLPsystems, we 
an a
hieve better phone re
ognition performan
e in 
lean 
onditions thanNeural TRAP whi
h uses 300 dis
riminative patterns per 
riti
al-band. Additionally, theHAT and TMLP systems have 84% fewer parameters than Neural TRAP. Be
ause HAToutperforms Neural TRAP, we 
an begin to answer question 1 from above; dropping theadditional mapping from hidden unit a
tivations to 
riti
al-band phone posteriors helps.Unfortunately, in 
lean 
onditions, it does not yet seem helpful to un
onstrain the 
riti
al-band learning targets be
ause TMLP does not outperform HAT. Constraints are oftenuseful when there is not enough data, suggesting perhaps that TMLP might not be gettingenough data for training.The 
ombination of all of these temporal systems with the 
onventional PLPsystem all give wonderful performan
e improvements over the PLP system alone (8.4% -10.8% relative improvements). The di�eren
e in performan
e between the 
ombination ofHAT with PLP and the 
ombination of Neural TRAP with PLP is statisti
ally signi�
antat the 0.05 level; however, the di�eren
e between the Neural TRAP 
ombination and theTMLP 
ombination is only signi�
ant at the 0.01 level. HAT gives the most improvementof all the temporal systems in 
ombination with PLP.



52 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSTest System Des
riptionCondition Neural TRAP HAT TMLP PLPReverberant 56.3% 54.2% 58.0% 59.2%Benz Noise20 dB 35.9% 33.8% 35.5% 36.5%10 dB 42.7% 42.2% 42.8% 42.2%0 dB 55.0% 56.7% 54.2% 50.5%Exhib. Noise20 dB 41.6% 39.9% 41.8% 40.4%10 dB 61.4% 63.4% 62.0% 60.0%0 dB 102.2% 95.7% 86.5% 95.9%Table 3.5: Phone error rates of the four systems on the TIMIT test set mapped to 39phones under various noise and reverberant 
onditions. The noises are added at 3 di�erentsignal-to-noise ratios (20 dB, 10 dB, and 0 dB), and the best system performan
es are inbold.3.8 Noisy and Reverberation ResultsWe have also tested our new temporal systems in noisy and reverberant 
on-ditions. For noisy test 
onditions, we arti�
ially added two types of noises at di�erentsignal-to-noise ratios. For the reverberant 
onditions, we 
onvolved a room impulse re-sponse to the test sets as des
ribed in Se
tion 3.5. Table 3.5 shows the stand-alone phoneerror rates of Neural TRAP, HAT, TMLP, and PLP, while Table 3.6 shows the phone errorrates for the three temporal systems in 
ombination with PLP.3.9 Noisy and Reverberation Dis
ussionIt has been shown in [114℄, that in reverberant 
onditions, systems that use dis-
riminant temporal �lters are more e�e
tive than 
onventional features. Here, we see thatall of the other temporal systems signi�
antly outperform PLP in moderate reverberation.HAT performs the best at 54.2%, and Neural TRAP is better than TMLP. Again, in 
ombi-nation with PLP, these temporal systems add additional improvements to PLP alone. The
ombination of HAT and PLP is the best followed by Neural TRAP and PLP, and TMLPand PLP. From this, we 
on
lude that the long-term temporal pro
essing te
hniques aremore e�e
tive in dealing with reverberation than the shorter-term spe
tral pro
essing of



3.9. NOISY AND REVERBERATION DISCUSSION 53Test Combination SystemCondition PLP+ Neural TRAP PLP+HAT PLP+TMLPReverberant 52.9% 52.4% 54.1%Benz Noise20 dB 30.9% 30.7% 30.9%10 dB 35.9% 36.2% 36.3%0 dB 44.9% 45.8% 44.9%Exhib. Noise20 dB 36.2% 35.8% 36.5%10 dB 54.4% 55.7% 55.6%0 dB 79.9% 65.8% 81.3%Table 3.6: Phone error rates of the 
ombined systems on the TIMIT test set mapped to39 phones under noise and reverberant 
onditions. The noises are added at 3 di�erentsignal-to-noise ratios (20 dB, 10 dB, and 0 dB), and the best system performan
es are inbold.PLP. Constraining the 
riti
al-band hidden units to learn dis
riminants useful for 
riti
al-band phone targets as we do with HAT and Neural TRAP is more e�e
tive than TMLP'sglobal optimization in reverberant 
onditions.When 
orrupting the test set with Mer
edes Benz noise whi
h predominantly hasspe
tral energy in the low frequen
ies, we see that the performan
e depends on the signal-to-noise ratio (SNR). In 20 dB and 10 dB SNRs, HAT outperforms both Neural TRAP andTMLP, but in 0 dB SNR, both Neural TRAP and TMLP outperform HAT. Compared withPLP, the temporal systems only show better results in 20 dB SNR. The 
ombination resultsare quite 
omparable with none of the temporal systems showing signi�
ant advantages overone another ex
ept both the Neural TRAP and TMLP 
ombinations with PLP outperformthe HAT 
ombination at 0 dB SNR. As in all previous 
onditions in
luding the 
lean
ondition, the 
ombination of the temporal systems with PLP greatly redu
es the phoneerror rates 
ompared to non-
ombined systems.Exhibition hall noise is the toughest noise 
ondition be
ause the noise is spee
h.Among the temporal systems, there is no 
lear winner be
ause HAT does best at the 20dB SNR level, and Neural TRAP is the winner at the 10 dB SNR level, and TMLP winsat the 0 dB SNR level. PLP also performs at roughly the same levels as the temporalsystems. Finally, the 
ombination of PLP with the temporal systems provide a huge boostin performan
e, lowering the phone error rates greatly.



54 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERS3.10 Narrow-Band Dis
riminant Temporal PatternsAs des
ribed in Se
tion 3.1, one 
an 
onsider that the 
riti
al-band hidden unitsof HAT and TMLP learn mat
hed temporal �lters useful for phoneti
 
lassi�
ation onthe temporal evolution of the log 
riti
al-band energy. These mat
hed �lters dete
t 
er-tain narrow-band dis
riminant temporal patterns for phoneti
 
lassi�
ation; when thesepatterns are present in the spee
h, 
riti
al-band hidden units tuned to dete
t these pat-terns output high a
tivation values. As with any �lter, these mat
hed �lters also have afrequen
y response. Sin
e these mat
hed �lters operate on the time evolution of energywithin a frequen
y band of spee
h, their frequen
y response shows whi
h rates of 
hangein the energy traje
tory a mat
hed �lter is sensitive to. These rates are 
alled modula-tion frequen
ies and are des
ribed further in Se
tion 2.1.5. It has been shown by manyresear
hers that modulation frequen
ies between 0 and about 16 Hz are important forspee
h re
ognition [58, 59, 29, 5, 68℄.It is interesting to see what are the narrow-band dis
riminant temporal patternsthat HAT and TMLP have learned after training them to perform phoneti
 
lassi�
ation onTIMIT. In Appendix C we plot 
luster 
entroids of these patterns for both HAT and TMLP.More spe
i�
ally, we take the input-to-hidden unit weights of ea
h 
riti
al-band hiddenunits (these are the mat
hed �lters), and then 
luster them agglomeratively sin
e there aretoo many of them to display and sin
e many of them resemble ea
h other. We then plotthese patterns and their 
orresponding modulation frequen
y responses. Figures 3.7, 3.8show examples of dis
riminant temporal patterns and 
orresponding modulation frequen
yresponses learned by the HAT trained on TIMIT, and Figures 3.9, 3.10 show examples forthe TMLP trained on TIMIT. The dis
riminant temporal patterns are 
entered at frame0 (x-axis) and range from 25 frames in the past (-25) to 25 frames in the future (25).There are 51 total frames whi
h spans about 500 millise
onds of 
ontext. The y-axis forthe patterns is the magnitude. The x-axis for the 
orresponding modulation frequen
yresponse is the modulation frequen
y, while the y-axis is the �lter gain in de
ibels.From these examples and others like them in Appendix C, we observe that allof the patterns are sensitive to modulation frequen
ies between 0 and about 20 Hz. Thisis nearly 
onsistent with previous �ndings about the importan
e of low modulation fre-quen
ies for spee
h re
ognition. Another interesting observation is that some of these
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Figure 3.7: An example input to 
riti
al-band hidden unit weight pattern (mat
hed �lter)for the HAT trained on TIMIT and its 
orresponding frequen
y response.
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Figure 3.8: An example input to 
riti
al-band hidden unit weight pattern (mat
hed �lter)for the HAT trained on TIMIT and its 
orresponding frequen
y response.
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Figure 3.9: An example input to 
riti
al-band hidden unit weight pattern (mat
hed �lter)for the TMLP trained on TIMIT and its 
orresponding frequen
y response.
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Figure 3.10: An example input to 
riti
al-band hidden unit weight pattern (mat
hed �lter)for the TMLP trained on TIMIT and its 
orresponding frequen
y response.



3.11. CONCLUSIONS 57patterns resemble temporal patterns used by other resear
hers for the temporal �ltering ofspee
h. Figures 3.7 and 3.9 resemble the \Mexi
an hat" �lters whi
h dete
t high energy,and Figures 3.8 and 3.10 resemble the \derivative" �lters whi
h dete
t onsets of energy.Both of these patterns were learned when applying Linear Dis
riminant Analysis (LDA)to temporal energy traje
tories in [10, 124, 115, 67℄; moreover, some of the patterns in Ap-pendix C look similar to the Mean TRAPs found in [112℄. From a reusability standpoint,the similarity of these patterns in future appli
ations important. Sin
e 
ertain temporalpatterns seem to appear over and over again as a result of training using di�erent ap-proa
hes on di�erent training databases, it would be reasonable to �x them and reusethem in future ASR appli
ations on di�erent tasks as a prepro
essing step in feature ex-tra
tion. In Chapter 5 we look at the patterns learned by HAT and TMLP trained on
onversational telephone spee
h and also 
ompare them to patterns learned using bothPrin
ipal Components Analysis (PCA) and LDA.3.11 Con
lusionsIn this 
hapter we have developed two new variants to Neural TRAP: Hidden A
-tivation TRAP (HAT) and Tonotopi
 Multi-Layer Per
eptron (TMLP). Both have beenshown to drasti
ally redu
e the number of parameters required while improving the phonere
ognition performan
e under 
lean 
ondition 
ompared to Neural TRAP. We have foundthat approximately 20 dis
riminative temporal �lters per 
riti
al-band is suÆ
ient to per-form TIMIT phone re
ognition. By showing how HAT outperforms Neural TRAP, we haveshown that skipping the mapping from the outputs of the dis
riminant mat
hed �lters to
riti
al-band phone posteriors is helpful. So far, we have not noti
ed any signi�
ant ad-vantages to allowing the 
riti
al-band �lters to be globally optimized (as in TMLP) andnot 
onstrained to learn separators for 
riti
al-band level phone targets (as in HAT).In noisy and reverberant 
onditions, these temporal systems (Neural TRAP, HAT,and TMLP) show varying degrees of improvements. Under additive noise 
onditions alltemporal systems are 
omparable to the PLP system. In a moderately reverberant 
ondi-tion, all temporal systems outperform the traditional PLP system.We have also seen how e�e
tive it is to 
ombine the temporal systems whi
h learndis
riminant long-term narrow-frequen
y patterns with 
onventional systems whi
h learn
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riminants in spe
tral sli
es. All 
ombination results in every 
ondition tested outper-form all un
ombined results. Our 
lean 
ombination results are 
lose to the best publishedTIMIT phone re
ognition error rate that we are aware of. The PLP+HAT 
ombinationerror rate on 
lean, 26.5%, is slightly greater than the best published TIMIT phone re
og-nition error rate of 24.2% in [3℄. Finally, the narrow-band dis
riminant temporal patternslearned by both HAT and TMLP in this 
hapter preserve the low modulation frequen
iesof spee
h whi
h are important for re
ognition.
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Chapter 4
Temporal Systems for CTS

In the previous 
hapter, we introdu
ed two new temporal ASR systems, HATand TMLP, and showed promising improvements over Neural TRAP on a small phonere
ognition task. In this 
hapter, we explore the integration of Neural TRAP into a state-of-the-art Gaussian mixtures-based HMM re
ognizer. Our goal is to develop a baselinetemporal ASR system setup that is 
apable of 
ompetitive performan
e on the 
hallengingtask of 
onversational telephone spee
h (CTS). On
e this baseline setup is developed, wewill be able to 
ompare various temporal feature extra
tion te
hniques like HAT and TMLPto Neural TRAP on CTS in subsequent 
hapters.Our basi
 approa
h to the baseline setup uses the phone posteriors estimatedby Neural TRAP to augment 
onventional front-end features. This 
hapter presents aseries of experiments on progressively more diÆ
ult spee
h re
ognition tasks that we useto guide the design of our baseline setup and to show how our approa
h 
an improve ASRperforman
e over a wide range of spee
h data.4.1 Posterior Probabilities as FeaturesFor de
ades, the feature extra
tion 
omponent of spee
h re
ognition engines has
onsisted of some form of lo
al spe
tral envelope estimation, typi
ally with some simpletransformation. Current typi
al front-ends 
onsist largely of the Mel 
epstrum [87℄ orPLP [48℄ 
omputed from an analysis window of roughly 25 or 30 ms surrounding a 
entralsignal point, stepped along every 10 ms. These features are often augmented by delta
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PLP

FeaturesFigure 4.1: Blo
k diagram of a 
onventional ASR system using PLP front-end features fora standard Gaussian mixtures-based HMM system.features [38℄ and transformed by various linear transformations (e.g., linear dis
riminantanalysis and heteroskedasti
 dis
riminant analysis) whi
h makes the e�e
tive temporal
ontext of these features around 90 millise
onds. A pi
ture of the 
onventional ASR systemusing PLP features is shown in Figure 4.1.These standard front-end features were designed based on expert knowledge. Inre
ent years, there has been a push for more data-driven approa
hes for deriving front-end features. One su
h approa
h, Tandem a
ousti
 modeling [49, 34, 32℄ as des
ribed inChapter 2, uses an MLP to learn posterior probabilities of phoneti
 units. These posteriorprobabilities are then transformed and used as features for a standard Gaussian mixtures-based hidden Markov model (GMHMM). The transformations applied to the posteriorsare designed to make the resulting features more Gaussian and de
orrelated whi
h tend tohelp the Gaussian mixture models with diagonal 
ovarian
e matri
es better model thesefeatures. The transformations are the logarithm followed by prin
ipal 
omponents analysis(PCA). Figure 4.2 shows a typi
al Tandem ASR system.MLPs learning posterior probabilities of sub-word units are ex
ellent feature ex-tra
tors. The ideal feature for ASR is one in whi
h variabilities su
h as speaker di�eren
esare suppressed, while variabilities in phoneti
 units are enhan
ed. Phoneti
 posteriorprobabilities possess these qualities. In [134℄, Zhu et al. 
al
ulated the varian
e of speakeradaptive transform (SAT) matri
es a
ross all speakers in a CTS test set for standard PLPfeatures as well as for MLP-based features. The varian
e of ea
h 
omponent in the SATmatrix is dire
tly proportional to the amount of speaker variability present in the 
orre-sponding feature 
omponent. The 
omponents in the PLP features showed mu
h higherspeaker variability than the 
omponents in the MLP-based features.
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Figure 4.2: Blo
k diagram of the Tandem ASR system. It uses transformed posterior prob-abilities estimated by an MLP as data-derived front-end features for a standard Gaussianmixtures-based HMM system.Another bene�t of the Tandem setup is how it is readily amenable to 
lassi�er
ombination. Multiple MLPs 
an be trained to extra
t dis
riminant spee
h informationin vastly di�erent ways and then 
ombined to give mu
h better estimates of phoneti
posteriors. In Chapter 3, we found that 
ombining a standard spe
tral MLP 
lassi�er withea
h of the temporal MLP 
lassi�ers (Neural TRAP, HAT, and TMLP) gave signi�
antperforman
e improvements. Using simple 
ombination te
hniques within the Tandem setupis straightforward and 
an lead to signi�
ant redu
tions in word error rates. Figure 4.3shows the 
ombination of a spe
tral MLP 
lassi�er and a temporal MLP 
lassi�er in theTandem setup.One weakness of the Tandem setup whi
h was observed when resear
hers at theInternational Computer S
ien
e Institute tried to use the Tandem setup for re
ognizingdigits in noisy test 
onditions was that the feature extra
ting MLPs trained in 
lean 
on-ditions did not always estimate the phone posteriors very well in noisy test 
onditions. Aswith many dis
riminative training te
hniques, the resulting 
lassi�ers 
an be sus
eptibleto mismat
h between training and testing 
onditions. To alleviate some of the e�e
ts ofmismat
h, Stephane Dupont proposed to use the MLP-based features to augment the ex-isting 
onventional features instead of repla
ing them [12℄. When the MLP-based features
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Figure 4.3: Blo
k diagram of a multi-stream Tandem ASR system. Two MLPs extra
tingdis
riminant spee
h information in di�erent yet 
omplementary ways are used to deriveposterior probability-based front-end features. The outputs of these MLPs are 
ombined,transformed, and then used as front-end features for a standard Gaussian mixtures-basedHMM system.give poor estimates of phone posteriors, the original PLP features might help the HMMba
k-end to still 
ome up with the 
orre
t 
lassi�
ation. Figure 4.4 shows the augmen-tation of standard PLP features with MLP-based features 
oming from a 
ombination oftwo di�erent MLPs.By 
ombining MLP 
lassi�ers that extra
t information di�erently than 
onven-tional features, the resulting augmented Tandem ASR system 
an 
apture spee
h infor-mation from three (or more when 
ombining more than two MLP 
lassi�ers) di�erentsnapshots. The �rst snapshot 
omes from the 
onventional features whi
h allows the re
-ognizer to 
apture information from narrow spe
tral sli
es. The se
ond and third snapshots
ome from the di�erent MLP approa
hes. We will test the e�e
tiveness of the 
ombinationof an MLP re
ieving 9 frames of 
onventional PLP features with Neural TRAP in the fol-lowing se
tions. The 9 frame PLP/MLP 
an 
apture spee
h information from intermediatewidth spe
tral sli
es (100 ms), while Neural TRAP extra
ts information from long-termnarrow-frequen
y log energy traje
tories.This Tandem augmentation approa
h proved to be very e�e
tive in redu
ing worderror rates on small digit re
ognition tasks [12℄; however, su

ess in small re
ognition tasksdoes not ne
essarily s
ale to more diÆ
ult tasks where the vo
abulary is mu
h larger and
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Figure 4.4: Blo
k diagram of a multi-stream augmented Tandem ASR system. Two MLPsextra
ting dis
riminant spee
h information in di�erent yet 
omplementary ways are used toderive posterior probability-based front-end features. The outputs of these MLPs are 
om-bined, transformed, dimensionality redu
ed, and then 
on
atenated to 
onventional front-end features. The resulting augmented front-end feature is input to a standard Gaussianmixtures-based HMM system.
the speaker variabilities are mu
h greater and the systems used tend to model mu
h moredetail and use more elaborate te
hniques that 
an be in
orporated given large amountsof training data. Our goal in the rest of this 
hapter is to test the e�e
tiveness of thisTandem augmentation approa
h on a series of more diÆ
ult spee
h re
ognition tasks aswell as to determine a good operating 
on�guration for the setup. When using this Tandemaugmentation approa
h there are some system issues that must be addressed for optimalperforman
e. The �rst one is what type of 
ombination te
hnique should be used for theMLP 
lassi�ers. The se
ond one is to determine the best number of MLP-based featuredimensions to keep after PCA. Keeping too many features may require mu
h more trainingdata and parameters for the GMHMM, while too few may mean a loss in useful informationfor re
ognition.
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hniques and Dimensionality Redu
tionWe are interested in testing out several simple frame-wise posterior 
ombina-tion te
hniques that have performed 
omparably to more 
ompli
ated 
ombination te
h-niques [65, 94℄. All of these frame-wise posterior 
ombination te
hniques 
an be representedby a weighted sum of posteriors or log posteriors. Generally, the 
ombined posterior prob-ability of the kth phone, qk, given the features X 
an be written as Equation 4.1:P(qkjX) = !1P(qkjX1) + !2P(qkjX2) (4.1)where P(qkjX1) and P(qkjX2) are the posterior probabilities (or log posterior probabilities)of the phone 
lass qk given eviden
e from stream 1 (X1) and stream 2 (X2) respe
tivelyfor a single frame of spee
h. !1 and !2 are the stream weights whi
h depend on the
ombination te
hnique used.We have tested three frame-wise posterior 
ombination methods: the average ofthe posteriors 
ombination (AVG); the average of log posteriors 
ombination (AVGLog),and �nally, the inverse entropy weighted 
ombination (INVENT) [94℄. The �rst two 
om-bination methods essentially assume that ea
h MLP feature stream is equally important,while the entropy-based 
ombination assumes that the MLP feature with lower entropy ismore important than an MLP feature with high entropy. This is intuitively 
orre
t, sin
ea low entropy posterior distribution (su
h as would o

ur with a high single peak) impliesstrong 
on�den
e in 
lass identity.For both the average 
ombination and the average of the log 
ombinations ,!1=!2=0.5, but in the average of the log 
ombinations, we �rst apply log to the posteriorsbefore the weighted sum in Equation 4.1. In the inverse entropy-based posterior 
ombina-tion, !i is the inverse entropy 
omputed over one frame for the MLP output from stream i.Then all of the '!'s are normalized so that they sum to one. A threshold of 1.0 is appliedfor all entropy 
al
ulations. If the entropy for a frame from an MLP is greater than 1.0,it is set to a large value (e.g., 10,000) so that the weight is a very small number. Notethat the inverse entropy 
ombination te
hnique dynami
ally weights ea
h stream. The
al
ulated entropies 
hange from frame to frame, but in both average 
ombinations theweights remain �xed at 0.5.The other main issue for the augmented Tandem setup is the optimal dimen-sionality of the MLP-based features. Our neural nets are trained to learn posteriors of



4.3. EXPERIMENTAL SETUP 6546 monophones, so without trun
ating the number of features after PCA the total aug-mented feature ve
tor will have a size of 85 (39 original PLP features + 46 posterior-basedfeatures = 85 augmented features). In
reasing the number of features 
an potentially in-
rease separability of the 
lasses, but adding too many features may lead to the 
urse ofdimensionality: the number of training examples and parameters in the model required forhigh performan
e grows exponentially with respe
t to the number of feature dimensions.Keeping all 46 posterior-based features may also not be ne
essary be
ause some features
ontain more information than others.Another te
hni
al detail that we en
ountered when implementing our augmentedTandem setup is the e�e
t of a tuning parameter 
alled the Gaussian weight1. In the SRIre
ognition system, this weight 
ontrols the relative 
ontribution of ea
h of the Gaussian
omponents in the Gaussian mixture model to the overall likelihood s
ore. The likelihoodof a parti
ular frame of features X is given by Equation 4.2.P(Xjq) =XmiPi(Xjq)
 (4.2)where mi is the ith mixture weight, Pi(Xjq) is the ith Gaussian, and 
 is the Gaussianweight parameter. There are other tuning parameters like the Gaussian weight that areimportant in pra
ti
e for good re
ognition performan
e. Some of these in
lude the lan-guage model weight and word transition weight whi
h balan
e the relative in
uen
e of thelanguage model s
ores and word transitions respe
tively on the s
ores of possible senten
ehypotheses. We investigate the e�e
t of tuning the Gaussian weight, while varying thenumber of dimensions of the MLP-based features on re
ognition performan
e.4.3 Experimental SetupIn all of the experiments we perform in this 
hapter, our baseline feature ve
tor
onsists of 12th order PLP 
oeÆ
ients plus energy 
omputed over a 25 ms frame windowevery 10 ms. 1st and 2nd order deltas are 
al
ulated and appended together to yield a39 dimensional baseline feature. We also normalize the PLP features by subtra
ting themean and dividing by the standard deviation 
al
ulated over an entire 
onversation side.1This is a tuning parameter that is found in the SRI re
ognition system and may not exist in other largevo
abulary re
ognition systems.
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ontrast, we augment the baseline PLP features with a 
ombination of twoprobability-based feature streams: PLP/MLP features and Neural TRAP features. Forthe PLP/MLP stream, we train an MLP using 9 
onse
utive frames of the baseline PLPfeatures as inputs and 46 phone targets generated from for
ed alignments using SRI In-ternational's state-of-the-art Gaussian mixtures-based HMM ASR system. For the NeuralTRAP stream, the �rst stage MLPs take PCA transformed log 
riti
al-band energy tra-je
tories formed by taking 51 
onse
utive frames of log 
riti
al-band energies every 10ms.These 
riti
al-band MLPs are trained with the same phone targets as used for training thePLP/MLP stream. A merger MLP (trained with these same phoneme targets) 
ombinesthe 
riti
al-band MLPs' outputs to give one estimate of phone posteriors every 10 ms.We 
ombine the outputs of the Neural TRAP 
lassi�er and the PLP/MLP usingone of the frame-wise posterior probability 
ombination te
hniques des
ribed above. After
ombination, we take the log of the posterior ve
tor to redu
e its skew (in pra
ti
e thismakes the posterior ve
tor more Gaussian), and then orthogonalize and redu
e the dimen-sionality of the posterior ve
tor using PCA. The resulting variables are then appended tothe original PLP 
epstra to form the augmented feature ve
tor. It is important to note thatthis 
ombined-augmented feature integrates information about spee
h from three di�erenttime s
ales. The original PLP features 
apture short-term information (about 25 millise
-onds), the PLP/MLP stream 
aptures intermediate-term information (approximately 100millise
onds), and the Neural TRAP stream 
aptures long-term information (around 500millise
onds). Refer to Figure 4.4 for a blo
k diagram of this pro
ess.In what follows, we refer to these augmented features asPLP+
ombomethod(Streams) features, where 
ombomethod 
an be one of the threeframe-wise posterior 
ombination methods: the average of the posteriors 
ombination(AVG); the average of log posteriors 
ombination (AVGLog), and �nally, the inverseentropy weighted 
ombination (INVENT). Streams refers to the PLP/MLP feature streamand the Neural TRAP feature stream. These features serve as the front-end features forour re
ognition experiments. We use a stripped-down version of SRI's state-of-the-artHub-5 
onversational spee
h trans
ription system for our HMM ba
k-end. In parti
ular,the ba
k-end that we used was similar to the �rst pass of the system des
ribed in [122℄,using a bigram language model and within-word triphone a
ousti
 models. For fairnessof 
omparison, all HMMs have roughly the same number of trainable parameters. The



4.4. STAGE 1: THE NUMBERS TASK 67HMMs also share the same training set with all of the neural net systems.4.4 Stage 1: The Numbers TaskAs noted previously, all the basi
 te
hniques employed here were originally de-veloped using quite small tasks. In parti
ular, prior to the experiments reported here,the MLP-based feature transformations, the temporal features (Neural TRAP), and themethods used to 
ombine and use them within the augmented Tandem approa
h were alltrained and tested on a number of smaller tasks in
luding the OGI Numbers task [20℄ (theNumbers95 
orpus). In these earlier Numbers experiments, Numbers data was used forboth training and testing. As explained earlier augmenting the baseline features with a
ombination of PLP/MLP and Neural TRAP-based features improves ASR performan
e.Whether this result s
ales to larger tasks is an open question.In the remaining se
tions of this 
hapter, we want to apply this augmented Tan-dem approa
h to a series of larger and more diÆ
ult ASR tasks. Our �nal goal is to 
reatean augmented Tandem system for the diÆ
ult task of 
onversational telephone spee
h(CTS). Simply taking the features and applying them to the CTS task risked failure with-out obvious diagnosti
 potential. Consequently, we designed a three-stage approa
h to thedevelopment pro
ess. Our initial step was to train on a 
ombination of CTS data and readspee
h, and then test on OGI Numbers.4.4.1 The Numbers Task Des
riptionThe training set for this stage was an 18.7 hour subset of the old \short" SRIHub5 training set for CTS. 48% of the training data was male and 52% female. 4.4 hoursof this training set 
omes from English CallHome [19℄, 2.7 hours from Hand Trans
ribedSwit
hboard [45℄, 2.0 hours from Swit
hboard Credit Card Corpus [42℄, and 9.6 hours fromMa
rophone [13℄ (read spee
h whi
h 
ontains many examples of 
ontinuous numbers). Allof these training sour
es are large vo
abulary 
orpora (
onsisting of more than 25,000di�erent words). In 
ontrast, the OGI Numbers 
orpus whi
h we use as the test data
onsists of only 32 words.We divided the entire OGI Numbers 
orpus into three sets. One was used for



68 CHAPTER 4. TEMPORAL SYSTEMS FOR CTSsystem parameter tuning, one for development testing, and another for �nal testing. Weused the oÆ
ial dev set (0.6 hours) of the Numbers95 
orpus to tune the language modelweight and word transition weight. We report our results on the �nal test set whi
h
ontains 1.3 hours of spee
h (2,519 utteran
es and 9,699 word tokens).After training MLPs for posterior estimation, we 
al
ulated the 
lassi�
ation a
-
ura
y on the development set. For PLP/MLP, this a

ura
y was 67% 
omputed over415,985 frames, and for Neural TRAP it was 68%. Combining the two using inverse en-tropy weighting or simply averaging the posterior gave roughly the same frame 
lassi�
ationa

ura
y of about 70.9%. Thus the two MLPs 
an be simply 
ombined to signi�
antly im-prove frame a

ura
y, whi
h suggests that they provide information that is 
omplementary.4.4.2 Results on the Numbers TaskUsing the training set de�ned above, we trained triphone gender-independentHMMs using the SRI spee
h re
ognition system. Although the re
ognition task was num-bers, the HMMs were trained for broader vo
abulary and speaker 
overage. Thus we hopedthat the 
on
lusions rea
hed with this training data might generalize better to other tasks.The testing di
tionary 
ontained thirty words for numbers and two words for hesitation,and we used a simple bigram language model trained on our Numbers tuning set.RelativeSystem Numbers Test Redu
tionSet WER WERPLP Baseline 4.0% -PLP+AVG(Streams) 3.3% 17.5%PLP+AVGLog(Streams) 3.2% 20.0%PLP+INVENT(Streams) 3.3% 17.5%Table 4.1: Word error rate (WER) and relative redu
tion of WER on Numbers usingdi�erent 
ombination approa
hes. Streams denotes the PLP/MLP feature stream and theNeural TRAP feature stream.We in
orporated PLP/MLP and Neural TRAP features by frame-wise poste-rior 
ombination. The 
ombined features were then redu
ed in dimension to 17 us-ing PCA and 
on
atenated to the baseline PLP features to 
reate an augmented fea-ture ve
tor of dimension 56. As noted previously, we used several frame-wise poste-
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Figure 4.5: Word error rate on the Numbers 95 test set as a fun
tion of the number ofPCA dimensions kept in the PLP+INVENT(Streams) system without tuning the Gaussianweight.rior 
ombination methods: the average of posteriors PLP+AVG(Streams), the averageof log posteriors PLP+AVGLog(Streams), and the inverse entropy weighted 
ombinationPLP+INVENT(Streams) (see Table 4.1). All three performed roughly the same, a
hievinga 17.5-20% relative redu
tion in word error rate.Note, before we tried tuning the Gaussian weight, trun
ation of the PCA output(that is, eliminating some low-varian
e 
omponents) was 
riti
al to performan
e. Keepingthe top 17 dimensions was the optimal length on all of our tuning data without 
hangingthe Gaussian weight. Figure 4.5 shows the e�e
t of the PCA dimensions kept on worderror rate on the Numbers95 test set without 
hanging the Gaussian weight. The per-forman
e 
urve is from the augmented Tandem system using inverse entropy 
ombination(PLP+INVENT(Streams)). Noti
e that the WER is quite sensitive to the number of di-mensions. Just 
hanging the number of dimensions by two 
an 
ause degradations of .4%absolute.



70 CHAPTER 4. TEMPORAL SYSTEMS FOR CTSThese experiments showed that the 
ombination of the three features (baselinePLP, PLP/MLP, and Neural TRAP) 
an improve the re
ognition performan
e over usingthe baseline PLP features alone. On the other hand, all the approa
hes to posterior
ombination were roughly equivalent in this 
ase. These preliminary 
on
lusions wouldlater be tested on tasks of in
reasing 
omplexity.4.5 Stage 2: The Top-500 Word CTS TaskOur methods 
ontinued to work well on the small vo
abulary 
ontinuous numberstask even when we did not train expli
itly only on 
ontinuous numbers. Before applyingour approa
hes to the full vo
abulary Swit
hboard task, we 
onsidered a se
ond stagetask, that of re
ognizing the 500 most 
ommon words2 in Swit
hboard I [41℄. There wereseveral advantages to using this intermediate task. First, sin
e the re
ognition vo
abulary
onsisted of 
ommon words from Swit
hboard, it was likely that error rate redu
tion wouldapply to the larger task as well. Se
ond, there were many examples of these 500 words inthe training data, so less training data was required than would be needed for the full task.This in turn redu
ed training time a

ordingly. Lastly, re
ognition 
omplexity in this taskwas smaller, whi
h also redu
ed experimental turn-around time.4.5.1 Top-500 Words Task Des
riptionFor training, we 
reated a subset of the \short" training set used at SRI for CTSsystem development, whi
h we referred to as the Random Utteran
es of Short Hub or theRUSH set. This RUSH set 
onsists of utteran
es from 217 female and 205 male speakers,whi
h was the same number of speakers as the short CTS training set, but 
ontains onethird of the total number of utteran
es. The female spee
h 
onsists of 0.92 hours fromEnglish CallHome, 10.63 hours from Swit
hboard I [41℄ with trans
riptions fromMississippiState [28℄, and 0.69 hours from the Swit
hboard Cellular Database [43℄. The male spee
h
onsists of 0.19 hours from English CallHome, 10.08 hours from Swit
hboard I, 0.59 hoursfrom Swit
hboard Cellular, and 0.06 hours from the Swit
hboard Credit Card Corpus.The top-500 word test set was a subset of the 2001 Hub-5 evaluation data2This task was proposed by our 
olleague George Doddington.



4.5. STAGE 2: THE TOP-500 WORD CTS TASK 71(Eval2001). Given the 500 most 
ommon words in Swit
hboard I, we 
hose utteran
es3from the Eval2001 data in whi
h 90% or more of the words in the utteran
e were on theword list. In other words, we allowed at most 10% of the words in an utteran
e to beout of vo
abulary (OOV) words. 49.6% of the utteran
es in the Eval2001 data met thisrequirement, and the total OOV rate was 3.2%. We partitioned this set into a tuning set(0.97 hours, 8242 total word tokens) and a test set (1.42 hours, 11845 total word tokens).We used the tuning set to tune system parameters like word transition weight and languagemodel weight, and we determined word error rates on the test set. The language modelused in both the 500 word task as well as the full vo
abulary task was the �rst-pass bigramlanguage model used by SRI for the large vo
abulary evaluations in 2000.4.5.2 Results on Top-500 Words TaskUsing the baseline PLP features, we trained gender dependent triphone HMMson the 23 hour RUSH training set, and then tested this system on the 500 word testset a
hieving a 43.8% word error rate (see Table 4.2, whi
h shows the word error ratesof our various systems on the top-500 word test set). As seen in the table, the worderror rate was redu
ed about 10% relative by augmenting the baseline features with the
ombined PLP/MLP and Neural TRAP features. In this 
ase, we trained gender dependentPLP/MLP feature nets and Neural TRAP systems.500 Word RelativeSystem Test Set Redu
tionWER WERPLP Baseline 43.8% -PLP+AVG(Streams) 39.4% 10.0%PLP+AVGLog(Streams) 39.5% 9.8%PLP+INVENT(Streams) 39.2% 10.5%Table 4.2: Word error rate (WER) and relative redu
tion of WER on the top-500 word testset of systems trained on the RUSH set using di�erent 
ombination approa
hes. Streamsdenotes the PLP/MLP feature stream and the Neural TRAP feature stream.All three 
ombination methods performed roughly the same. Even though themore 
ompli
ated inverse entropy 
ombination te
hnique performed only slightly better3An utteran
e is de�ned to be a string of words separated by less than 0.3 se
onds, and greater than0.3 se
onds of separation at the beginning and end.
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ombination methods, both styles have their appeal. The averagingmethods are 
ertainly simple and don't rely on any estimation method. On the other hand,the inverse entropy 
ombination te
hnique is potentially robust to poor 
lassi�er streams.We experien
ed this property for one of our later (CTS) experiments. Due to a bug in ourpro
edures, we unintentionally 
ombined a badly degraded Neural TRAP stream with theother features using both methods. When probabilities were 
ombined using the AVG andAVGLog methods, the degraded stream hurt performan
e badly. On the other hand, theinverse entropy-weighting redu
ed the importan
e of the poor stream so that the overallperforman
e essentially mat
hed what we had for a feature that 
onsisted of the baselinePLP features 
on
atenated with the PLP/MLP feature alone. Thus, the entropy-basedapproa
h to 
ombination appears to be more robust to unexpe
tedly poor streams. Weexpe
t that this property might be parti
ularly useful for future e�orts in whi
h we might
ombine a larger number of streams where some streams may sometimes provide less usefulinformation.As in the numbers task stage, we plot the WER 
urve showing the e�e
t of thenumber of dimensions after PCA for the PLP+INVENT(Streams) system in Figure 4.6.Without tuning the Gaussian weight, we again see that the best 
hoi
e of number ofdimensions is still at 17, and the WER is quite sensitive to this 
hoi
e (espe
ially tooverestimates of the dimension). When 
hanging the number of dimensions kept from 17to 19 the WER jumps from 39.6% to 40.4% on the top-500 word tuning set.4.6 Stage 3: Full CTS Vo
abularyHaving seen how our approa
hes s
aled with in
reasing test set 
omplexity, weapplied these approa
hes to the third and last stage: full vo
abulary CTS task.4.6.1 The Full CTS Task Des
riptionWe tried using our previously de�ned RUSH training set for this task and foundit inadequate for training given the in
rease in vo
abulary. Error rates on Swit
hboardtest sets were una

eptably high for the RUSH training set. Instead, we used SRI's entire\Short" CTS training set from whi
h RUSH was derived. This set 
ontained a total of68.95 hours of CTS. 2.75 hours of English CallHome, 31.30 hours from Mississippi State
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Figure 4.6: Word error rate on the top-500 word tuning set as a fun
tion of the number ofPCA dimensions kept in the PLP+INVENT(Streams) system without tuning the Gaussianweight.
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ribed Swit
hboard I, and 2.03 hours of Swit
hboard Cellular form the data fromfemale speakers. The male speaker data 
ame from 0.56 hours of English CallHome,30.28 hours from Swit
hboard I, 1.83 hours from Swit
hboard Cellular, and 0.20 hours ofSwit
hboard Credit Card Corpus. As in the 500 word task, we trained triphone genderdependent HMMs as well as gender dependent PLP/MLP and Neural TRAP systems.For testing, we used the 2001 Hub-5 Swit
hboard evaluation set (Eval2001) fromwhi
h our top-500 word test set was derived. This evaluation set 
ontains a total of 6.33hours of spee
h, 62,890 total word tokens. For tuning our system parameters, we used asubset of the 2001 Hub-5 development set.4.6.2 Results on the Full CTS TaskThe baseline system a
hieved a 43.8% word error rate on the Eval2001 set (seeTable 4.3, whi
h shows the word error rates of our various systems on the Eval2001 set).The augmented features redu
ed the error rate by about 7% relative. For this task, therewas a small penalty for the AVGLog 
ombination method in 
omparison to the otherapproa
hes. Hub-5 RelativeSystem EVAL2001 Redu
tionWER WERPLP Baseline 43.8% -PLP+AVG(Streams) 40.5% 7.5%PLP+AVGLog(Streams) 41.0% 6.4%PLP+INVENT(Streams) 40.6% 7.3%Table 4.3: Word error rate (WER) and relative redu
tion of WER on the 2001 Hub-5 evaluation set of systems trained on SRI's \Short" CTS training set using di�erent
ombination approa
hes. Streams denotes the PLP/MLP feature stream and the NeuralTRAP feature stream.
4.7 Dimensionality TuningIn the previous se
tions we showed how all the various frame-wise posterior 
om-bination te
hniques yielded similar results. Now, we want to further investigate the e�e
t



4.7. DIMENSIONALITY TUNING 75Des
ription Dimensions Retained15 17 19 25 35RUSH TrainingTop-500 Test WER (%) 38.4 38.5 39.0 39.2 39.4NSH5 TrainingEval 2001 WER (%) 39.7 39.6 39.4 39.1 39.3Table 4.4: The e�e
t on word error rates from the PLP+INVENT(Streams) features whilevarying the number of dimensions retained after PCA and tuning the Gaussian weight.on performan
e when modifying both the number of dimensions kept after PCA and thevalue of the Gaussian weight in the SRI re
ognition system. In previous experiments, wefound that performan
e was optimal when keeping only the top 17 dimensions after PCAand that small 
hanges in the dimensionality led to large 
hanges in performan
e. In theexperiments below, we �nd that this e�e
t 
an be lessened by tuning the Gaussian weight.To tune this Gaussian weight parameter, we simply set the Gaussian weight to variousvalues and ran the re
ognizer on our tuning data. Then we pi
ked the Gaussian weightvalue that gave the smallest WER and used this value for re
ognition of the test set. Ta-ble 4.4 shows the e�e
ts on WER when tuning both the number of dimensions after PCAand the Gaussian weight. The features used are the baseline 39-dimensional PLP featuresaugmented with the inverse entropy 
ombination of PLP/MLP and Neural TRAP.The di�eren
es in WER for di�erent dimensions range from 1.0% absolute inthe top-500 word test to 0.6% absolute on the Eval 2001 test set. These di�eren
es arestatisti
ally signi�
ant whi
h means that the number of dimensions kept after PCA is stillvital for good performan
e; however, the absolute di�eren
es in WER when the number ofdimensions is 
lose to the minimum is quite small and statisti
ally insigni�
ant. For thetop-500 word test the minimum WER is a
hieved with 15 dimensions, while in the 
ase ofEval 2001 the best number of dimensions is 25. Compare, for example, the WER for thetop-500 word test at 15 and 17 dimensions. These only di�er by .1% absolute (38.4% vs.38.5%). Also 
ompare the WER on Eval 2001 at 25, 19, and 35 dimensions. The absolutedi�eren
es are only .2%-.3% whi
h is quite small 
onsidering the large jump in number ofdimensions. When tuning the Gaussian weight and the number of dimensions 
on
urrently,performan
e still depends to a large degree on the number of dimensions kept, but on
ethe number of dimensions is near the optimal, the WER di�eren
es are not signi�
ant.
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lusionWe applied the PLP/MLP and the Neural TRAP features, developed for a verysmall task, to a series of su

essively larger problems. We found that:1. Word error rate was signi�
antly redu
ed for the small tasks as well as the largertasks,2. The 
ombination methods, whi
h gave equivalent performan
e for the smaller task,were also 
omparable on the larger tasks,3. And tuning the Gaussian weight 
on
urrently with the number of dimensions was animportant step to a
hieve optimal performan
e.Regarding the �rst point, the approa
h of using a 
ombination of PLP/MLP andNeural TRAP features to augment the baseline PLP features 
onsistently improves ASRperforman
e on a variety of training/testing sets. An absolute error rate redu
tion of over3% on Swit
hboard is quite signi�
ant. However, the typi
al relative redu
tion in error issomewhat smaller for the larger tasks (ranging from 20% on the Numbers task to 7% on thefull CTS task). Thus, having statisti
ally signi�
ant error rate redu
tion may s
ale, butthe degree of improvement may not without further work using the CTS task. Nonetheless,even a 7% relative improvement is often of signi�
ant interest for larger tasks like CTS.For su
h tasks, sizable improvements are typi
ally only obtained by a 
ombination of manysmall innovations.The se
ond observation seems to be unequivo
ally 
on�rmed in these three stagesof experiments - we observed no 
onsistent (s
alable) advantage to using any of the three
hosen methods for 
ombining posteriors as part of the pro
ess of generating probability-based front-end features. On the other hand, as noted earlier, the inverse entropy methodappears to be quite robust to 
atastrophi
 degradations of feature streams. We also shouldemphasize the limitation of this experiment, in whi
h we were only 
ombining two streams,both of whi
h were fairly e�e
tive for phoneti
 dis
rimination. If we begin to use a signi�-
antly larger number of streams, some streams will be more likely to be ine�e
tive at leastsome of the time, and a dynami
 weighting method like the inverse entropy approa
h mayshow a 
learer advantage. This view seems to be supported by earlier work at IDIAP [94℄.



4.8. CONCLUSION 77The third observation is a pra
ti
al matter of tweaking the system to a
hieve thebest possible results. While we 
annot make any generalization about the exa
t numberof dimensions to keep after PCA for any other spee
h re
ognition task, we 
an say thatthe number of dimensions to keep should be tuned. Furthermore, tuning the Gaussianweight in 
onjun
tion with the dimensionality 
an lessen the importan
e of getting theexa
t optimal dimensionality.Finally, we have a
hieved our goal of setting up a 
ompetitive baseline re
ognizerfor CTS. The word error rates reported in this 
hapter are around 40% on Eval 2001whi
h is similar to the performan
e of a typi
al state-of-the-art re
ognizer performing onlya �rst-pass de
ode (i.e., a simple Viterbi de
ode using a bigram language model withoutlater adaptation, 4-gram language model, system 
ombination, et
.) on similar CTS testdata [35℄.
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Chapter 5
Comparison of Temporal Systemsfor CTS

In Chapter 2 we introdu
ed several new temporal systems based on the Neu-ral TRAP idea: Hidden A
tivation TRAP (HAT) and Tonotopi
 Multi-Layer Per
eptron(TMLP). Ea
h of these temporal systems learn dis
riminant phoneti
 information withinlong-spanning narrow-frequen
y 
hannels. We developed ASR system 
on�gurations thatutilize Neural TRAP for improving performan
e on 
onversational telephone spee
h (CTS)in Chapter 4. Now we are poised to undertake a 
omparative study between various ap-proa
hes in
orporating information from long time spans (about 500 millise
onds) using theASR system 
on�gurations introdu
ed in Chapter 4 for the improvement of performan
eon CTS. Spe
i�
ally, we are interested in 
omparing:1. The narrow-band 
onstraint of learning long-term information versus un
onstrainedversions,2. The nonlinear approa
h to learning phoneti
ally dis
riminant 
riti
al-band informa-tion versus various linear approa
hes,3. And various nonlinear MLP-based approa
hes with ea
h other.We also 
orroborate one of the key �ndings about temporal systems in the previous 
haptersas well as in previous work: temporal systems o�er 
omplementary phoneti
 informationin 
ombination with 
onventional systems that extra
t phoneti
 information from shorter



5.1. VARIOUS TEMPORAL SYSTEMS 79time spans over the entire spe
trum. We �nd that the 
ombination of a 
onventional front-end feature (spanning approximately 25 millise
onds), a 
onventional MLP-based feature(spanning about 100 millise
onds), and a temporal system-based feature (spanning around500 millise
onds) a
hieves impressive performan
e improvements on CTS.5.1 Various Temporal SystemsIn this se
tion we des
ribe all of the di�erent approa
hes to learning long-termspee
h information for phoneti
 
lassi�
ation. Be
ause these approa
hes extra
t informa-tion in time, we refer to these approa
hes as temporal systems. Typi
al ASR front-endfeatures extra
t information from short-term spe
tral sli
es of about 25 millise
onds, whiletraditional hybrid ANN/HMMs model medium-term spe
tral 
hunks spanning about 100millise
onds by learning transformations over 9 
onse
utive frames of features. All thetemporal systems below extra
t information from long-term spee
h energies spanning ap-proximately 500 millise
onds. Ea
h of the temporal systems 
an be grouped into one ofthree 
ategories based on whether there is a narrow-frequen
y band 
onstraint and whetherthe initial transformation on the spe
tral energies is linear or nonlinear.The starting point for all of these temporal systems is the log 
riti
al-band energyspe
trum of spee
h. Every 10 millise
onds in the spee
h signal, we apply a 
entered 25-millise
ond Hamming window and then 
al
ulate the squared magnitude of a 256-pointFFT. 15 Criti
al-band energies are 
al
ulated from these squared magnitudes by averagingadja
ent magnitudes within ea
h of the 15 
riti
al-band �lters. We then apply the log andnormalize by subtra
ting the mean and dividing by the standard deviation 
al
ulated overall frames1 within a single utteran
e. See Figure 1.2 in Chapter 1 for an illustration of thispro
ess.5.1.1 Un
onstrained Approa
hesIn the un
onstrained approa
hes, we allow the MLP 
lassi�ers to learn any infor-mation 
ontained within the 15 
riti
al-bands x 51 frames of log 
riti
al-band energy input.Essentially, we simply feed 51 
onse
utive frames (about 500 millise
onds) of log 
riti
al-1A frame 
orresponds to the spee
h measurements 
al
ulated every 10 millise
onds.
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time=tFigure 5.1: Ar
hite
ture for un
onstrained approa
h.band energies from all 15 
riti
al-bands to the MLP 
lassi�er and let it learn what it needsto estimate the phone posteriors. We have experimented with two di�erent fully-
onne
tedMLPs: a 3-layer MLP 
onsisting of a single hidden layer, and a 4-layer MLP 
onsistingof two hidden layers. Figure 5.1 illustrates the un
onstrained approa
h for building atemporal system.It is important to note that these un
onstrained temporal systems 
an learnany kind of relationship among all of the 15x51=765 log energy values. For example,these un
onstrained temporal systems 
an dire
tly model events su
h as high energy atlow frequen
ies 20 frames before the 
urrent frame 
on
urrently with high energy at highfrequen
ies 23 frames after the 
urrent frame. The main di�eren
e between the 3-layerand 4-layer MLP is an extra hidden layer in the 4-layer MLP whi
h may simplify thejob of learning phone posteriors by breaking the intermediate modeling into two stages.The number of �rst and se
ond layer hidden units in the 4-layer MLP was determinedby optimizing the frame 
lassi�
ation a

ura
y under the 
onstraint of keeping the totalnumber of weights and biases the same as the total for the 3-layer MLP (516,000 weightsand biases). The 3-layer MLP has 765 input units, 636 hidden units, and 46 output units,while the 4-layer MLP has 765 input units, 318 �rst hidden layer units, 750 se
ond hiddenlayer units, and 46 output units. In what follows we refer to the 3-layer MLP system by\15 x 51 MLP3" and the 4-layer MLP system by \15 x 51 MLP4".All MLPs in this 
hapter are trained on 46 phone targets derived from for
edaligned phone labels provided by SRI's state-of-the-art ASR system [121℄. The trainingpro
edure pro
eeds as explained in Chapter 2 where the weights and biases are modi�ed



5.1. VARIOUS TEMPORAL SYSTEMS 81to redu
e an error measurement between the training targets and MLP outputs. Aftertraining, the outputs approximate posterior probabilities of the target 
lasses whi
h arephones in our 
ase. For fairness of 
omparison, all temporal systems have the same numberof trainable parameters (516,000 trainable parameters on about 30 hours of spee
h pergender, 
orresponding to approximately 12,000,000 frames, for frames-to-parameters ratioof about 23.). Also, for all MLPs, the hidden units have a sigmoid nonlinearity and theoutput units have a softmax nonlinearity.5.1.2 Constrained Linear Approa
hesIn 
ontrast to the un
onstrained approa
hes, the 
onstrained approa
hes �rst re-stri
t the 
lassi�ers to learn information within 
riti
al-band energy traje
tories spanninghalf a se
ond. These 
onstrained ar
hite
tures are for
ed to represent temporal stru
-ture. We investigate several ar
hite
tures that partition the learning into two 
onstrainedstages. The �rst stage learns what is important for phoneti
 
lassi�
ation given individual
riti
al-band energy traje
tories of 51 frames (about 500 millise
onds), and the se
ond stage
ombines what was learned at ea
h 
riti
al-band to learn overall phone posteriors. This\divide and 
onquer" approa
h to learning splits the task into two smaller and possiblysimpler sub-learning tasks.In this subse
tion we des
ribe linear approa
hes to learning narrow-frequen
ytemporal information. The �rst of these two-stage ar
hite
tures 
al
ulates prin
ipal 
om-ponent analysis (PCA) transforms on su

essive 51-frame log 
riti
al-band energy traje
to-ries for ea
h of the 15 bands. We use the resulting transform matri
es to orthogonalize thetemporal traje
tory in ea
h band, retaining only the top 40 dimensions per 
riti
al-band.PCA proje
ts the original 51 dimensional energy traje
tory in dire
tions of maximal vari-an
e. Figure 5.2 shows how we then use these transformed (and dimensionally redu
ed)
riti
al-band \features" as input to an MLP that estimates phone posteriors. This mergerMLP has 750 hidden units.In a related approa
h, we repla
e PCA with linear dis
riminant analysis (LDA)\trained" on the same phone targets used for MLP training. This transform proje
ts the log
riti
al-band energy traje
tories of a single band onto ve
tors that maximize the between-
lass varian
e and minimize the within-
lass varian
e for phone 
lasses. We also keep the
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LDAFigure 5.2: Ar
hite
ture for 
onstrained linear approa
hes.top 40 dimensions after the LDA proje
tion and send them into a merger MLP with 750hidden units. We hen
eforth denote the two two-stage linear approa
hes as \PCA40" and\LDA40" respe
tively.5.1.3 Constrained Nonlinear Approa
hesWe also experiment with �ve 
onstrained nonlinear approa
hes. The �rst four ofthese approa
hes are based on the Neural TRAP ar
hite
ture where 
riti
al-band MLPsare trained to learn phone probabilities separately on ea
h of the 15 bands of 51-framelog 
riti
al-band energy traje
tories. On
e trained, we use the outputs at di�erent pointsin these 
riti
al-band MLPs as inputs for a se
ond stage merger MLP that 
ombines andtransforms this 
riti
al-band information into estimates of phone posteriors. The goal of
omparing these �rst four approa
hes is to dis
over what form of 
riti
al-band informa-tion is most suitable for the se
ond stage merger MLP. Are the hidden a
tivations themost suitable, are the 
riti
al-band level phone probabilities the best for 
lassi�
ation per-forman
e, or something else? The �fth 
onstrained nonlinear approa
h is the Tonotopi
Multi-Layer Per
eptron (TMLP) whi
h learns all of the dis
riminant 
riti
al-band hiddenunit parameters as a result of a single global error ba
k-propagation algorithm.Figure 5.3 shows the �rst four nonlinear two-stage ar
hite
tures. In the �rst ofthese ar
hite
tures, the input to the se
ond stage is the dot produ
t of the log 
riti
al-
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84 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSband energy inputs with the input to hidden unit weights of the 
orresponding 
riti
al-bandMLP. Another way to say this is that the values before the sigmoid in ea
h 
riti
al-bandhidden unit are used as the inputs to the se
ond stage merger MLP. We refer to thisar
hite
ture as \HAT Before Sigmoid" be
ause it uses the hidden a
tivations before thesigmoid nonlinearity as inputs to the merger. While this �rst approa
h 
onsists of a linearmatrix multiply, we 
ategorize it in this subse
tion be
ause the matrix is learned as partof a stru
ture that in
ludes nonlinear sigmoid fun
tions, whi
h have a signi�
ant e�e
t onthe values learned.The se
ond approa
h, Hidden A
tivation TRAP or \HAT", takes the outputs ofea
h hidden unit as the input to the merger MLP. The third approa
h takes the valuesafter the hidden-to-output weight matrix multipli
ation, but just before the �nal softmaxnonlinearity of the 
riti
al-band MLPs. This approa
h is equivalent to the Neural TRAPar
hite
ture, so it is denoted as \Neural TRAP". The fourth approa
h uses the regular a
ti-vations from the 
riti
al-band MLPs that are phoneme posterior probabilities 
onditionedon the log 
riti
al-band energy inputs. This nonlinear approa
h is denoted as \NeuralTRAP Post Softmax".As dis
ussed in more detail in Chapter 3, the 
riti
al-band MLPs trained toapproximate 
riti
al-band phone posterior probabilities do not a
hieve high 
lassi�
ationa

ura
y suggesting that phone 
lassi�
ation at the 
riti
al-band level is very diÆ
ult. Wedeveloped HAT to show that whatever useful information within the 
riti
al-band is already
aptured in the 
riti
al-band hidden unit representations, and that further mapping fromthis hidden representation to 
riti
al-band phone probabilities is unne
essary and leadsto poorer overall 
lassi�
ation a

ura
y. The 
omparisons of these Neural TRAP-basedtemporal systems 
orroborate these earlier �ndings in the 
ontext of ASR on CTS.The last of the nonlinear approa
hes to learning temporal information is theTMLP whi
h is fully des
ribed in Chapter 3. Figure 5.4 shows the TMLP setup. TMLPhas the same 
onne
tions as HAT ex
ept that the 
riti
al-band hidden units are learned viaa global error ba
k-propagation algorithm. This allows the TMLP to learn a ri
her 
lassof distributions be
ause the 
riti
al-band hidden units are not 
onstrained to minimize
lassi�
ation error of 
riti
al-band level phone targets.The 
hoi
e of number of 
riti
al-band level hidden units as well as the numberof merger hidden units for the �ve systems des
ribed above is optimized for HAT while
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Figure 5.4: Ar
hite
ture for TMLP.�xing the total number of trainable parameter to about 516,000. Using 40 hidden unitsper 
riti
al-band and 750 hidden units in the merger a
hieves the best frame a

ura
yresult for HAT on the 2001 Hub-5 evaluation data (Eval2001). This 
hoi
e may not beoptimal for Neural TRAP systems, but we will explore the e�e
t of having a larger numberof 
riti
al-band units for Neural TRAP in Se
tion 5.4.8.5.2 Two Conventional FeaturesThe typi
al 
hoi
e for front-end features in state-of-the-art ASR systems is ei-ther Mel-Frequen
y Cepstral CoeÆ
ients (MFCC) or Per
eptual Linear Predi
tive (PLP)features. Both derive features from very short time spans (about 25 millise
onds). Inthe Tandem ASR system as des
ribed in [49℄, MLP-based features are derived from 9
onse
utive frames of PLP features whi
h span an intermediate time 
ontext (about 100ms). In the experiments that follow, we 
ompare ea
h of the various temporal systems in
on�gurations that augment the 
onventional short time span features with and withoutframe-wise 
ombination with the intermediate time MLP-based features.We use the SRI 2003 evaluation system's 
onventional front-end feature for theshort time span features. These features 
ome from 12th order PLP features plus energywith the �rst three derivatives. This 52 dimensional feature is transformed and redu
edin dimension to 39 via a heteroskedasti
 linear dis
riminant analysis (HLDA) transforma-



86 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTStion trained on Gaussian state targets. We denote this short-term 
onventional featureas \HLDA(PLP+3d)". Our intermediate time MLP-based features 
ome from a fully-
onne
ted 3-layer MLP trained on the same phone targets used to train the temporalsystems. This MLP takes 9 frames of 12th order PLP features plus energy with the �rsttwo derivatives as input, and we refer to this as \9 Frame PLP MLP". The PLP featuresare mean and varian
e normalized over an entire 
onversation side before being used asinputs to the MLP. This MLP has about 516,000 parameters for fair 
omparisons with thetemporal systems.5.3 ASR System Con�gurations5.3.1 Experimental SetupFor all of the experiments reported in this 
hapter, we show test results on the2001 Hub-5 evaluation data (Eval2001), a large vo
abulary 
onversational telephone spee
htest set 
onsisting of a total of 2,255,609 frames (6.27 hours) and 62,890 words. Weuse the 2001 Hub-5 development data (Devel2001) to tune the language model weight,word transition weight, and the Gaussian weight. We optimize these weights to maximizeperforman
e on Devel2001, and then use the optimal values for re
ognition on Eval2001.The training set that we use for both MLP and HMM training 
onsists of about68 hours of 
onversational telephone spee
h data from four sour
es: English CallHome,Swit
hboard I with trans
riptions from Mississippi State, and Swit
hboard Cellular. Thistraining set 
orresponds to the one used in [97℄ without Swit
hboard Credit Card data.Training for both MLPs and HMMs was done separately for ea
h gender, and the testresults presented later re
e
t the overall performan
e on both genders. We hold out 10%of the training data as a 
ross-validation set in MLP training. For fairness in 
omparison,all MLP-based feature extra
tors have roughly the same number trainable parameters(about 516,000 on about 30 hours of spee
h per gender, 
orresponding to approximately12,000,000 frames, for a frames-to-parameters ratio of about 23.).On
e the MLPs are trained, we use them to generate various front-end featuresfor the ba
k-end SRI re
ognizer in a similar manner as was done in [34℄. More spe
i�
ally,we use these MLP-based features in one of three system 
on�gurations:
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Figure 5.5: In the stand-alone Tandem ASR system 
on�guration, the phone posteriorprobabilities of an MLP 
lassi�er are transformed and used as front-end features for theSRI Gaussian mixtures-based HMM re
ognizer.1. stand-alone Tandem features,2. augmenting standard short-term HLDA(PLP+3d) features,3. and in 
ombination with the intermediate-term 9 Frame PLP MLP features andaugmenting standard short-term HLDA(PLP+3d) features.The ba
k-end SRI re
ognizer that we use is similar to the �rst pass of the system des
ribedin [122℄ with a bigram language model and within-word triphone a
ousti
 models.5.3.2 Stand-Alone TandemThe �rst ASR 
on�guration that we use for our 
omparison tests is the stand-alone Tandem feature setup. This setup allows us to test how well a parti
ular MLPis at extra
ting useful phoneti
 information by itself. The MLP's phone posteriors aretransformed and used as the front-end feature for the ba
k-end Gaussian mixtures-basedHMM re
ognizer. This stand-alone setup is pi
tured in 5.5. The box labeled \TemporalClassi�er" is one of the various temporal systems des
ribed earlier.
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ProbabilitiesFigure 5.6: In the augmented feature ASR system 
on�guration, the phone posteriorprobabilities of an MLP 
lassi�er are transformed, dimensionality redu
ed, 
on
atenatedwith the short-term HLDA(PLP+3d) features, and used as front-end features for the SRIGaussian mixtures-based HMM re
ognizer.5.3.3 Augmented FeatureIn the augmented feature 
on�guration, the MLP-based feature extra
tor is usedto augment the standard short-term HLDA(PLP+3d) features. Spe
i�
ally, we take thephone posterior outputs, apply the log, and perform PCA. In Chapter 4 we found thatkeeping the top 25 dimensions from the MLP feature stream gives the best re
ognitionperforman
e. In this 
hapter, we 
ontinue to keep the top 25 dimensions after PCA, andthen 
on
atenate these MLP-based features to the standard short-term HLDA(PLP+3d)features. The resulting 64 dimensional feature is used as the input features for the SRIGaussian mixtures-based HMM re
ognizer. This 
on�guration allows us to see how mu
himprovement 
an be a
hieved by augmenting a short-term information stream with a long-term information stream. Figure 5.6 shows a blo
k diagram of this augmented feature
on�guration.5.3.4 Combined-Augmented FeatureThe 
ombined-augmented feature 
on�guration utilizes all three temporal 
on-texts: short (around 25 millise
onds), intermediate (about 100 millise
onds), and long(approximately 500 ms). First, the intermediate-term 9 Frame PLP MLP phone poste-
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ombined-augmented feature ASR system 
on�guration, the phoneposterior probabilities of a long-term MLP 
lassi�er are 
ombined with the posteriors ofan intermediate-term MLP 
lassi�er, transformed, dimensionality redu
ed, 
on
atenatedwith the short-term HLDA(PLP+3d) features, and used as front-end features for the SRIGaussian mixtures-based HMM re
ognizer.rior probabilities are 
ombined with the long-term temporal system posteriors using theinverse entropy 
ombination method [94℄ des
ribed in Chapter 4. We then apply the logand redu
e the dimensionality to 25 via PCA. Finally, we 
on
atenate this 25 dimensionalMLP-based feature with the short-term HLDA(PLP+3d) features and use the resulting 64dimensional feature as inputs to the SRI Gaussian mixtures-based HMM re
ognizer. This
on�guration makes it possible to test the additional performan
e improvements we getwhen 
ombining all three temporal 
ontexts. This 
on�guration is depi
ted in Figure 5.7.5.4 ResultsIn what follows, we report the word error rate results on Eval2001 for all of thevarious feature 
on�gurations. We use a di�eren
e of proportions signi�
an
e test with 0.05as the default level to determine statisti
al signi�
an
e in our 
omparisons. For example,anytime we say that system A is signi�
antly better than system B, we mean that thedi�eren
e in performan
e between system A and B is statisti
ally signi�
ant under thissigni�
an
e test at the 0.05 level. For all of the MLP-based features, we in
lude the framea

ura
y whi
h is a measure of how well an MLP 
lassi�es the phone 
lasses at the frame



90 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem WER onDes
ription Eval2001(%)Non-AugmentedHLDA(PLP+3d) 37.2Table 5.1: Word error rate performan
e on Eval2001 of a system using 
onventional featureextra
tion based on modeling spe
tral sli
es.level. Also note that for fairness of 
omparisons, the ba
k-end Gaussian mixtures-basedHMMs all have roughly the same number of trainable parameters.5.4.1 Conventional FeaturesWhen using the 
onventional short-term HLDA(PLP+3d) features, a simple for-ward de
oding of Eval2001 by the SRI re
ognizer a
hieves a 37.2% word error rate (WER)as shown in Table 5.1. For a simple forward de
oding pass without adaptation and system
ombination, 37.2% on Eval2001 is respe
table. Indeed, this was state-of-the-art perfor-man
e a few years ago.Table 5.2 summarizes the results when using the intermediate-term (about 100millise
onds) 9 Frame PLP MLP feature. It has a frame a

ura
y of 67.57%, whi
h is prettygood for MLP 
lassi�ers on Eval2001. When we use the transformed posteriors from the9 Frame PLP MLP as features, the SRI re
ognizer s
ores a 41.2% WER on Eval2001.This is mu
h worse than the short-term feature alone (41.2% vs. 37.2%), but when we
on
atenate the dimensionality redu
ed 9 Frame PLP MLP feature with HLDA(PLP+3d),the system redu
es the WER to 35.6%. This is a 4.3% relative redu
tion in WER fromthe system that uses the HLDA(PLP+3d) features alone. Relative redu
tions of 3% ormore are typi
ally 
onsidered su

esses when trying to improve system performan
e on the
hallenging CTS tasks.5.4.2 Un
onstrained Approa
hesThe un
onstrained approa
hes for temporal systems ideally 
ould learn any 
las-si�
ation fun
tion within the 15 
riti
al-bands x 51 frames of log energies. The 3-layerfully-
onne
ted 15 x 51 MLP3 
lassi�es 64.73% of the frames 
orre
tly, a
hieves 48.0%



5.4. RESULTS 91System Frames Stand-Alone AugmentDes
ription Corre
t WER (%) WER (%)(%)9 Frame PLP MLP 67.57 41.2 35.6Table 5.2: Conventional 9 Frame PLP MLP system performan
es on Eval2001.System Frames Stand-Alone Augment Combined-Des
ription Corre
t WER (%) WER (%) Augment(%) WER (%)15 x 51 MLP3 64.73 48.0 36.6 34.815 x 51 MLP4 67.88 44.3 35.6 34.3Table 5.3: Un
onstrained temporal system performan
es on Eval2001.
WER in stand-alone feature 
on�guration, performs at 36.6% WER when augmentingHLDA(PLP+3d), and redu
es WER to 34.8% in 
ombination with 9 Frame PLP MLPand augmenting HLDA(PLP+3d). In 
ontrast, the 4-layer fully-
onne
ted 15 x 51 MLP4
lassi�es 67.88% of the frames 
orre
tly, a
hieves 44.3% WER in stand-alone feature 
on-�guration, performs at 35.6% WER when augmenting HLDA(PLP+3d), and redu
es WERto 34.3% in 
ombination with 9 Frame PLP MLP and augmenting HLDA(PLP+3d). Ta-ble 5.3 lists the results for these un
onstrained approa
hes.15 x 51 MLP4 signi�
antly outperforms 15 x 51 MLP3 in all feature 
on�gurationsas well as in frame 
lassi�
ation. Although, both have the same total number of parameters,the 4-layer 15 x 51 MLP4 is better able to leverage these parameters for the learning ofphoneti
ally dis
riminant information. Theoreti
ally a 3-layer MLP 
an learn any mappingfun
tion given a suÆ
ient amount of hidden units; however, in pra
ti
e when there maybe 
onstraints in the total number of parameters allowable, a 4-layer MLP 
an outperformthe 3-layer MLP be
ause the extra hidden layer 
an make the modeling job of later layerseasier2.2We also tried 5-layer MLPs but were unable to a
hieve 
omparable performan
e.



92 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Frames Stand-Alone Augment Combined-Des
ription Corre
t WER (%) WER (%) Augment(%) WER (%)PCA40 65.50 45.3 36.2 34.6LDA40 65.52 46.5 36.4 34.5Table 5.4: Constrained linear temporal system performan
es on Eval2001.5.4.3 Constrained Linear Approa
hesTable 5.4 shows the performan
e results for the 
onstrained linear approa
hesfor temporal system design. Both PCA40 and LDA40 perform at roughly the same levelsex
ept for the stand-alone feature 
on�guration where PCA40 signi�
antly outperformsLDA40 (45.3% vs 46.5%). As previously dis
ussed, PCA transforms data in dire
tions ofmaximal spread, while LDA transforms data in dire
tions of maximal 
lass separability.From these results, performan
e does not improve by transforming the log 
riti
al-band en-ergy traje
tories in dire
tions of maximal 
lass separability 
ompared to simply proje
tingthe traje
tories along dire
tions of maximal spread.5.4.4 Constrained Nonlinear Approa
hesThe �rst four 
onstrained nonlinear approa
hes are based on the two-stage NeuralTRAP ar
hite
ture and di�er only in the point at whi
h to take the inputs for the se
ondstage merger MLP. All of these two-stage Neural TRAP-based systems learn dis
riminantinformation at the 
riti
al-band level useful for 
lassifying 
riti
al-band level phone targets.On the other hand the TMLP learns 
riti
al-band level information useful for 
lassifyingfull-band phone targets. The results of these �ve approa
hes are summarized in Table 5.5.Looking at the Table 5.5, we noti
e that two systems perform at noti
eably higherlevels than the other three systems in all feature 
on�gurations and frame a

ura
y. HATand TMLP both outperform HAT Before Sigmoid, Neural TRAP, and Neural TRAP PostSoftmax. In terms of frame a

ura
y, HAT and TMLP perform similarly (66.91% for HATand 67.12% for TMLP). The 
losest 
ompetitor is Neural TRAP whi
h performs at 65.85%a

ura
y. When using these �ve systems in stand-alone feature 
on�guration, HAT andTMLP have a 44.5% and 44.9% WER respe
tively. The 
losest any other system gets to



5.4. RESULTS 93this performan
e level is 45.9% WER a
hieved by both Neural TRAP and HAT BeforeSigmoid whi
h is statisti
ally signi�
antly worse.The story is 
onsistent when augmenting the HLDA(PLP+3d) features withthe 
onstrained nonlinear temporal features. Using HAT and TMLP to augmentHLDA(PLP+3d), the WER is 35.6% and 35.5% respe
tively. The others temporal systemsget as 
lose as 36.3% WER a
hieved by the HAT Before Sigmoid system whi
h is still statis-ti
ally signi�
antly worse. Finally, in the 
ombined and augmented feature 
on�guration,HAT and TMLP a
hieve a 34.1% and 33.9% WER on Eval2001. The other systems stillunderperform HAT and TMLP, but this time only TMLP is signi�
antly better than theothers at the 0.05 level. Another .1% absolute di�eren
e would make HAT's performan
eimprovement signi�
ant.One of the main �ndings in Chapter 4 is that HAT and TMLP perform betterthan Neural TRAP in 
lean 
onditions on the TIMIT phone re
ognition task. The aboveresults on CTS also 
orroborate these �nding; HAT and TMLP outperform all other NeuralTRAP-based systems in 
lean 
onditions.In this 
hapter we 
an also make some 
omments about whi
h 
riti
al-band mea-surements to use as inputs to a merger MLP. Comparing HAT Before Sigmoid, HAT,Neural TRAP, and Neural TRAP Post Softmax, we have already 
ommented that HATsigni�
antly outperforms all the others. The only di�eren
e between HAT and HAT BeforeSigmoid is the sigmoid nonlinearity. Both learn 
riti
al-band energy traje
tory patterns,but HAT uses the sigmoid to transform the inner produ
t of the learned energy traje
-tory patterns and the input energy traje
tories into \probabilities" of these learned energytraje
tory patterns. Neural TRAP di�ers from HAT by adding an additional mappingfrom the 
riti
al-band hidden unit output spa
e to 
riti
al-band level phones. This ex-tra mapping to phones redu
es performan
e, suggesting that phone 
ategories are not thebest targets at the 
riti
al-band level. Neural TRAP Post Softmax normalizes the NeuralTRAP inputs to the merger MLP to sum to one in ea
h 
riti
al-band. The merger MLPin Neural TRAP Post Softmax uses 
riti
al-band phone posteriors as input features. Thisalso, does not work very well and 
ompared to Neural TRAP performan
e su�ers whenperforming this normalization.Comparing TMLP with HAT, we do see a slight improvement from TMLP aug-menting the short-term HLDA(PLP+3d) features as well as in 
ombination with the



94 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Frames Stand-Alone Augment Combined-Des
ription Corre
t WER (%) WER (%) Augment(%) WER (%)HAT Before Sigmoid 65.80 45.9 36.3 34.9HAT 66.91 44.5 35.6 34.1Neural TRAP 65.85 45.9 36.5 34.5Neural TRAP Post Softmax 63.96 48.2 36.8 34.5TMLP 67.12 44.9 35.5 33.9Table 5.5: Nonlinear temporal system performan
es on Eval2001.intermediate-term 9 Frame PLP MLP and augmenting HLDA(PLP+3d) features. How-ever, as a stand-alone feature TMLP performs worse than HAT. From this, it seems thatthe more un
onstrained TMLP learns information that is marginally more 
omplementaryto the 
onventional features than HAT.5.4.5 Augmenting Conventional FeaturesIn this subse
tion we take a 
loser look at the improvements that ea
h of the MLP-based systems bring when augmenting the short-term HLDA(PLP+3d) features. Table 5.6summarizes the WER results and relative improvements over using HLDA(PLP+3d) fea-tures alone for the various MLP-based features augmenting the HLDA(PLP+3d) features.9 Frame PLP MLP, 15 x 51 MLP4, HAT, and TMLP all outperform the other MLP-basedfeatures obtaining a 35.6%, 35.6%, 35.6%, and 35.5% WER respe
tively on Eval2001. Therest of the systems perform 
onsiderably worse at 36.2% and higher. As 
ommented before,a 3% relative redu
tion or more in WER is 
onsidered impressive for su
h a diÆ
ult taskas CTS. All long-term systems improve WER 
ompared to HLDA(PLP+3d) alone. Theintermediate-term 9 Frame PLP MLP also improves performan
e signi�
antly, and it doesso to the same extent as the long-term systems of 15 x 51 MLP4, HAT, and TMLP.5.4.6 Combined-Augmented FeaturesTable 5.7 displays the WER results for all of the temporal systems-based featuresin 
ombination with the 9 Frame PLP MLP features whi
h are then used to augment theHLDA(PLP+3d) features. From these results, we 
an see how mu
h more improvement



5.4. RESULTS 95System Eval2001 RelativeDes
ription WER (%) Improvement(%)Baseline: -Non-Augmented 37.2HLDA(PLP+3d)9 Frame PLP MLP 35.6 4.315 x 51 MLP3 36.6 1.615 x 51 MLP4 35.6 4.3PCA40 36.2 2.7LDA40 36.4 2.2HAT Before Sigmoid 36.3 2.4HAT 35.6 4.3Neural TRAP 36.5 1.9Neural TRAP Post Softmax 36.8 1.1TMLP 35.5 4.6Table 5.6: Comparison of all MLP-based features used to augment the short-termHLDA(PLP+3d) features. WER results as well as relative improvement over theHLDA(PLP+3d) features alone reported for Eval2001.
we 
an obtain by 
ombining the long-term information to the medium and short-terminformation streams. The baseline performan
e 
omes from the augmenting the short-term features with the intermediate-term features of 9 Frame PLP MLP. This baselinesystem gets a 35.6% WER on Eval2001.Combining the any of the long-term information streams to the short andintermediate-term streams improves performan
e. The best long-term information stream
omes from TMLP followed 
losely by HAT. The un
onstrained 15 x 51 MLP4 is slightlyworse than TMLP and HAT, but slightly better than all of the other temporal systems.We surmise that the narrow-band frequen
y 
onstraints imposed by HAT and TMLP helpit to learn more 
omplementary information to the 9 Frame PLP MLP system than thatlearned by the un
onstrained 15 x 51 MLP4 system. From this, we 
on
lude that thenarrow-band frequen
y 
onstraint in the long-term systems is useful in 
ombination withthe 
onventional 9 Frame PLP MLP system, but it must be implemented appropriately(for example, in the form of HAT or TMLP or perhaps other improved Neural TRAP-basedextensions that we did not test here).



96 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Eval2001 RelativeDes
ription WER (%) Improvement(%)Baseline: 9 Frame PLP MLP 35.6 -15 x 51 MLP3 34.8 2.215 x 51 MLP4 34.3 3.7PCA40 34.6 2.8LDA40 34.5 3.1HAT Before Sigmoid 34.9 2.0HAT 34.1 4.2Neural TRAP 34.5 3.1Neural TRAP Post Softmax 34.5 3.1TMLP 33.9 4.8Table 5.7: Table of results for systems 
ombined with the 9 Frame PLP MLP featuresand augmenting the HLDA(PLP+3d) features. WER and relative improvements over thebaseline 9 Frame PLP MLP augmented system on Eval2001 are reported.5.4.7 Overall Comparison of Temporal SystemsTable 5.8 shows the rankings for ea
h of the various temporal systems in all of thedi�erent feature 
on�gurations and their frame a

ura
ies. The 15 x 51 MLP4 system doesthe best at the frame level as well as in the stand-alone feature 
on�guration; however,when 
ombined with the other full-band features, HAT and TMLP perform better thanthe 15 x 51 MLP4 system. We mention again that this is be
ause of the narrow-frequen
y
onstraints imposed by the HAT and TMLP systems, whi
h for
e these two systems tomodel 
riti
al-band temporal patterns. The 15 x 51 MLP3 and Neural TRAP Post Softmaxsystems almost always perform the worse, while all the other systems show no predi
tablepattern of performan
e. The nonlinear 
onstrained approa
hes 
onsistently perform betterthan their linear 
ounterparts only when using HAT and TMLP. To summarize these�ndings:1. The narrow-band 
onstraints are most helpful in 
ombination with either the full-band short and intermediate-term feature streams if implemented in the form of HATor TMLP.2. The HAT and TMLP nonlinear 
onstrained systems perform better in all feature
on�gurations than the linear 
onstrained systems.
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ription Corre
t Rank Rank AugmentRank Rank15 x 51 MLP3 8 8 8 815 x 51 MLP4 1 1 2 3PCA40 7 4 4 7LDA40 6 7 6 4HAT Before Sigmoid 5 5 5 9HAT 3 2 2 2Neural TRAP 4 5 7 4Neural TRAP Post Softmax 9 9 9 4TMLP 2 3 1 1Table 5.8: Rankings of the various temporal systems on Eval20015.4.8 Neural TRAP With More Hidden UnitsIn previous implementations of Neural TRAP (e.g [53, 112, 62℄), resear
hers usemany more hidden units than the 40 hidden unit implementations in this 
hapter. Table 5.9shows the performan
e of Neural TRAP systems with both 40 and 300 hidden units per
riti
al-band. The TRAP systems with 300 hidden units per 
riti
al-band have about380,000 more total parameters than the ones with 40. In general both the 40 and 300 hiddenunit versions perform equally ex
ept in two 
ases: 1) Neural TRAP in the augmentedfeature 
on�guration where the 300 hidden unit version is signi�
antly better (36.0% versus36.5%), and 2) Neural TRAP Post Softmax in the stand-alone feature 
on�guration wherethe 300 hidden unit version is mu
h worse. We 
annot 
on
lude that in
reasing the numberof 
riti
al-band hidden units to 300 always improves performan
e for Neural TRAP PostSoftmax, but in the Neural TRAP systems in
reasing to 300 never leads to performan
edegradation.5.5 Frame A

ura
y Analysis of the Best Temporal SystemsIn the previous se
tions we have seen how the MLP-based features derived fromtemporal systems have 
omplemented both the intermediate and short-term features, lead-ing to substantial redu
tions in the word error rate on a CTS task. In this se
tion we would



98 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Frames Stand-Alone Augment Combined-Des
ription Corre
t WER (%) WER (%) Augment(%) WER (%)40 Neural TRAP 65.85 45.9 36.5 34.5300 Neural TRAP 66.43 45.9 36.0 34.340 Neural TRAP Post Softmax 63.96 48.2 36.8 34.5300 Neural TRAP Post Softmax 63.73 49.1 36.6 34.2Table 5.9: System performan
es on Eval2001 of Neural TRAP with 40 hidden units versusNeural TRAP with 300 hidden units per 
riti
al-band. With 300 hidden units per 
riti
al-band Neural TRAP and Neural TRAP Post Softmax perform at about the same level asHAT in the 
ombined-augmented 
on�guration using 380,000 more parameters.like to dig a little deeper and �nd out what phone 
ategories these temporal systems doparti
ularly well on 
ompared to the intermediate-term 9 Frame PLP MLP as well as toea
h other. Be
ause HAT, TMLP, and 15 x 51 MLP4, outperformed all other temporalsystems, we fo
us our attention on these three temporal systems in our analysis.All temporal systems and the intermediate-term 9 Frame PLP MLP system areMLP-based 
lassi�ers that we train to learn 46 phone 
lasses. As des
ribed earlier, thephone targets for MLP training 
ome from for
ed-alignments from the SRI re
ognizerwhose di
tionary of words 
onsists of sequen
es of these 46 phones. Table 5.10 lists allof the phone 
lasses (as well as an example or des
ription of its usage) that we train ourMLPs on. On
e trained, our MLP-based 
lassi�ers output a phone probability distributionfor every frame of spee
h. We 
onsider a 
lassi�er to have 
orre
tly 
lassi�ed a parti
ularframe of spee
h when the maximum phone probability output 
orresponds to the labeledphone target. As des
ribed in Se
tion 3.1, frame a

ura
y is 
al
ulated by 
ounting howmany frames a 
lassi�er gets 
orre
t divided by the total number of test frames.When 
omparing two 
lassi�ers at the frame level, we 
an do better than simply
omparing the gross frame a

ura
y measure. We 
an 
al
ulate a

ura
y measures on aper phone 
lass basis to see whi
h 
lassi�er does better on what phone. For any frame,one of four out
omes is possible: 1) both 
lassi�ers get the frame 
orre
t, 2) only the�rst 
lassi�er gets it 
orre
t, 3) only the se
ond 
lassi�er gets it 
orre
t, or 4) both get itwrong. If we sum up the 
ounts of these out
omes for frames labeled a 
ertain phone, we
an immediately see whi
h 
lassi�er is better at 
lassifying this phone. For example, the�rst 
lassi�er is better for this phone if the 
ounts of 
ase 2 out
omes is greater than the
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ASR Phoneme SymbolsSRI 46 Example SRI 46 Examplesil (silen
e) k keyaa father l likeae bat lau (laughter)ah but m moonao bought n noonaw about ng singax about ow boatay bite oy boyb bee p pea
h 
hoke puh (�lled-pause vowel)d day pum (�lled-pause nasal)dh then r rightdx dirty s soundeh bet sh shouter bird t teaey bait th thinf fish uh book(word fragment�p interruption uw bootpoint)g gay v votehh hay w wireih bit y yesiy beet z zoojh joke zh azureTable 5.10: The 46 monophone targets used for MLP training.as de�ned for SRI's re
og-nition system.
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ounts of 
ase 3 out
omes. The 
ounts of 
ase 1 and 
ase 4 out
omes reveal the diÆ
ultyof 
lassifying a parti
ular phone and possibly the ina

ura
y of the labeling of the phonethat we use as ground truth. Mostly, we are interested in the 
ounts of 
ase 2 and 
ase 3be
ause they give us an indi
ation of whi
h 
lassi�er is better.In Tables 5.11-5.13, we 
al
ulate the 
ounts for all of the above 
ases normalizedby the total number of frames for a parti
ular phone. The result is the per
entage of framesthat the out
ome o

urs for a parti
ular phone. The phone are listed in order of how wellthe temporal system does on that phone 
ompared with the 9 Frame PLP MLP system,and we only list those phones for whi
h the temporal system is better. The tables also listthe average phone duration in frames and the total number of frames labeled with thatphone on the Eval2001 set. Using these tables, we address the following questions:1. Do the temporal systems perform better on longer phones?2. What phones do the temporal systems do 
onsistently better on than the 9 FramePLP MLP system?3. As we remove 
onstraints in the learning of long-term information, what phones aremore a

urately 
lassi�ed?4. As we add 
onstraints in the learning of long-term information, what phones aremore a

urately 
lassi�ed?5.5.1 Temporal Systems and Longer PhonesTo answer the �rst question, we 
al
ulate the average phone durations for all thephones that a parti
ular temporal system is better at 
lassifying than the 9 Frame PLPMLP system and vi
e versa. When 
omparing HAT and 9 Frame PLP MLP, the averagephone duration of all the phones that HAT is better at 
lassifying is 13.0 frames, whilethe the average phone duration for the phones that 9 Frame PLP MLP is better at is8.7 frames. The phones that TMLP is better at 
lassifying have an average duration of11.1 frames 
ompared to 9.4 frames for the phones that 9 Frame PLP MLP is better at.Finally, when 
omparing 15 x 51 MLP4 with 9 Frame PLP MLP, the average durationsare 10.5 frames for 15 x 51 MLP4 and 10.0 frames for 9 Frame PLP MLP. Overall, thetemporal systems do perform better on longer phones. These results are 
onsistent with



5.5. FRAME ACCURACY ANALYSIS OF THE BEST TEMPORAL SYSTEMS 101Avg. Both HAT PLP MLP Both TotalPhone Dur. Right Right Right Wrong Phone(Frames) (%) (%) (%) (%) Countsoy 14.00 11.0 17.6 8.5 63.0 2028ae 11.00 49.6 17.4 9.6 23.4 73780hh 5.00 25.6 14.3 8.8 51.3 32070zh 10.00 24.3 14.8 10.2 50.7 391ay 15.00 53.8 13.2 9.5 23.5 73458z 3.00 38.3 14.8 11.4 35.5 32521ey 12.00 40.7 14.5 11.6 33.1 35987ow 11.00 34.8 16.2 13.3 35.6 56401puh 19.00 48.7 14.8 12.2 24.3 45210dx 5.00 28.7 12.1 10.1 49.1 5284pum 11.00 30.4 15.9 14.7 39.0 33913ax 5.00 34.2 11.9 10.7 43.2 75242th 21.00 23.3 13.2 12.0 51.5 10507lau 41.00 45.5 13.8 13.2 27.5 38014aw 21.00 20.5 14.8 14.3 50.5 14675�p 3.00 0.2 2.0 1.8 95.9 4351Table 5.11: Frame level 
lassi�
ation statisti
s for HAT versus 9 Frame PLP MLP.
what we would expe
t be
ause the long-term systems are learning patterns spanning 51frames, while the 9 Frame PLP MLP system only gets 9 frames of input 
ontext to workwith. Re
all, that we 
an view the progression of going from HAT to TMLP to 15 x51 MLP4 as a progression of loosening 
onstraints. As we move from HAT to TMLP, weare loosening the 
onstraint of learning 
riti
al-band level phone labels. As we move fromTMLP to 15 x 51 MLP4, we remove the narrow-frequen
y 
hannel 
onstraint. As we loosenthe 
onstraints on the learning of long-term patterns (i.e., going from HAT to TMLP to15 x 51 MLP4), the di�eren
e between the average duration from the temporal systemand the average duration from 9 Frame PLP MLP de
reases. It seems that the ea
h ofthe 
onstraints help the temporal systems better fo
us on learning long-term informationfrom phones that have higher average durations.
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Avg. Both TMLP PLP MLP Both TotalPhone Dur. Right Right Right Wrong Phone(Frames) (%) (%) (%) (%) Countsae 11.00 50.4 18.0 8.8 22.8 73780oy 14.00 10.2 16.1 9.3 64.4 2028puh 19.00 51.0 16.4 9.9 22.7 45210ow 11.00 36.7 17.0 11.5 34.9 56401th 21.00 25.6 15.0 9.6 49.9 10507hh 5.00 26.0 13.5 8.4 52.0 32070ay 15.00 54.2 13.4 9.0 23.4 73458ey 12.00 41.6 14.9 10.7 32.8 35987z 3.00 39.4 14.5 10.3 35.9 32521lau 41.00 47.9 14.9 10.8 26.4 38014aw 21.00 22.5 16.2 12.3 49.0 14675ax 5.00 35.7 13.0 9.2 42.1 75242f 7.00 40.8 14.5 11.5 33.1 24710dh 3.00 33.2 14.5 12.4 40.0 29534dx 5.00 29.2 11.7 9.7 49.4 5284pum 11.00 30.7 15.9 14.4 39.0 33913y 9.00 54.1 12.2 10.7 23.1 38136uw 3.00 36.7 12.4 11.5 39.4 29316d 6.00 22.8 10.9 10.2 56.2 35311aa 9.00 24.7 14.7 14.1 46.6 24764jh 13.00 40.5 11.9 11.5 36.1 8795�p 3.00 0.1 2.2 1.9 95.8 4351sil 16.00 92.0 2.7 2.4 3.0 762542ng 11.00 37.8 10.6 10.3 41.3 17417ah 3.00 22.3 12.4 12.3 53.0 30033Table 5.12: Frame level 
lassi�
ation statisti
s for TMLP versus 9 Frame PLP MLP
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Avg. Both MLP4 PLP MLP Both TotalPhone Dur. Right Right Right Wrong Phone(Frames) (%) (%) (%) (%) Countsoy 14.00 11.2 19.8 8.2 60.8 2028aw 21.00 24.8 19.9 10.1 45.3 14675ae 11.00 50.3 17.5 8.9 23.3 73780ow 11.00 37.0 18.0 11.1 33.9 56401puh 19.00 49.7 16.4 11.2 22.7 45210ay 15.00 54.5 13.7 8.8 23.1 73458ey 12.00 42.2 14.8 10.1 32.9 35987hh 5.00 26.1 12.4 8.4 53.2 32070z 3.00 38.6 14.3 11.0 36.1 32521ax 5.00 35.3 12.9 9.6 42.3 75242dx 5.00 29.2 12.7 9.6 48.5 5284lau 41.00 47.2 14.4 11.4 27.0 38014pum 11.00 32.1 15.9 13.1 39.1 33913aa 9.00 25.4 15.6 13.3 45.6 24764th 21.00 23.7 13.7 11.5 51.1 10507s 6.00 54.2 13.2 11.2 21.4 70534r 6.00 47.4 14.6 12.6 25.4 51308y 9.00 53.9 12.2 10.8 23.1 38136eh 5.00 21.0 12.9 11.8 54.3 33454dh 3.00 32.5 14.0 13.0 40.4 29534f 7.00 40.0 13.3 12.4 34.3 24710ah 3.00 22.2 13.3 12.4 52.1 30033zh 10.00 21.5 13.8 13.0 51.7 391d 6.00 22.5 11.1 10.5 55.9 35311jh 13.00 40.5 11.8 11.6 36.2 8795uw 3.00 36.2 12.2 12.0 39.6 29316t 4.00 33.4 11.5 11.3 43.8 73020sil 16.00 91.9 2.5 2.4 3.1 762542Table 5.13: Frame level 
lassi�
ation statisti
s for 15 x 51 MLP4 vs. 9 Frame PLP MLP



104 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTS5.5.2 Temporal Systems Versus 9 Frame PLP MLPTo answer the se
ond question of what phones the temporal systems are generallybetter at 
lassifying than 9 Frame PLP MLP, we examined the interse
tion of the phonesthat appear in Tables 5.11, 5.12, and 5.13. These phones are the phones for whi
h all threetemporal systems are better at 
lassifying than 9 Frame PLP MLP. The most prominentobservation from this is that all of the temporal systems 
onsistently 
lassify diphthongs(/aw/, /ay/, /ey/, /ow/, and /oy/) better than 9 Frame PLP MLP. Diphthongs are phonesthat start o� sounding like one vowel and end sounding like another vowel. The averageduration of diphthongs is 13.6 frames in the Eval2001 data set, whi
h is 4.6 frames morethan the input 
ontext to 9 Frame PLP MLP. Be
ause the temporal systems have 51frames of 
ontext to work with, they 
an better model these diphthongs.Other phones whi
h these temporal systems are 
onsistently better at 
lassifyingin
lude: /ae/, /puh/, /pum/, /hh/, /th/, /z/, /ax/, /lau/, and /dx/. /ae/, /puh/,/pum/, /th/, and /lau/ have average durations longer than 9 frames. The �lled pausedvowel /puh/ (as used when people say \uh") and the �lled paused nasal /pum/ (as usedwhen people say \ummm"), seem like phones that 
an be easily 
onfused with regularphones like /ah/ and /m/. With more temporal 
ontext, HAT, TMLP, and 15 x 51 MLP4seem to be able to disambiguate these �lled pause phones better than the 9 Frame PLPMLP system. It is interesting that these temporal systems outperform 9 Frame PLP MLPon some short phones also (i.e., /hh/, /z/, /ax/, and /dx/). Perhaps, there is a lot of
ontextual information about these phones that the temporal systems are able to 
aptureand exploit.5.5.3 Temporal Systems Versus Ea
h OtherIn the 
ontext of our augmented 
ombination system, where we 
ombine theoutputs of one of the temporal systems with the outputs from the intermediate-term 9Frame PLP MLP system, and use this 
ombination to augment the 
onventional short-term features, it is interesting to analyze what happens when we remove or add learning
onstraints on the temporal systems. As we move from HAT to TMLP to 15 x 51 MLP4, weare removing 
onstraints on the learning of long-term information. We 
an see the e�e
tof removing 
onstraints on performan
e by looking at all the phones for whi
h a more
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onstrained temporal system performs better at than 9 Frame PLP MLP but that theless 
onstrained temporal system does not perform better at than 9 Frame PLP MLP. Forexample, by looking for phones that appear in Table 5.12 but do not appear in Table 5.11,we 
an see whi
h phones are better 
lassi�ed when removing the 
onstraint of learning
riti
al-band phone labels. Similarly, by looking for phones that appear in Table 5.13 butdo not appear in Table 5.12, we 
an see whi
h phones are better 
lassi�ed when removingthe 
onstraint of learning within 
riti
al-bands. To see the e�e
t of adding 
onstraints, wesimply reverse the order of our table 
omparisons and look for phones whi
h appear in thetable for the more 
onstrained system but do not appear in the less 
onstrained system'stable. Comparing HAT to TMLP, we see from Tables 5.11 and 5.12 that the followingphones appear in Table 5.12 but not in Table 5.11: /f/, /dh/, /y/, /uw/, /d/, /aa/, /jh/,/sil/, /ng/, and /ah/. Removing the 
riti
al-band 
onstraints (going from TMLP to 15x 51 MLP4, we see from Tables 5.12 and 5.13 that the phones /s/, /r/, /eh/, /zh/, and/t/ are better 
lassi�ed. When tightening the 
onstraints from 15 x 51 MLP4 to TMLP,/ng/ is the only phone that is improved, while going from TMLP to HAT only /zh/is improved. Generally, loosening the 
onstraints helps the temporal systems to better
lassify phones, but we have also noti
ed that in 
ombination with 15 x 51 MLP4, thenarrow-band 
onstraint does make the temporal systems more 
omplementary leading tolarger redu
tions in word error rates (e.g., 
ompare the 
ombined-augmented results forTMLP, 33.9%, versus 15 x 51 MLP4, 34.3%).5.6 Narrow-Band Dis
riminant Temporal PatternsIn Se
tion 3.10, we dis
ussed the nature of the dis
riminant temporal patternslearned by HAT and TMLP on TIMIT spee
h data. In this se
tion, we not only examinewhat was learned by HAT and TMLP on CTS data, but we also look at what temporalpatterns were learned by PCA40 and LDA40. As explained in Se
tion 3.10, the 
riti
al-band hidden units of HAT and TMLP perform �ltering operations on the log 
riti
al-bandenergy traje
tories of spee
h. When trained on TIMIT data these mat
hed temporal �lters
oming from both HAT and TMLP tended to �lter out modulation frequen
ies above 20Hz. The PCA40 and LDA40 transformations that we trained on the log 
riti
al-band
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tories 
an similarly be 
onsidered as mat
hed temporal �lters as well. InAppendix D, we show plots of the 
luster 
entroids of input-to-hidden weights of 
riti
al-band hidden units for the HAT and TMLP systems trained on the female portion of theCTS training set in this 
hapter. In Appendix E, we show plots of the 
luster 
entroids ofthe PCA40 and LDA40 transformation ve
tors trained on the female portion of the CTStraining set in this 
hapter.Comments similar to the ones in Se
tion 3.10 
an be made here also. The HATand TMLP dis
riminant temporal patterns mostly tend to emphasize only modulationfrequen
ies below 20 Hz whi
h has been shown to be important for spee
h re
ognition.TMLP patterns tend to also exhibit more shifting in time than the HAT patterns: thereseem to be more patterns where the regions of varying magnitudes are not 
entered atframe 0. Like the patterns in Se
tion 3.10 and Appendix C, the patterns learned by HATand TMLP in this 
hapter do resemble previous patterns found in literature [10, 124, 115,67, 112℄. There are onset dete
tor patterns, \Mexi
an hat" energy dete
tor patterns, andpatterns that resemble Mean TRAPs.The most striking di�eren
es 
ome from looking at the patterns learned by HATand TMLP versus those learned by PCA40 and LDA40. The �rst main di�eren
e betweenthe sets is that both PCA40 and LDA40 have learned some patterns that are sensitive tomodulation frequen
ies greater than 20 Hz. These patterns are 
apturing temporal infor-mation that is not ne
essarily essential for spee
h re
ognition whi
h explains to some extentwhy the PCA40 and LDA40 temporal systems in this 
hapter were less e�e
tive than theHAT and TMLP systems for improving performan
e. The next striking di�eren
e is thatall of the PCA40 patterns look like sinusoids of di�erent frequen
ies. What this impliesabout spee
h within narrow-frequen
y bands is interesting: this means that the dire
tionsof highest varian
e all 
orrespond to sinusoidal fun
tions with di�erent os
illation frequen-
ies. Finally, the LDA40 patterns look somewhat like a mix between PCA40 patterns andHAT patterns. Of all the LDA40 patterns some also look like rapidly varying sinusoids,but there are other patterns that more resemble those learned by HAT and TMLP. Wehave also observed that the top LDA40 dis
riminants (i.e., the ones 
orresponding to thehighest eigenvalues) look like the onset dete
tors and \Mexi
an hat" patterns 
onsistentwith previous LDA studies.



5.7. HAT AND TMLP PRACTICAL TRADE-OFFS 1075.7 HAT and TMLP Pra
ti
al Trade-o�sThere are some notable observations 
on
erning the training pro
ess of HAT andTMLP. As explained earlier, the training of HAT pro
eeds in two stages. The �rst stageis to train all the 
riti
al-band MLPs. In the se
ond stage, we �rst 
ompute the hiddenunit outputs of all 
riti
al-band MLPs from the input 
riti
al-band energy traje
tories ofthe training data. The set of all of these hidden unit outputs be
omes the input trainingdata for the se
ond stage merger MLP training. The �rst stage 
an be parallelized totrain on several 
omputers simultaneously. There is some savings in time by training this�rst stage in parallel; however, the �rst stage training is mu
h qui
ker than the se
ondstage merger training be
ause the 
riti
al-band MLPs are rather small (only 20 hiddenunits in Chapter 3 and 40 hidden units in this 
hapter), and so the overall training time isdominated by the se
ond stage merger training.One potential drawba
k from our implementation of this two-stage HAT trainingis the need for temporary disk spa
e to store the hidden unit outputs from all the 
riti
al-band MLPs on the 
omplete training set. A small training set su
h as the one in Chapter 3(about 1 million frames), requires 380 million 4 byte 
oats (1 million frames x 20 hiddenunits per 
riti
al-band x 19 
riti
al-bands x 4 bytes = 1.52 gigabytes) of temporary diskstorage. The CTS training sets in this 
hapter have about 12 million frames per genderwhi
h means that we need about 29 gigabytes of temporary disk storage (12 million framesx 40 hidden units per 
riti
al-band x 15 
riti
al-bands x 4 byte 
oats = 28.8 gigabytes) pergender for training HAT3. TMLP, in 
ontrast, requires no su
h temporary disk spa
e sin
eall 
riti
al-band hidden unit outputs are propagated within the network during training.Although temporary disk spa
e is not an issue for training TMLP, there is atrade-o� with the time needed for training. The time required for training TMLP istypi
ally longer than that for training HAT. In HAT the 
riti
al-band hidden units 
anbe trained in parallel, but in TMLP the 
riti
al-band hidden units are trained along withall the other TMLP parameters within a single network optimization routine. Anotherreason why TMLP trains slower than HAT is that the optimized linear algebra routinesrun less eÆ
iently be
ause the TMLP's band-
onstrained 2 hidden layer topology leads to3The training set used for training SRI's 2004 CTS re
ognizer has about 40 times more frames pergender than the training set used in this 
hapter whi
h would require over a terabyte of temporary diskstorage!



108 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTS33 Hour Set 66 Hour SetApprox. Temporary Approx. TemporarySystem Training Disk Training DiskTime Spa
e Time Spa
eHAT 28.5 hours 28.8 GB 100.5 hours 86.4 GBTMLP 32.9 hours 0 140.8 hours 0Table 5.14: A 
omparison of training time and disk spa
e requirements for HAT and TMLPtrained on a 33-hour and 66-hour training set. The systems trained on the 33-hour set haveabout 516,000 parameters and 40 hidden units per 
riti
al-band, and the systems trainedon the 66-hour set have about 1,032,000 parameters and 60 hidden units per 
riti
al-band.
operations on matri
es that are either thin and tall or short and wide. Be
ause ea
h stageof HAT training operates on single hidden layer MLPs with regular topologies, the linearalgebra routines run faster allowing for qui
ker HAT training.To 
ompare training times of HAT and TMLP, we trained both HAT and TMLPon two di�erent training sets. The �rst training set is the one used in this 
hapter fortraining male systems (about 33 hours and 12 million frames). The se
ond training set isa superset of the �rst and 
ontains about twi
e as mu
h male spee
h data (about 66 hoursand 24 million frames). The HAT and TMLP systems trained on the �rst set have about516,000 total parameters and 40 hidden units per 
riti
al-band, while the systems trainedon the se
ond set have twi
e as many total parameters and 60 hidden units per 
riti
al-band. Table 5.14 shows the a
tual training times and temporary disk spa
e required fortraining ea
h of the four systems on an Intel Xeon 2.80GHz ma
hine with 3 GB of memory.The HAT training times in
ludes the savings from parallelizing the 
riti
al-band hiddenunit training and the time needed to pro
ess the intermediate hidden unit a
tivation �lesfor the se
ond stage training.Table 5.14 illustrates the pra
ti
al trade-o� of training HAT and TMLP. HATtrainings run faster at the 
ost of large amounts of temporary disk spa
e, while TMLPtrainings run slower and save in disk spa
e as well as human operator e�ort required forpreparing the intermediate HAT training �les.



5.8. CONCLUSIONS 1095.8 Con
lusionsIn this 
hapter we have 
ompared various temporal systems for the learning oflong-term (about 500 millise
onds) information useful for ASR on CTS. We 
omparedtheir performan
e using three di�erent Tandem ASR 
on�gurations: stand-alone Tandem,augmented Tandem, and 
ombined-augmented Tandem. The various temporal systems
onstrain the learning of long-term information in di�erent ways. The 15 x 51 MLP3and 15 x 51 MLP4 systems do not 
onstrain the learning within the 15 
riti
al-bandsby 51 frames matrix of log energies. The TMLP system 
onstrains the 
lassi�er to learnimportant distin
tions within individual 51-frame 
riti
al-band energy traje
tories. Finally,the PCA40, LDA40, HAT Before Sigmoid, HAT, Neural TRAP, and Neural TRAP PostSoftmax systems 
onstrain the learning within 
riti
al-bands, but also for
es the systems tolearn transformations useful for 
lassifying phone labels at the 
riti
al-band level (ex
eptfor the PCA40 system whi
h learns transformations in dire
tions of highest varian
e).We found that three temporal systems outperformed all others in all three sys-tem 
on�gurations: the un
onstrained 15 x 51 MLP4, TMLP, and HAT temporal systems.When 
omparing these three systems, we saw an advantage to the 
riti
al-band 
onstrainedTMLP, and HAT temporal systems in 
ombination with the intermediate-term 9 FramePLP MLP system, suggesting that the 
riti
al-band 
onstraints help to make our tem-poral systems more 
omplementary to the 9 Frame PLP MLP system. Also, the twobest nonlinear 
riti
al-band 
onstrained systems, TMLP and HAT, outperformed all lin-ear 
riti
al-band 
onstrained systems, PCA40 and LDA40, in all system 
on�gurations.This suggests that it is important to learn \probabilities" of something fundamentallydis
riminant at the 
riti
al-band level for later stages in the MLP 
lassi�er.Performing further analysis as to whi
h phone 
lasses our temporal systems 
las-sify better, we found that the temporal systems tend to do better on phones that havelonger average durations. Compared with the intermediate-term 9 Frame PLP MLP sys-tem, we also found that the temporal systems 
onsistently perform better on diphthongs,�lled pauses, laughter, and a few other phones (/ae/, /hh/, /th/, /z/, /ax/, and /dx/).The narrow-band frequen
y patterns learned by HAT and TMLP systems againpreserve the important low modulation frequen
ies of spee
h needed for re
ognizing words.The patterns learned by LDA40 and PCA40 di�er from those learned by HAT and TMLP



110 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSin that they also pass modulation frequen
ies greater than 20 Hz. Moreover, the pat-terns learned by PCA40 all look like sinusoidal fun
tions of di�erent frequen
ies. Lowerorder LDA40 basis ve
tors look somewhat like noisy sinusoids, while the higher order onesresemble patterns learned by HAT and TMLP.When training HAT and TMLP systems, we 
ommented that in general HATsystems train faster, but TMLP systems do not require any temporary disk spa
e fortraining. Our best system in this 
hapter, the 
ombination of TMLP and 9 Frame PLPMLP features augmenting the 
onventional HLDA(PLP+3d) features, a
hieved a WER of33.9% on Eval2001. The 
onventional HLDA(PLP+3d) features get a WER of 37.2%.This is an absolute redu
tion in WER of 3.3% (or 8.9% relative) 
ompared to usingHLDA(PLP+3d) features alone, whi
h was the state-of-the-art feature used in 2003. Animprovement of this magnitude on CTS is 
onsidered impressive and is about half the gaina
hieved by most evaluation teams after a year of 
olle
tive work.
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Chapter 6
Further Explorations With TMLP

In previous 
hapters we developed several new neural net ar
hite
tures for thelearning of long-term narrow-frequen
y band information useful for ASR. We started bytesting HAT, TMLP, and Neural TRAP on a small re
ognition task - re
ognizing phonesfrom the TIMIT 
orpus. Then we set up a series of re
ognition tasks leading to thedevelopment of a baseline system utilizing new front-end feature for the re
ognition of
onversational telephone spee
h (CTS). In Chapter 5, we 
ompared various neural netsystems learning long-term information for re
ognizing CTS. In this 
hapter we furtherexplore one of the best long-term systems: the TMLP.We begin by examining the 
hoi
e in the number of 
riti
al-band hidden unitsin the TMLP. Spe
i�
ally, we are interested in determining how performan
e is a�e
tedby the 
hoi
e in the number of 
riti
al-band hidden units as the amount of training dataand total parameters are varied. Be
ause the 
riti
al-band hidden units 
an be thoughtof as probability estimators of dis
riminant temporal patterns, 
hoosing how many ofthem to use is equivalent to 
hoosing how many dis
riminant temporal patterns we wouldlike the TMLP to learn. From previous work on Mean TRAPs, there seems to be a�nite number of important temporal patterns at the 
riti
al-band level ne
essary for higha

ura
y. Likewise, we �nd that the optimal number of 
riti
al-band hidden units doesnot grow when in
reasing the amount of training data.In the se
ond part of this 
hapter, motivated by previous work on UTRAP [50℄whi
h hypothesized that multiple 
riti
al-bands have similar temporal patterns, we inves-
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riminant temporal patterns 
an be shared a
ross multiple 
riti
al-bands. We develop TMLPs that 
an share the parameters of 
riti
al-band hidden unitsamong di�erent 
riti
al-bands. These shared hidden units are trained and applied onspee
h data 
oming from multiple 
riti
al-bands. We �nd that performan
e remains highwhen sharing 
riti
al-band hidden units suggesting that di�erent 
riti
al-bands share sim-ilar dis
riminant temporal patterns useful for ASR.6.1 The Growth of Criti
al-Band Hidden UnitsWhen we moved to apply HAT and TMLP on CTS, the optimal number of hiddenunits per 
riti
al-band jumped from 20 for the smaller TIMIT task to 40 for the CTS task.Perhaps this 
omes from having mu
h more training data in the CTS task than in TIMITtraining (3.12 hours of TIMIT training data versus about 35 hours of CTS training dataper gender1.). This leads us to the question that we wish to answer in this se
tion:� How does the amount of training data a�e
t the optimal 
hoi
e for the number ofhidden units per 
riti
al-band in the TMLP?To answer this question, we 
reated four CTS training sets di�ering in the totalnumber of hours of spee
h. These four CTS training sets 
ome from the same sour
es usedfor 
reating the baseline CTS training set in Chapter 5: English CallHome [19℄, Swit
h-board I with trans
riptions from Mississippi State [41, 28℄, and Swit
hboard Cellular [43℄.The �rst new training set 
onsists of about 124.9 hours (about 20 million frames per gender)of spee
h data from the above sour
es. In all of the four new training sets, we maintainedan equal balan
e between the amount of male and female training data. Subsampling the124.9 hour set by 2, 4, and 8 resulted in a 62.4 hour (about 10 million frames per gender),31.2 hour (about 5 million frames per gender), and 15.6 hour (about 2.5 million framesper gender) training set respe
tively.On
e these training sets were 
ompleted, we started to investigate the intera
tionsbetween the number of 
riti
al-band hidden units, the total number of trainable param-eters, and the amount of training data. We trained TMLPs with 20, 30, 40, 50, and 601Re
all that the TIMIT nets are gender independent nets, while the CTS nets are gender dependentnets (one net for ea
h gender), so for fairness of 
omparison, we 
ompare how mu
h data it takes to trainsingle networks.



6.1. THE GROWTH OF CRITICAL-BAND HIDDEN UNITS 113hidden units per 
riti
al-band, and for ea
h of these 
ases, we 
hose the se
ond hiddenlayer size su
h that the total number of parameters was either 250,000, 500,000, 1,000,000,or 2,000,000. Training for ea
h TMLP setting was done separately for ea
h gender, andthe performan
e numbers that follow re
e
t the average performan
e from both genders.The training pro
edure was the same pro
edure used for training TMLPs in Chapter 5.Basi
ally, we 
al
ulated 15 log 
riti
al-band energies for every 10 millise
onds of spee
h,normalized the mean and varian
e of these energies over every utteran
e, and used these asinput features for the TMLPs. Holding out 10% of the training data as a 
ross-validationset, we used the error ba
k-propagation algorithm to minimize the 
ross-entropy betweenthe TMLP outputs and the phone targets. These phone targets were the same kind ofphone targets derived from for
ed alignments from the SRI re
ognizer in Chapter 5.On
e training 
ompleted, we measured the frame a

ura
ies on the separateEval2001 CTS test set as des
ribed in Subse
tion 5.3.1. Figure 6.1 shows four graphsof frame a

ura
y on Eval2001 versus the number of hidden units per 
riti
al-band ofTMLPs for the four di�erent amounts of training data. Ea
h panel 
orresponds to one ofthe four training set sizes (15.6 hours, 31.2 hours, 62.4 hours, or 124.9 hours), and withinea
h panel there are four 
urves of frame a

ura
ies 
orresponding to the four TMLP sizes(250,000, 500,000, 1,000,000, or 2,000,000).All 
urves in Figure 6.1 exhibit a max a

ura
y between 30 and 50 hidden unitsper 
riti
al-band ex
ept for the 1M parameters/15.6 hour 
ase whi
h has a max at 60.Only the 500k parameters/15.6 hour and 1M parameters/15.6 hour 
ases show trends thatmay indi
ate higher a

ura
ies for greater than 60 hidden units per 
riti
al-band. Toanswer whether in
reasing the amount of training data leads to an in
reasing number ofhidden units per 
riti
al-band for optimal performan
e, 
ompare the lines 
orrespondingto TMLPs with the same number of trainable parameters in ea
h of the four panels. The
urves for 250,000 parameters exhibit a maximum at 30 hidden units per 
riti
al-bandregardless of the amount of data. For the TMLPs with 500,000 parameters, the maximuma

ura
y moves from 40, to 50, to 40, to 40 hidden units per 
riti
al-band as we double theamount of training data. In the 1,000,000 parameters 
ase, the maximum a

ura
ies goesfrom 60, to 60, to 40, to 40 hidden units per 
riti
al-band, and in the 2,000,000 parameters
ase, the maximum goes from 50, to 50, to 40, to 40 hidden units per 
riti
al-band for ea
hdoubling in the amount of training data.
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6.1. THE GROWTH OF CRITICAL-BAND HIDDEN UNITS 115From these observations, we �nd that as we in
rease the amount of training data,the optimal 
hoi
e for the number of hidden units per 
riti
al-band a
tually de
reases whenkeeping the total number of parameters �xed. However, it does appear to be the 
ase thatas the number of total parameters in
reases, the best number of 
riti
al-band hidden unitsin
reases slightly. This 
an be seen 
learly in the 62.4 and 124.9 hour panels. See how thebest number of hidden units goes from 30 for 250k parameters to between 30-40 for 500kparameters, and to 40 for 1M and 2M parameters.In a previous empiri
al study on training MLPs for use in a hybrid ANN/HMMsystem on Broad
ast News [33℄, Ellis et al. explored the optimal ratio of the number oftraining examples to number of trainable MLP parameters for a �xed training time. Theyfound that the optimal ratio of number of training example frames to number of parameterswas in the range of 10 to 40 for a 
onstant produ
t of training frames and parameters. Theprodu
t of training frames and parameters gives a measure of how long it takes to trainan MLP be
ause in ea
h epo
h of training all the parameters are updated N times whereN is a number proportional to the number of total training frames2.We plot the average frame a

ura
ies for TMLPs of 
onstant N (
onne
tion up-dates (CUPs) per epo
h) versus the ratio of frames to parameters in Figure 6.2. From this�gure we 
an see a slowing of a

ura
y improvements as the ratio of frames per parameterin
reases. There is a de
rease in a

ura
y for the 19.5 million 
onne
tion updates per epo
h(19.5 MCUP) line when frames per parameter is greater than 20. Table 6.1 show word errorrate results on the Eval2001 test set for stand-alone Tandem systems using posterior-basedfeatures from TMLPs of this 
onstant 19.5 MCUP. Ea
h of the TMLPs in the table have40 hidden units per 
riti
al-band, and the SRI re
ognizer HMMs were trained using thesame training set as in Chapter 5. The TMLP with 80 frames-to-parameters performed thebest a
hieving a 43.9% WER on Eval2001. Lowering the frames-to-parameters ratio to 20,
auses WER to go up to 44.1%, while lowering this ratio to 5 and 1.25 
auses WER to goup to 45.8% and 48.1% respe
tively. From Figure 6.2 and Table 6.1, it is un
lear where theoptimal ratio of training frames-to-parameters lies. We 
annot 
on
lude as in [33℄ that theoptimal range of training frames-to-parameters is between 10 and 40, but we 
an say thatthe range is likely to begin at 40. It is interesting to note that the systems with 40 or more2N depends on the degree to whi
h the training is done online or in bat
h mode. Our trainings are donein a bun
h (or semi-bat
h) mode where the parameter updates happen on
e every 256 training frames.
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Figure 6.2: Frame a

ura
ies on Eval2001 for TMLPs of equal training time.frames per parameter (i.e., 124.9 hours/250k parameters, 124.9 hours/500k parameters,and 62.4 hours/250k parameters) have 30 or 40 as the best number of 
riti
al-band hiddenunits. To summarize the �ndings from this se
tion we make several 
on
luding state-ments.� Overall, the dominant 
on
lusion that one 
an draw from these experiments is thatthe optimal number of 
riti
al-band hidden units is not all that sensitive to theamount of training data or the total number of parameters.1. For a �xed number of TMLP parameters, in
reasing the amount of trainingdata does not lead to an in
rease in the optimal number of hidden units per
riti
al-band. This is true even when in
reasing the amount of training data byalmost 10-fold (15.6 hours versus 124.9 hours).2. For a �xed amount of training data, in
reasing the number of total parameters



6.2. SHARING CRITICAL-BAND HIDDEN UNITS 117Frames-to-ParametersSystem 1.25 5 20 80Des
ription WER (%) WER (%) WER (%) WER (%)19.5 MCUP 48.1 45.8 44.1 43.9Table 6.1: Word error rate results on Eval2001 for stand-alone Tandem systems usingTMLPs of a 
onstant training 
omplexity (19.5 MCUP), 40 hidden units per 
riti
al-band,and varying training frames-to-parameters ratio. Even though the TMLPs were trainedusing di�erent training set sizes, the SRI re
ognizer models were all trained using thetraining set used in Chapter 5.leads to only a slight in
rease in the optimal number of hidden units per 
riti
al-band.� For a �xed training time 
onstraint, the optimal ratio of frames-to-parameters isgreater than 40. Furthermore, TMLPs with ratios in this range have between 30 and40 hidden units per 
riti
al-band.6.2 Sharing Criti
al-Band Hidden UnitsWhen looking at 
riti
al-band mean temporal patterns like the ones shownin [112, 62℄ and in Figure 2.5, we immediately noti
e that many temporal patterns are verysimilar within a parti
ular 
riti
al-band and also among di�erent 
riti
al-bands. In [50℄,Hermansky et al. developed a version of Neural TRAP 
alled UTRAP, whi
h used a single
riti
al-band MLP for all 
riti
al-bands. They reasoned that sin
e the 
riti
al-band tem-poral patterns are so similar even among temporal patterns from di�erent 
riti
al-bands,then a single \universal" MLP 
ould be used to extra
t the dis
riminant temporal infor-mation for all 
riti
al-bands. Besides redu
ing the amount of memory and 
omputationrequirements, another reason for developing UTRAP is that sharing this one \universal"MLP a
ross all 
riti
al-bands in this way, o�ered potential for improving generalizationby lessening the sensitivity to training and test set variations. Their experiments on adigit re
ognition task showed that UTRAP performed 
omparably to a Neural TRAPsystem [62℄.Another interesting observation about the temporal information learned by Neu-ral TRAP-like systems 
omes from examining the input-to-hidden weights of the 
riti
al-
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Figure 6.3: Input to hidden weights of various 
riti
al-band hidden units from a femaleHAT network trained on the female CTS training data in Chapter 5. These hidden unitsare gathered from di�erent 
riti
al-bands.band hidden units in HAT and TMLP. As des
ribed in Chapter 3, these input-to-hiddenweights are 
riti
al-band mat
hed �lters a
ting on the log 
riti
al-band energy traje
to-ries of spee
h. Ea
h of these �lters has a frequen
y response whi
h tells us how the �ltera�e
ts 
ertain modulation frequen
ies. When looking at plots of these 
riti
al-band input-to-hidden weights for HAT and TMLP, we noti
e that many of these weights have similarshapes. Figures 6.3 and 6.4 show several input-to-hidden weights from hidden units atdi�erent 
riti
al-bands for HAT and TMLP respe
tively. Noti
e how similar they are.Appendi
es C and D 
ontain many similar plots of input-to-hidden weights of 
riti
al-band hidden units for HAT and TMLP trained on TIMIT and CTS. Appendix E has
orresponding temporal patterns learned by PCA and LDA on CTS.The 
omparable performan
e of UTRAP to Neural TRAP and the similarityof the input-to-hidden weights of 
riti
al-band hidden units learned by HAT and TMLPsuggest that dis
riminant temporal patterns 
an be shared a
ross di�erent 
riti
al-bands.
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Figure 6.4: Input to hidden weights of various 
riti
al-band hidden units from a femaleTMLP network trained on the female CTS training data in Chapter 5. These hidden unitsare gathered from di�erent 
riti
al-bands.



120 CHAPTER 6. FURTHER EXPLORATIONS WITH TMLPWe further explore this suggestion in this se
tion using our TMLP. The main idea is toshare (or tie) 
riti
al-band hidden units a
ross multiple 
riti
al-bands in the TMLP. Thismeans that 
ertain 
riti
al-band hidden units will have the same weights and biases butappear in di�erent positions within the TMLP. For example, if we spe
ify that hidden unit4 of 
riti
al-band 8 be shared with hidden unit 15 of 
riti
al-band 5, then these two 
riti
al-band hidden units will have the same weights and biases. Training pro
eeds normally, butwhen the parameters of hidden unit 4 of 
riti
al-band 8 are updated, the parameters ofhidden unit 15 of 
riti
al-band 5 are updated identi
ally. In this way we e�e
tively haveidenti
al 
riti
al-band dis
riminators that are trained and applied over multiple 
riti
al-bands. In Chapter 5 we trained gender dependent TMLPs on a 68-hour CTS trainingset. In this se
tion we train our gender dependent TMLPs that share 
riti
al-band hiddenunits on the same training set. One 
on�guration for the sharing of 
riti
al-band hiddenunits is to share ea
h 
riti
al-band hidden unit a
ross all 
riti
al-bands. For example, if we
hoose to have 30 total hidden units per 
riti
al-band, this type of sharing means that ea
hof the 30 hidden units appears in every one of the 
riti
al-bands. To make this 
learer,hidden unit 1 of 
riti
al-band 1 shares parameters with hidden unit 1 of 
riti
al-bands 2-15.Similarly, hidden unit 2 of 
riti
al-band 1 shares parameters with hidden unit 2 of 
riti
al-bands 2-15, and so on and so forth. Figure 6.5 shows the frame a

ura
y performan
e onEval2001 for TMLPs whose 
riti
al-band hidden units are shared a
ross all 
riti
al-bands.Ea
h of the TMLPs only di�er by the total number of 
riti
al-band hidden units (ea
h ofwhi
h is shared a
ross all 
riti
al-bands).Frame a

ura
y performan
e starts to plateau after 25 
riti
al-band hidden units.It is safe to assume that 40 shared 
riti
al-band hidden units are suÆ
ient for a
hieving highframe a

ura
y. We 
ompare re
ognition performan
e between a 
omparable non-weightsharing TMLP with 40 hidden units per 
riti
al-band (this is the same TMLP in Chapter 5)with the weight sharing TMLP with 40 shared 
riti
al-band hidden units (TMLP S40) inTable 6.2. We measure the performan
e in terms of frame a

ura
y and word error rates(WER) on Eval2001, and the WERs 
ome from the 3 ASR system 
on�gurations testedin Chapter 5 (e.g., stand-alone Tandem, augmented Tandem, and 
ombined-augmentedTandem). The performan
e of TMLP S40 is always worse than TMLP ex
ept in the 
aseof frame a

ura
y where TMLP S40 gives a higher a

ura
y than TMLP. The WERs for
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Figure 6.5: Frame a

ura
y on Eval2001 for TMLPs whose 
riti
al-band hidden units areshared a
ross all 
riti
al-bands.
TMLP S40 are worse by .4%-.6% absolute whi
h is a statisti
ally signi�
ant margin.It makes sense that the weight sharing TMLP S40 would produ
e worse resultsthan the non-weight sharing TMLP be
ause weight sharing further 
onstrains the modelredu
ing the size of the family of distributions that TMLP S40 
an model. However, whatis somewhat surprising is that the TMLP S40 does so well. The margins in performan
ebetween TMLP S40 and TMLP are not very large. Our motivation for exploring weightsharing in the TMLP 
ame from observations that temporal patterns (either those fromMean TRAPs or from input-to-hidden weights of 
riti
al-band hidden units in HAT andTMLP) from di�erent 
riti
al-bands look similar. Be
ause TMLP S40 performs 
ompara-bly to TMLP, dis
riminant temporal patterns 
an indeed be shared by di�erent 
riti
al-bands without in
urring a large penalty in performan
e. This may be espe
ially 
ru
ialin appli
ations where the amount of memory and 
omputation is limited (i.e., in mobiledevi
es). The TMLP S40 has about 30,000 fewer parameters than the TMLP. Moreover,the TMLP S40 
an potentially give better generalization performan
e in more mismat
hedtraining and testing 
onditions be
ause of its more parsimonious representation.



122 CHAPTER 6. FURTHER EXPLORATIONS WITH TMLPSystem Frames Stand-Alone Augment CombineDes
ription Corre
t WER (%) WER (%) Augment(%) WER (%)TMLP 67.12 44.9 35.5 33.9TMLP S40 67.92 45.5 35.9 34.3Table 6.2: Performan
e of TMLPs with 40 hidden units per 
riti
al-band on Eval2001.TMLP does not have weight sharing, while TMLP S40 shares all 40 hidden units over all
riti
al-bands.6.2.1 Narrow-Band Dis
riminant Temporal PatternsIn Se
tion 5.6 we dis
ussed the temporal patterns learned by HAT and TMLPtrained on CTS data. In this subse
tion, we do the same for the weight sharing TMLPS40. Appendix D 
ontains plots of the 
riti
al-band input-to-hidden unit weights of TMLPS40 as well as 
orresponding modulation frequen
y responses.The narrow-band dis
riminant temporal patterns learned by TMLP S40 resem-ble the 
entroids of the patterns learned by TMLP in Chapter 5 and also displayed inAppendix D. Present are the ubiquitous onset \derivative" patterns, the energy dete
t-ing \Mexi
an hat" patterns, and other patterns that have also been learned by HAT andTMLP in previous 
hapters. What is important is that all of the modulation frequen
yresponses pass spee
h modulations between 0 and 20 Hz. Again, these low modulationfrequen
ies have been shown to be important for spee
h re
ognition.
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Chapter 7
Con
lusion
7.1 SummaryConventional state-of-the-art spee
h re
ognition systems typi
ally only extra
tinformation from spee
h within short-term spe
tral sli
es lasting about 25 millise
onds.Relying solely on short-term spe
tral sli
es for the modeling of spee
h, these spee
h re
og-nition systems are vulnerable to variabilities in spee
h that do not a�e
t human spee
hre
ognition performan
e. The work presented in this thesis further showed a novel way ofmodeling spee
h and integrated it within the framework of a state-of-the-art large vo
ab-ulary 
ontinuous spee
h re
ognizer. Instead of using just short-term spe
tral sli
es, thesystems developed in this thesis extra
t information useful for automati
 spee
h re
ognition(ASR) from long-term narrow-frequen
y bands of spee
h spanning about 500 millise
onds.The motivation for extra
ting information within narrow-frequen
y bands 
omesmainly from human listening experiments that showed that human re
ognition performan
eremains quite high when given band-limited spee
h. Humans 
an also a

urately dete
t
ertain 
hara
teristi
s of spee
h quite robustly from narrow-frequen
y bands of spee
h.The motivation for extra
ting long-term information 
omes from human listening experi-ments showing how humans rely on longer a
ousti
 
ontext for the a

urate re
ognition ofnonsense syllables. Moreover, information theoreti
 analyses of spee
h showed that signi�-
ant amounts of dis
riminant information about the identity of a phone exist at times up toseveral hundred millise
onds before and after. Finally, it was our hope that by extra
tingspee
h information in this radi
ally di�erent way, our new long-term narrow-band (tem-



124 CHAPTER 7. CONCLUSIONporal) systems would be able to 
omplement the traditional systems leading to signi�
antredu
tions in word error rates.Prior to this work, Hermansky and Sharma developed a system that improvedASR performan
e by extra
ting information from long-term narrow-frequen
y bands. TheNeural TRAP system [52℄ proved to be quite 
omparable with traditional ASR systems;however, in 
ombination with traditional systems, Neural TRAP further redu
ed worderror rates. Building o� their su

ess, we developed some Neural TRAP extensions thataddressed one of the major issues in Neural TRAP: the 
hoi
e of narrow-band informationto extra
t. Neural TRAP uses 
riti
al-band level phone posteriors as the narrow-band in-formation sour
e. Multi-layer per
eptrons (MLPs) are trained on 
riti
al-band level labelsof phones to learn phone posterior probabilities from 
riti
al-band log energy traje
toriesof spee
h lasting about 500 millise
onds. Phone posteriors from all 
riti
al-bands are thenused as inputs to a merger MLP that estimates the overall phone posterior probabilities.The problem here is that 
riti
al-band level phone posterior estimation is quite diÆ
ultbe
ause of the dearth of information for 
lassifying phones within 
riti
al-band log energytraje
tories. Be
ause of these diÆ
ulties, we developed two new neural net ar
hite
tures forextra
ting long-term narrow-band spee
h information: Hidden A
tivation TRAP (HAT)and Tonotopi
 Multi-Layer Per
eptron (TMLP).HAT was built on the premise that the mappings from the 
riti
al-band hiddenunit spa
e to the 
riti
al-band phone posteriors of 
riti
al-band MLPs in Neural TRAPwere extraneous and ina

urate. Whatever useful information for dis
riminating betweenphones at the 
riti
al-band level is already 
aptured by the input-to-hidden weights of the
riti
al-band MLPs. These input-to-hidden weights a
t as mat
hed �lters on the input
riti
al-band log energy traje
tories, and they emphasize/deemphasize 
ertain modula-tion frequen
ies of spee
h. Unlike Neural TRAP, HAT uses the 
riti
al-band hidden unita
tivations as the input to the merger MLP instead of the 
riti
al-band phone posteriors.TMLP has the same network 
onne
tions as HAT, but in TMLP the 
riti
al-band hidden unit 
onne
tions are learned as a result of the global gradient des
ent errorminimization training algorithm. Instead of 
onstraining the 
riti
al-band hidden unit
onne
tions to learn what is best for 
riti
al-band level phone 
lassi�
ation, TMLP 
riti
al-band hidden unit 
onne
tions are set to whatever is best for the overall phone 
lassi�
ation.Thus, the family of distributions that TMLP 
an model is greater than HAT.



7.1. SUMMARY 125In Chapter 3, we 
ompared the performan
e of HAT, TMLP, and Neural TRAPsystems on the TIMIT phone re
ognition task. We used the hybrid ANN/HMM ASR setupand found that HAT and TMLP outperform standard Neural TRAP in 
lean 
onditionswhile using 84% fewer parameters. We also 
ompared these temporal systems with a moretraditional system that used 9 frames of Per
eptual Linear Predi
tive (PLP) features plusenergy and deltas and double deltas as inputs to the MLP. The temporal systems performed
omparably in 
lean 
onditions to this PLP system, but in reverberant 
onditions alltemporal systems outperformed this PLP system. We also tested these systems in thepresen
e of additive 
ar and exhibition hall noise at various signal-to-noise ratios. No 
learwinner was de
lared from these tasks. The main �nding whi
h supported earlier �ndings onNeural TRAP was that in 
ombination with the PLP system, HAT and TMLP signi�
antlyimproved performan
e. Be
ause HAT and TMLP performed very well 
ompared to NeuralTRAP we 
on
luded that is was good to skip the mapping to 
riti
al-band phones. Be
auseTMLP did not signi�
antly outperform HAT, there was not yet a 
lear advantage fromfurther un
onstraining the learning of 
riti
al-band hidden unit weights in TMLP; however,TMLP did have the pra
ti
al advantage of not having to use large amounts of temporarydisk spa
e to store all of the 
riti
al-band hidden unit a
tivations. This pra
ti
al advantagewas espe
ially 
lear when we worked on training sets with mu
h more data.In Chapter 4, we integrated the Neural TRAP system with a state-of-the-art re
-ognizer for 
onversational telephone spee
h (CTS). In parti
ular, we 
ombined the phoneposteriors estimated by Neural TRAP with the phone posteriors from a 9 frame PLP MLPand transformed the 
ombined phone posteriors into front-end features. These featureswere then 
on
atenated with 
onventional PLP features, resulting in an augmented fea-ture ve
tor that 
aptured spee
h information from multiple time s
ales. We tested thissetup over a series of in
reasingly 
omplex re
ognition tasks (numbers, 500 most 
ommonlyused words from Swit
hboard, and full vo
abulary CTS) and found that this approa
h
onsistently redu
ed re
ognition errors. We showed that the simple posterior 
ombinationmethods tested (e.g., averaging the posteriors, averaging the log posteriors, and inverse en-tropy weighted averaging of the posteriors) all performed roughly the same, but the inverseentropy weighted 
ombination method demonstrated some robustness to 
atastrophi
 er-rors within a single posterior stream. We also 
ited the importan
e of tuning the Gaussian



126 CHAPTER 7. CONCLUSIONWeight parameter1 to redu
e the importan
e of pi
king the optimal number of dimensionsto keep from the posterior stream. Con
atenating the 
ombined posterior features withthe 
onventional PLP features led to a larger dimensional front-end feature ve
tor whi
hhad to be 
ompensated for by adjusting the Gaussian Weight.After su

essfully integrating Neural TRAP within a state-of-the-art re
ognizer,we pro
eeded to 
ompare various approa
hes for the extra
tion of useful information fromlong-term 
ontexts for re
ognizing CTS in a variety of ASR system 
on�gurations. Thethree main types of long-term or temporal systems were:1. Totally un
onstrained - These systems simply took the 15 bands by 51 frames of logenergies as inputs. 15 x 51 MLP3 used a single hidden layer MLP, while 15 x 51MLP4 used a double hidden layer MLP.2. Band-
onstrained linear - These systems 
al
ulated linear transforms on the log
riti
al-band energy traje
tories. PCA40 used prin
ipal 
omponents analysis toproje
t the input traje
tories along dire
tions 
orresponding to the top forty dimen-sions. LDA40 used linear dis
riminant analysis to transform the input traje
toriesalong the top forty most dis
riminant dire
tions.3. Band-
onstrained nonlinear - These systems used some form of 
riti
al-band MLPto extra
t information from the input 
riti
al-band traje
tories. HAT Before Sig-moid, HAT, Neural TRAP, Neural TRAP Post Softmax used outputs from variouspoints within 
riti
al-band MLPs trained to learn 
riti
al-band level phone posteri-ors. TMLP was like HAT ex
ept that the 
riti
al-band hidden unit 
onne
tions werelearned to optimize the overall phone posterior estimate.The three types of ASR system 
on�gurations for the 
omparison tests were:1. Stand-Alone Tandem - The phone posterior outputs of the temporal systems weretransformed and used as the front-end features for a 
onventional Gaussian mixtures-based HMM re
ognizer.2. Augmented Tandem - The phone posterior outputs of the temporal systems weretransformed and 
on
atenated with 
onventional short-term front-end features. The1Re
all that this is a spe
i�
 weighting fa
tor found in the SRI re
ognizer.



7.1. SUMMARY 127resulting feature ve
tor was then used as the front-end feature ve
tor for a 
onven-tional Gaussian mixtures-based HMM re
ognizer.3. Combined-Augmented Tandem - The phone posterior outputs of the temporal sys-tems were 
ombined with the phone posterior outputs from an MLP whose inputswere 9 frames of PLP features (9 Frame PLP MLP). These were transformed and
on
atenated with 
onventional short-term front-end features. The resulting featureve
tor was then used as the front-end feature ve
tor for a 
onventional Gaussianmixtures-based HMM re
ognizer.We found that 15 x 51 MLP4, HAT and TMLP 
onsistently outperformed allother temporal systems in all ASR system 
on�gurations. The band-
onstrained HATand TMLP systems performed better in the 
ombined-augmented Tandem 
on�gurationthan the un
onstrained 15 x 51 MLP suggesting that the 
riti
al-band 
onstraint foundin HAT and TMLP are more helpful for learning 
omplementary information to the 9Frame PLP MLP. HAT and TMLP outperformed band-
onstrained linear temporal sys-tems, suggesting that probabilities of 
ertain 
riti
al-band 
ategories are important forhigher re
ognition performan
e. HAT and TMLP outperformed other band-
onstrainednonlinear temporal systems, suggesting that phone posteriors at the 
riti
al-band level arenot the optimal 
riti
al-band level information to extra
t. Rather, it is the information
aptured by the 
riti
al-band hidden units (i.e., the mat
hed temporal �lters) that is bestfor the 
lassi�
ation of phones.Toward the end of Chapter 5, we investigated what phone 
ategories the tem-poral systems 
onsistently performed better on 
ompared with the intermediate-term 9Frame PLP MLP. 15 x 51 MLP4, HAT and TMLP 
onsistently 
lassi�ed diphthongs,�lled pauses, laughter, and a few other phones (/ae/, /hh/, /th/, /z/, /ax/, and /dx/)better than 9 Frame PLP MLP. The very best ASR system developed, the TMLP in
ombined-augmented Tandem 
on�guration, a
hieved an impressive 8.9% relative redu
-tion in word error rate on CTS 
ompared with only using the short-term state-of-the-artfront-end feature ve
tor alone. The s
ale of this relative redu
tion in word error rate also
arried over when using the full state-of-the-art spee
h re
ognition system on the CTSevaluations in 2004 [135℄.In Chapter 6 we further explored the settings for TMLP. We found that the



128 CHAPTER 7. CONCLUSIONoptimal number of 
riti
al-band hidden units in TMLP does not in
rease with more trainingdata. The optimal ratio of training frames to trainable parameters in the TMLP wasgreater than 40. Finally, we showed that sin
e many 
riti
al-band mat
hed �lters learned byTMLP and HAT looked similar a
ross di�erent 
riti
al-bands, it was possible to maintain
omparable performan
e by sharing the 
riti
al-band hidden units a
ross all 
riti
al-bandsin the TMLP, thereby redu
ing the total number of parameters by 30,000.As mentioned in Chapters 3, 5, and 6, the temporal patterns learned by HATand TMLP systems as well as PCA and LDA systems are displayed in Appendi
es C, D,and E. Almost all of the patterns learned by HAT and TMLP systems preserve the lowmodulation frequen
ies of spee
h (0 to between 16 and 20 Hz) whi
h are important forspee
h re
ognition. The patterns learned by PCA and LDA also pass higher modulationfrequen
ies. Also, patterns learned by PCA resemble sinusoidal basis fun
tions.7.2 ContributionThe work in this thesis further developed the te
hniques of extra
ting informationfrom spee
h over long time spans within narrow-frequen
y 
hannels. Previously, all su
happroa
hes (the original Neural TRAP and its variants) were designed and tested onlyon smaller tasks of limited 
omplexity like numbers, digits, and read spee
h. One ofthe major 
ontributions of this thesis was to integrate these long-term approa
hes withinthe framework of a state-of-the-art large vo
abulary 
ontinuous spee
h re
ognizer for there
ognition of 
onversational telephone spee
h. We have also developed two new NeuralTRAP-like 
lassi�ers that outperform Neural TRAP and use fewer parameters. Using HATand TMLP, we were able to a
hieve signi�
ant word error rate redu
tions on the 
hallengingtask of re
ognizing 
onversational telephone spee
h. In fa
t, 
ombined-augmented Tandemfeatures derived with HAT were used in SRI's state-of-the-art 2004 re
ognition system [135℄.With these features, system performan
e was improved by about 10% relative 
omparedto a system without HAT-based features.In addition to redu
ing word error rates on a 
hallenging ASR task, we havegained some understanding from 
omparing various methods of extra
ting informationfrom long-term narrow-band spee
h. We have seen in many 
ases that extra
ting informa-tion in this way leads to systems that 
ombine well with more traditional methods that
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t information from shorter time 
ontexts over the entire spe
trum. By 
omparingvarious temporal systems, we learned that it is important to extra
t probabilities of 
ertainsub-phonemi
 
ategories of spee
h from the long-term energy traje
tories. These 
ategories
orrespond to temporal patterns that are useful in dis
riminating between spee
h sounds.Using phone posteriors at the 
riti
al-band level was 
onsistently worse than using prob-abilities of these temporal patterns. This work also examined what phones are better
lassi�ed by temporal systems.Finally, this work began exploring the reuse of 
ertain dis
riminant 
riti
al-bandtemporal patterns for ASR. By sharing all 
riti
al-band hidden units in TMLP a
ross all
riti
al-bands, we were able to show that dis
riminant temporal patterns 
an indeed betrained and applied on di�erent 
riti
al-bands without a gross redu
tion in performan
e.Further studies are required, however, to determine whi
h spe
i�
 patterns 
an be shareda
ross whi
h 
riti
al-bands. The dis
riminant temporal patterns learned in this thesisfurther support previous studies on the importan
e of modulation frequen
ies between 0-20Hz for ASR. The patterns learned by TMLP and HAT (displayed in Appendi
es C and D)mostly have modulation frequen
y responses that emphasize these important frequen
ies.7.3 Future WorkThe work on HAT and TMLP has shown the basi
 e�e
tiveness of using 
riti
al-band hidden units to derive dis
riminant temporal �lters. Throughout, we have been usinga 
onstant number of hidden units per 
riti
al-band. It is likely that improvements inperforman
e as well as redu
tions in total parameters 
an be a
hieved by 
ustomizing ea
h
riti
al-band with its own optimal number of hidden units. For example, high frequen
y
riti
al-bands probably do not need as many hidden units as 
riti
al-bands around 500 Hzwhere a lot of phoneti
 information exists.Further redu
tions in model size 
an also be a
hieved by exploring more weightsharing s
hemes in TMLP. We tried the simplest s
heme of sharing all 
riti
al-band hid-den units a
ross all 
riti
al-bands. Some of the �lters learned by the hidden units maynot be useful for 
ertain bands. It is also likely that only some 
riti
al-bands share 
ertaindis
riminant temporal �lters. For example, adja
ent 
riti
al-bands are more likely to 
on-tain similar dis
riminant temporal �lters than 
riti
al-bands separated by 2,000 Hz. An



130 CHAPTER 7. CONCLUSIONexhaustive study of various sharing s
hemes would be able to dis
over whi
h bands sharewhi
h kind of temporal �lters. Another useful byprodu
t of su
h a study would be thatthe learned dis
riminant temporal �lters 
ould be �xed and reused over and over againas a part of a prepro
essing step for front-end feature extra
tion. This is be
oming moreattra
tive ea
h year as we 
ontinue to gain a

ess to more training data, whi
h requireslonger training times for our methods.All of the 
omparisons in Chapter 5 were tested on CTS, whi
h is a very diÆ
ulttask but has relatively little noise 
oming from outside sour
es like 
ars, sirens, fans, otherpeople, et
., so given a lot of training data, narrow-band 
onstraints may make less ofa di�eren
e than you might see in other tasks. Therefore, it would be a great interestto repeat some of the 
omparisons between the un
onstrained temporal systems and thenarrow-band 
onstrained temporal systems in Chapter 5 on a large vo
abulary 
ontinuousspee
h task 
ontaining more naturally o

urring noises (e.g., re
ordings of meetings). It islikely that the narrow-band 
onstraints will show more of a bene�t on su
h a task.Finally, in all of the HAT and TMLP experiments in this thesis, we used log
riti
al-band spee
h energy traje
tories lasting 51 frames or about 500 millise
onds. Fur-ther explorations of HAT and TMLP by varying the input time 
ontext as well as wideningthe frequen
y band (i.e., using more than one 
riti
al-band) of the inputs to the band spe-
i�
 hidden units may lead to additional performan
e improvements. HAT and TMLP
lassi�ers of varying time 
ontext and bandwidth 
an o�er separate and 
omplementarysnapshots of the spee
h signal leading to in
reased robustness. The ASR system frame-work is already in pla
e be
ause we 
an 
ombine any number of HAT and TMLP 
lassi�ersusing the simple posterior 
ombination te
hniques explored in Chapter 4. On
e 
ombined,these MLP-based features 
an augment the 
onventional short-term features o�ering analmost limitless number of di�erent snapshots extra
ting the redundant information foundin spee
h.
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Appendix A
Criti
al-Band Cutto� Frequen
iesfor TIMIT

This appendix lists for referen
e the half power 
ut-o� frequen
ies for the 
riti
al-band �lters on the TIMIT database whi
h is sampled at 16 kHz.
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Criti
al-Band Frequen
y Range (Hz)1 18-1632 118-2673 220-3794 329-5025 446-6376 575-7907 720-9658 885-11659 1073-139710 1290-166711 1542-198212 1836-235013 2180-278214 2582-328915 3055-388516 3609-458717 4262-541218 5030-638319 5933-7527Table A.1: The half power 
ut-o� frequen
ies of ea
h 
riti
al-band for spee
h data sampledat 16 kHz.
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Appendix B
Criti
al-Band Cutto� Frequen
iesfor CTS

This appendix lists for referen
e the half power 
ut-o� frequen
ies for the 
riti
al-band �lters on the CTS data whi
h is sampled at 8 kHz.
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Criti
al-Band Frequen
y Range (Hz)1 17-1612 115-2653 216-3754 323-4955 439-6296 565-7797 707-9498 868-11449 1051-137010 1262-163211 1506-193712 1790-229313 2122-270914 2509-319715 2963-3769Table B.1: The half power 
ut-o� frequen
ies of ea
h 
riti
al-band for spee
h data sampledat 8 kHz.
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Appendix C
HAT and TMLP Criti
al-BandPatterns for TIMIT

In Appendi
es C, D, and E, we display plots of 
riti
al-band temporal patternsthat our methods have learned. In the HAT and TMLP networks, these patterns 
ome fromthe input-to-hidden weights of 
riti
al-band hidden units. As des
ribed in Chapter 3, theseinput-to-hidden weights are mat
hed �lters a
ting on the long-term, narrow-frequen
y logenergy input traje
tories of spee
h. As su
h, ea
h �lter has a 
orresponding modulationfrequen
y response. For spee
h re
ognition, it has been shown that modulation frequen
iesbetween 0-16 Hz are important (see Chapter 2 for a detailed dis
ussion about modulationfrequen
ies and spee
h re
ognition).In this appendix, we display pi
tures of 
riti
al-band dis
riminant temporal pat-terns learned by the HAT and TMLP networks from Chapter 3 trained on TIMIT data.There are a total of 380 dis
riminant temporal patterns (19 
riti
al-bands times 20 hiddenunits per 
riti
al-band), whi
h is too many to plot. Sin
e many of these dis
riminant tem-poral patterns look similar, we have 
lustered all of them using agglomerative 
lusteringwith the 
orrelation based similarity measure des
ribed in Chapter 2 (Eq.2.5). We stop
lustering at 20 
lusters and average all patterns belonging to a parti
ular 
luster. We 
allthis average pattern a 
entroid, and we display the tables showing whi
h 
riti
al-bands
ontain hidden unit patterns that make up a parti
ular 
entroid in Table C.1 for HAT andTable C.2 for TMLP. We also plot the 
entroid patterns with their 
orresponding modu-



136 APPENDIX C. HAT AND TMLP CRITICAL-BAND PATTERNS FOR TIMITCentroid Criti
al-Band(s)Centroid 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19Centroid 3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 5 19Centroid 6 6, 11, 15, 17Centroid 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19Centroid 8 2, 17, 19Centroid 9 2Centroid 10 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19Centroid 11 12, 14Centroid 12 4, 5, 10, 11, 14Centroid 13 1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18Centroid 14 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19Centroid 15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 16 16, 17Centroid 17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 18 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 19Centroid 19 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18Centroid 20 19Table C.1: Centroid 
omposition table for 
riti
al-band hidden units of HAT trained onTIMIT. The originating 
riti
al-bands of all the hidden units 
lustered within a parti
ular
entroid are listed.lation frequen
y responses in Figures C.1 and C.2 for HAT and in Figures C.3 and C.3 forTMLP.
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Figure C.1: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from HAT trained on TIMIT (Centroids 1-10). Thex-axes 
orrespond to the frame index and modulation frequen
y respe
tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively. The horizontalline in the modulation frequen
y response is the -3 dB half power point.
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Figure C.2: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from HAT trained on TIMIT (Centroids 11-20). Thex-axes 
orrespond to the frame index and modulation frequen
y respe
tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively. The horizontalline in the modulation frequen
y response is the -3 dB half power point.
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Centroid Criti
al-Band(s)Centroid 1 1, 2, 3, 5, 7, 10, 11, 12, 14, 15, 18, 19Centroid 2 1, 5, 7, 9, 10, 12, 13, 17, 18Centroid 3 2, 4, 5, 6, 7, 10, 14, 15, 17, 19Centroid 4 2, 3, 4, 7, 8, 10, 12, 13, 14, 15, 16, 17, 19Centroid 5 5, 16, 17Centroid 6 2, 4, 7, 8, 10, 13, 14Centroid 7 1, 4, 5, 6, 12, 13, 16, 18Centroid 8 4, 17Centroid 9 2, 3, 5, 6, 7, 10, 11, 16, 18Centroid 10 1, 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 18, 19Centroid 11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 12 1, 2, 3, 4, 7, 8, 12, 13, 14, 15, 16, 18, 19Centroid 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 14 3, 6, 10, 11, 13, 15Centroid 15 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 16 1, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17Centroid 17 1, 4, 6, 7, 9, 11, 12, 13, 14, 16, 17, 19Centroid 18 2, 3, 6, 7, 8, 9, 11, 12, 13, 16, 18, 19Centroid 19 3, 4, 6, 7, 8, 9, 19Centroid 20 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 19Table C.2: Centroid 
omposition table for 
riti
al-band hidden units of TMLP trained onTIMIT. The originating 
riti
al-bands of all the hidden units 
lustered within a parti
ular
entroid are listed.
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Figure C.3: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from TMLP trained on TIMIT (Centroids 1-10).The x-axes 
orrespond to the frame index and modulation frequen
y respe
tively, andthe y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively. Thehorizontal line in the modulation frequen
y response is the -3 dB half power point.
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Figure C.4: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from TMLP trained on TIMIT (Centroids 11-20).Thex-axes 
orrespond to the frame index and modulation frequen
y respe
tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively. The horizontalline in the modulation frequen
y response is the -3 dB half power point.
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Appendix D
HAT and TMLP Criti
al-BandPatterns for CTS

In this appendix, we display pi
tures of 
riti
al-band dis
riminant temporal pat-terns learned by HAT and TMLP networks from Chapter 5 trained on 34 hours of femaleCTS data. These patterns are found in the input-to-hidden unit weights of the 
riti
al-bandhidden units. There are a total of 600 dis
riminant temporal patterns (15 
riti
al-bandstimes 40 hidden units per 
riti
al-band), whi
h is too many to plot. Sin
e many of thesedis
riminant temporal patterns look similar, we have 
lustered all of them using agglom-erative 
lustering with the 
orrelation based similarity measure des
ribed in Chapter 2(Eq.2.5). We stop 
lustering at 40 
lusters and average all patterns belonging to a parti
-ular 
luster. We 
all this average pattern a 
entroid, and we display the tables showingwhi
h 
riti
al-bands 
ontain hidden unit patterns that make up a parti
ular 
entroid inTables D.1 and D.2 for HAT and Tables D.3 and D.4 for TMLP. We also plot the 
entroidpatterns with their 
orresponding modulation frequen
y responses in Figures D.1, D.2,D.3, and D.4 for HAT and in Figures D.5, D.6, D.7, and D.8 for TMLP.In addition to the HAT and TMLP networks trained on female CTS data fromChapter 5, we also display plots from the weight-sharing TMLP S40 in Chapter 6. Thereare a total of 40 shared 
riti
al-band hidden units for TMLP S40. We plot the input-to-hidden weights of these 40 shared 
riti
al-band hidden units (dis
riminant 
riti
al-bandmat
hed �lters) as well as their 
orresponding modulation frequen
y responses in Fig-



143Centroid Criti
al-Band(s)Centroid 1 2, 6Centroid 2 1, 3, 4, 5, 10, 12, 13, 14, 15Centroid 3 8, 9, 14Centroid 4 1, 2, 3Centroid 5 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15Centroid 6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15Centroid 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 8 4, 5, 6, 7, 8, 9, 10, 11, 12, 14Centroid 9 1, 2, 3, 4, 13, 15Centroid 10 1, 6Centroid 11 1, 3, 4, 8, 9, 10, 11, 12, 14, 15Centroid 12 1, 2, 5Centroid 13 4, 6, 10, 11, 13, 15Centroid 14 3Centroid 15 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15Centroid 16 3, 4, 5, 6, 7, 8, 9, 10, 15Centroid 17 1, 2, 8, 11, 12, 13, 14Centroid 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 19 12Centroid 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Table D.1: Centroid 
omposition table (Centroids 1-20) for 
riti
al-band hidden units ofHAT trained on 34 hours of female CTS. The originating 
riti
al-bands of all the hiddenunits 
lustered within a parti
ular 
entroid are listed.ures D.9, D.10, D.11, and D.12.
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Centroid Criti
al-Band(s)Centroid 21 3, 6, 7, 8, 9, 10, 12, 13, 14, 15Centroid 22 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 23 6, 8, 9, 11, 12, 14, 15Centroid 24 7, 8, 9, 12, 14Centroid 25 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 26 1, 2, 3, 4, 5Centroid 27 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 28 7Centroid 29 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 30 1, 2, 3, 4, 5, 6, 11, 13, 14, 15Centroid 31 2, 3, 6, 7, 9, 10, 11, 12, 14, 15Centroid 32 1, 2, 4, 5, 11, 12, 13, 15Centroid 33 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 34 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 35 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14Centroid 36 2, 5, 6, 7, 13, 15Centroid 37 3, 8, 9, 10, 11, 14Centroid 38 3, 4, 5, 6, 7, 8, 9, 10, 15Centroid 39 2, 3, 6, 8, 9, 10, 11, 12, 13, 14Centroid 40 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Table D.2: Centroid 
omposition table (Centroids 21-40) for 
riti
al-band hidden units ofHAT trained on 34 hours of female CTS. The originating 
riti
al-bands of all the hiddenunits 
lustered within a parti
ular 
entroid are listed.
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Figure D.1: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 1-10). The x-axes 
orrespond to the frame index and modulation frequen
y respe
-tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively.The horizontal line in the modulation frequen
y response is the -3 dB half power point.
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Figure D.2: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 11-20). The x-axes 
orrespond to the frame index and modulation frequen
y respe
-tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively.The horizontal line in the modulation frequen
y response is the -3 dB half power point.
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Figure D.3: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 21-30). The x-axes 
orrespond to the frame index and modulation frequen
y respe
-tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively.The horizontal line in the modulation frequen
y response is the -3 dB half power point.
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Figure D.4: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 31-40). The x-axes 
orrespond to the frame index and modulation frequen
y respe
-tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels respe
tively.The horizontal line in the modulation frequen
y response is the -3 dB half power point.
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Centroid Criti
al-Band(s)Centroid 1 2, 4, 5, 6, 7, 9, 11, 12, 13, 15Centroid 2 1, 2, 3, 6, 7, 8, 10, 12, 13Centroid 3 1, 3, 4, 5, 12, 13, 14Centroid 4 1, 2, 7Centroid 5 1, 2, 3, 4, 6, 7, 13Centroid 6 8Centroid 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15Centroid 8 3, 4Centroid 9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 10 1, 5, 6, 8, 10, 11, 12, 13, 15Centroid 11 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15Centroid 12 4, 11, 15Centroid 13 1, 3, 6, 7, 8, 9, 11, 15Centroid 14 1, 3Centroid 15 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 16 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15Centroid 17 1, 3, 6, 9, 12, 14Centroid 18 1, 2, 4, 7, 8, 10, 12, 14Centroid 19 2, 3, 6, 7, 14, 15Centroid 20 2, 3, 8, 12Table D.3: Centroid 
omposition table (Centroids 1-20) for 
riti
al-band hidden units ofTMLP trained on 34 hours of female CTS. The originating 
riti
al-bands of all the hiddenunits 
lustered within a parti
ular 
entroid are listed.
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Centroid Criti
al-Band(s)Centroid 21 2, 5, 10Centroid 22 1, 6, 7, 9, 10, 11, 13, 14, 15Centroid 23 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 24 3, 4, 6, 13, 15Centroid 25 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14Centroid 26 4, 6, 15Centroid 27 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 28 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15Centroid 29 2, 5, 8, 9, 14, 15Centroid 30 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15Centroid 31 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 32 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 33 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15Centroid 34 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14Centroid 35 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15Centroid 36 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15Centroid 37 14, 15Centroid 38 4, 8, 9, 14Centroid 39 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15Centroid 40 2, 3, 4, 6, 7, 10, 12, 14Table D.4: Centroid 
omposition table (Centroids 21-40) for 
riti
al-band hidden units ofTMLP trained on 34 hours of female CTS. The originating 
riti
al-bands of all the hiddenunits 
lustered within a parti
ular 
entroid are listed.
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Figure D.5: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 1-10). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels re-spe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure D.6: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 11-20). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels re-spe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure D.7: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 21-30). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels re-spe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure D.8: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of 
riti
al-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 31-40). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the weight magnitude and gain in de
ibels re-spe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure D.9: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of shared 
riti
al-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 1-10). The x-axes 
orrespond to theframe index and modulation frequen
y respe
tively, and the y-axes 
orrespond to theweight magnitude and gain in de
ibels respe
tively. The horizontal line in the modulationfrequen
y response is the -3 dB half power point.
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Figure D.10: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of shared 
riti
al-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 11-20). The x-axes 
orrespond tothe frame index and modulation frequen
y respe
tively, and the y-axes 
orrespond to theweight magnitude and gain in de
ibels respe
tively. The horizontal line in the modulationfrequen
y response is the -3 dB half power point.
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Figure D.11: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of shared 
riti
al-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 21-30). The x-axes 
orrespond tothe frame index and modulation frequen
y respe
tively, and the y-axes 
orrespond to theweight magnitude and gain in de
ibels respe
tively. The horizontal line in the modulationfrequen
y response is the -3 dB half power point.
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Figure D.12: The input-to-hidden weights and 
orresponding modulation frequen
y re-sponses of shared 
riti
al-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 31-40). The x-axes 
orrespond tothe frame index and modulation frequen
y respe
tively, and the y-axes 
orrespond to theweight magnitude and gain in de
ibels respe
tively. The horizontal line in the modulationfrequen
y response is the -3 dB half power point.
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Appendix E
PCA and LDA Criti
al-BandPatterns for CTS

In this appendix, we display pi
tures of 
riti
al-band temporal patterns learned byPCA and LDA methods from Chapter 5 
omputed on 34 hours of female CTS data. Thesepatterns are the ones used to transform the input log 
riti
al-band energy traje
tories.There are a total of 765 temporal patterns (15 
riti
al-bands times 51 dimensions per
riti
al-band), whi
h is too many to plot. Sin
e many of these temporal patterns looksimilar, we have 
lustered all of them using agglomerative 
lustering with the 
orrelationbased similarity measure des
ribed in Chapter 2 (Eq.2.5). We stop 
lustering at 40 
lustersand average all patterns belonging to a parti
ular 
luster. We 
all this average patterna 
entroid and plot the 
entroid patterns with their 
orresponding modulation frequen
yresponses in Figures E.1, E.2, E.3, and E.4 for PCA and in Figures E.5, E.6, E.7, and E.8for LDA.
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Figure E.1: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of PCA 
omputed over 34 hours of female CTS(Centroids 1-10). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure E.2: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of PCA 
omputed over 34 hours of female CTS(Centroids 11-20). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure E.3: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of PCA 
omputed over 34 hours of female CTS(Centroids 21-30). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure E.4: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of PCA 
omputed over 34 hours of female CTS(Centroids 31-40). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure E.5: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of LDA 
omputed over 34 hours of female CTS(Centroids 1-10). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure E.6: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of LDA 
omputed over 34 hours of female CTS(Centroids 11-20). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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Figure E.7: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of LDA 
omputed over 34 hours of female CTS(Centroids 21-30). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.



167
−25−15 −5 5 15 25

−0.2

0

0.2

0.4
Centroid31

0 20 40

−60

−40

−20

0
F. Resp.31

−25−15 −5 5 15 25

−0.2

0

0.2

Centroid32

0 20 40

−60

−40

−20

0
F. Resp.32

−25−15 −5 5 15 25
−0.4

−0.2

0

0.2

Centroid33

0 20 40
−80

−60

−40

−20

0
F. Resp.33

−25−15 −5 5 15 25

−0.2

0

0.2

0.4
Centroid34

0 20 40

−30

−20

−10

0
F. Resp.34

−25−15 −5 5 15 25

−0.2

0

0.2

0.4

Centroid35

0 20 40

−40

−30

−20

−10

0
F. Resp.35

−25−15 −5 5 15 25

−0.2

−0.1

0

0.1

0.2

Centroid36

0 20 40

−60

−40

−20

0
F. Resp.36

−25−15 −5 5 15 25

−0.2

0

0.2

Centroid37

0 20 40
−100

−50

0
F. Resp.37

−25−15 −5 5 15 25

−0.4

−0.2

0

0.2
Centroid38

0 20 40

−40

−30

−20

−10

0
F. Resp.38

−25−15 −5 5 15 25

−0.2

0

0.2

Centroid39

0 20 40

−80

−60

−40

−20

0
F. Resp.39

−25−15 −5 5 15 25

−0.2

0

0.2

Centroid40

0 20 40

−80

−60

−40

−20

0
F. Resp.40

Figure E.8: The 
riti
al-band log energy traje
tory transformation ve
tors and 
orre-sponding modulation frequen
y responses of LDA 
omputed over 34 hours of female CTS(Centroids 31-40). The x-axes 
orrespond to the frame index and modulation frequen
yrespe
tively, and the y-axes 
orrespond to the tranform magnitude and gain in de
ibelsrespe
tively. The horizontal line in the modulation frequen
y response is the -3 dB halfpower point.
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