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1AbstratLearning Disriminant Narrow-Band Temporal Patterns for Automati Reognitionof Conversational Telephone SpeehbyBarry Yue ChenDotor of Philosophy in Engineering - Eletrial Engineering and ComputerSienesUniversity of California, BerkeleyProfessor Nelson Morgan, ChairTypial automati speeh reognition (ASR) systems extrat features from the full spe-trum of speeh over relatively short time spans (from about 25 milliseonds to approx-imately 100 milliseonds). They rely on the short-term spetral envelope of speeh formodeling speeh sounds. This dependene on the short-term spetral envelope of speehmay aount for the fat that ASR systems still fall short of human reognition ability.Variabilities in the speeh signal ome from environmental soures (suh as noise andreverberation) as well as from the speaker herself/himself (suh as aent and speakingstyle). These variabilities reate diÆult problems for typial ASR systems relying onthe short-term spetral envelope of speeh. This thesis further explores the extration ofdisriminant speeh information from long-term narrow-frequeny energy trajetories ofspeeh. These long-term narrow-frequeny energy trajetories streth over 500 millise-onds of speeh and span ritial-bandwidths. Previous work on extrating informationfrom these long-term trajetories led to the development of a neural network arhiteturealled Neural TRAP [52, 112℄. Neural TRAP onsists of two stages of multi-layer perep-trons (MLPs), eah of whih is a single hidden layer fully-onneted MLP. The �rst stageis trained to estimate the phone posterior probabilities within eah ritial-band, while theseond stage uses the ritial-band level phone probabilities to ome up with an overallestimate of the full spetrum phone posterior probabilities. This system was ompetitive toonventional ASR systems, but in ombination with onventional systems, Neural TRAP



2signi�antly improved ASR performane. We extend the Neural TRAP work along twomajor diretions in this thesis. First, we develop two new Neural TRAP-like arhiteturesthat extrat di�erent ritial-band level information. The �rst new arhiteture, HiddenAtivation TRAP (HAT), is like Neural TRAP exept that instead of using the outputs ofthe ritial-band MLPs, whih estimate ritial-band level phone probabilities, it uses theoutputs of the ritial-band hidden units, whih represent probabilities of ertain disrimi-nant energy trajetories. The seond new arhiteture, Tonotopi Multi-Layer Pereptron(TMLP), has the same network topology as HAT, but the ritial-band hidden unit pa-rameters and the disriminant energy trajetories that they model are not onstrained tolearn ritial-band level phone posteriors, rather they are free to learn useful ritial-banddisriminant patterns for the estimation of the full-band phone posteriors. The seond ma-jor extension in this thesis is the integration of the long-term narrow-band systems witha onventional ASR system for the reognition of onversational telephone speeh (CTS).By augmenting onventional short-term features with features derived from a ombina-tion of phone posteriors estimated by the long-term systems and by more onventionalintermediate-term systems, we ahieve word error rate redutions of about 9% relative onCTS, whih is onsidered impressive for this task.
Professor Nelson MorganDissertation Committee Chair
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1
Chapter 1
Introdution

One of the funnier moments in a Star Trek movie happened when the rew ofthe starship Enterprise attempt to save the Earth by traveling bak hundreds of years tothe late 1980's in searh of whales. To ful�ll their quest, these futuristi travelers mustdeal with \primitive" tehnologies. They were used to teleporting from one side of theplanet to another, and now they had to ride the buses aross town. In one sene, the hiefengineer of the Enterprise sits in front of a omputer, piks up the mouse and uses it as amirophone to talk with the omputer. To his dismay, the omputer does not even respondwith a beep or a boop. In his time, automati speeh reognition (ASR) had been longsolved, and people ould interat with omputers by simply talking. In our time, ASR, theproess by whih a omputer takes what a user says and translates it into text, remains ahallenging area of researh.1.1 ASR: Not a Solved ProblemYou wouldn't think that ASR still poses a hallenge onsidering that today thereare powerful ASR produts in the market apable of performing a variety of tasks inludingditation, ommand and ontrol, and automated telephone all enter routing. Theseproduts reognize speeh \pretty well" under ideal onditions, where an ideal onditionis one in whih the reognizer was trained to deal with. However, when ompared withhumans, ASR systems still perform muh more poorly. Furthermore, under non-idealonditions, performane of urrent state-of-the-art speeh reognizers degrades sharply.
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Figure 1.1: A omparison of word error rates for mahines and humans from [84℄. Whenpossible, mahine word error rates are updated from a variety of soures [76℄, [36℄, [104℄,and [133℄.In 1997 Rihard Lippmann surveyed the state-of-the-art performane of ASRompared with human performane on various speeh reognition tasks [84℄. Figure 1.1ompares the word error rates1 of mahines versus that of humans on these tasks. Wherepossible, I have updated the mahine word error rates to reet some of the progress thathas been made sine 1997. Speeh reognition performane by mahines is still muh worsethan that by humans.Another way to evaluate the quality of urrent ASR performane is to ompareusing ASR as an input method against other onventional input methods suh as typing.Speeh researher Roger K. Moore has measured the number of orret words per minute2from typing and from a speaker dependent large voabulary ontinuous speeh reognition(SD LVCSR) system like the ones you an buy from SanSoft or IBM for home use. Hefound that an expert QWERTY typist an type up to 70 orret words per minute, whilethe SD LVCSR system an only output about 30 orret words per minute [95℄. It isinteresting to note that while the number of words per minute from the SD LVCSR systemis about 107, the number of orret words per minute drops down to 30. The explanation forthis drop is that the ASR system makes mistakes whih takes time for the user to orret,thus greatly reduing the number of orret words per minute. Consumers expeting ASRditation produts to be as good as a seretary may be sorely disappointed. The worderror rates of ASR systems are still too high.The errors made by ASR systems ome from two major soures of variability:1Word error rate is a typial performane measure for ASR systems and is de�ned to be the total numberof errors (word substitutions, insertions, and deletions) divided by the total number of words.2This is a measurement of how many of the desired input words an be inputted per minute.



1.2. TYPICAL ASR SYSTEMS 3environmental variations, and speaker variations. Environmental variations an onsist ofsounds piked up by the mirophone that happen in the bakground, e.g., a barking dog, anoisy omputer fan, or even other people gossiping and laughing. We refer to this kind ofenvironmental variation as \bakground noise". Another kind of variation aused by theenvironment is reverberation or the eho e�et. Sound waves oming from a speaker, notonly travel to the mirophone diretly from the speaker's mouth, but also indiretly fromreetions o� walls and other objets. These sound reetions ause signi�ant perfor-mane degradations in ASR systems. Speaker variation an happen both within a spei�speaker (at di�erent times) or aross di�erent speakers (i.e., from one speaker to anotherspeaker). An example of within speaker di�erenes ours when a person speaks at di�erentrates, possibly beause of time pressures or varying levels of exitement. People also tendto talk di�erently depending on the audiene. For example, when speaking formally to aboss or a superior, one may want to enuniate and use a more sophistiated voabulary. Inontrast, when speaking to a friend, a person is more likely to use slang and talk asually.A person's speeh may also sound di�erently when he/she is sik or has just woken up. Theprevious examples highlight variations aused by voabulary hange as well as variationsin the quality of the speeh signal. Cross speaker variability may our in the pith oftheir voies, the aents in their speeh, the rhythm and pae of their delivery, and all thesame variations that an happen within the same speaker. All these soures of speakervariability, as well as the environmental variability mentioned above, ontribute to makingspeaker independent large voabulary ontinuous speeh reognition suh a hallengingtask. Conversational telephone speeh (CTS), onsisting of reordings of people talkingover the phone about everyday topis, represents one of the biggest hallenges faing ASRtoday. One of the goals of this thesis is to address this hallenge and improve performaneon CTS. Before we outline other goals of this thesis, let us �rst disuss the motivation forour approah starting with a brief explanation of onventional ASR systems.1.2 Typial ASR SystemsA typial state-of-the-art ASR system tries to �nd the best sequene of wordsgiven a set of aousti observations and modeling parameters (e.g., grammar, pronun-iation, and phonotatis). Let X = fx1;x2; : : : ;xNg denote a sequene of N aousti



4 CHAPTER 1. INTRODUCTIONobservation vetors or \feature" vetors, and let W = fword1; word2; : : : ; wordMg denotea sequene of M words. The ASR system outputs the word sequene,W�, that maximizesthe following equation: W� = argmaxW P (WjX; �) (1.1)where � represents all the trained model parameters. Instead of building an all-enompassing model of P (WjX; �), we an fator this probability into several smallermodels. First, let us onsider words as a sequene of sub-word units or states. The mostommon hoie for these sub-word states are sub-phones whih are portions of phones3.Without loss of generality, we will denote this sequene of sub-word states by a sequene ofphones: Q = phone1; phone2; : : : ; phoneK . Equation 1.1 an be rewritten as Equation 1.2by summing over all the possible phone sequenes, Q, that together make up the wordsequene, W.argmaxW P (WjX; �) = argmaxW XQ P (W;QjX; �) (1.2)= argmaxW XQ P (XjW;Q; �)P (W;Qj�)P (Xj�) (1.3)= argmaxW XQ P (XjW;Q; �)P (QjW; �)P (Wj�) (1.4)= argmaxW XQ P (XjQ; �AM)P (QjW; �PM)P (Wj�LM ) (1.5)Invoking Bayes' rule we arrive at Equation 1.3. Notie that P (Xj�) in the denominator ofEquation 1.3 is onstant over all word sequenes, so we an drop this term in the argmax.Equation 1.4 results from this and the fatoring the joint probability P (W;Qj�). Wethen apply the onditional independene assumption that the sequene of features X isonditionally independent of the word sequeneW given the phone sequeneQ whih givesus Equation 1.5. Equation 1.5 onsists of three probability models whih also happen tode�ne three major subdivisions in ASR researh. They are:� P (XjQ; �AM): The aousti model models how probable a sequene of featuresare given a sequene of phones.� P (QjW; �PM): The pronuniation model models how probable a sequene of3A phone is de�ned as any single speeh sound onsidered as a physial event without regard to its plaein the sound system of a language [47℄.



1.2. TYPICAL ASR SYSTEMS 5phones are given a sequene of words, essentially providing a pronuniation ditionarythat shows how to pronoune words using their onstituent phones.� P (W; �LM): The language model models how probable a given word sequene is.This is where grammatial and semanti onstraints are modeled.Many researhers atively pursue improvements in pronuniation as well as lan-guage modeling, but this thesis primarily fouses on innovations in the aousti model.One important omponent in the aousti model is the set of aousti observations usedto represent speeh, i.e., the front-end features. Nearly every state-of-the-art ASR systemuses features that represent some form of the spetral envelope of speeh. Figure 1.2 showssome of the typial proessing steps. First, we window the speeh waveform by applyinga 25-milliseond Hamming window every 10 milliseonds. Next, we transform the timedomain speeh signal into the frequeny domain by omputing a 256-point fast Fouriertransformation (FFT) on eah of the windows every 10 milliseonds. Inspired by how thehuman peripheral auditory system works [48℄, the next two steps smooth in frequenyand ompress the magnitude. The squared magnitudes of groups of FFT output bins areaveraged together to simulate an auditory-saled �lter bank. The output of the �lter bankis ompressed by applying the log. For every 10 milliseonds of speeh, the result is asmoothed and ompressed representation of the spetral envelope of speeh. When om-puting either of the typial features, Mel-Frequeny Cepstral CoeÆients (MFCC) [87℄ orPereptual Linear Preditive (PLP) features [48℄, additional transformations are appliedwhih further smooth out the spetral envelope. While these features are omputed overthe entire frequeny range, the temporal ontext of the features is quite limited, omingfrom the original analysis window of 25 milliseonds. Most state-of-the-art ASR systemsuse front-end features that have some form of veloity (delta) and aeleration (doubledelta) omponents or have been transformed by linear projetions omputed over severalonseutive features. The result of suh operations e�etively widens the temporal ontextto about 90 milliseonds. Pitorially, the onventional feature extration proesses speehwithin narrow vertial retangles like the one shown in Figure 1.2.To represent P (XjQ; �AM), state-of-the-art aousti models use Hidden MarkovModels (HMMs). HMMs are probabilisti �nite state mahines. There are states in an
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Figure 1.3: An example of a Hidden Markov Model for the word \at".� A feature vetor at time t is onditionally independent of everything else given thestate at time t. In other words, the emission probability distribution doesn't hangefrom time to time within the same state.� The next state is onditionally independent of all previous states and feature vetorsgiven the urrent state. Essentially, the next state depends only on what the urrentstate is. This assumption is often referred to as the �rst-order Markov assumption.While the seond modeling assumption provides a means of modeling the time evolutionof feature vetors when states transition, the �rst modeling assumption implies that thetime evolution of feature vetors is not modeled within a single state sine the emissionprobability distribution doesn't hange. This means that the probability of being in aphone state is derived from a distribution on a front-end feature that is omputed over avery small amount of time ontext.1.3 MotivationConventional ASR aousti models are based on apturing the representativespetral pro�les of speeh sounds. While these spetral pro�les or spetral envelopes spanthe entire frequeny bandwidth in the speeh, they have very short temporal extents (25milliseonds - 90 milliseonds). As evidened by urrent ASR performane, this short-term approah seems to apture some information about the underlying speeh; however,urrent ASR systems are partiularly sensitive to the aforementioned variations in the



8 CHAPTER 1. INTRODUCTIONspeeh signal that have deleterious e�ets on the spetral envelope of speeh [113℄. Thetemporal information that is aptured by urrent ASR systems is inorporated in a limitedway via the �rst-order Markov modeling in the HMMs.1.3.1 Narrow-Band Temporal Patterns Approah to ASRIt is this weakness of relying on the short-term spetral envelope of speeh thatthe work in this thesis addresses. The main goal of this thesis is to apture long-termtemporal information in speeh and apply it on the reognition of onversational telephonespeeh (CTS). In partiular, this thesis explores and disusses the learning of disriminanttemporal patterns (or temporal pro�les as opposed to spetral pro�les) within narrow-frequeny bands spanning long periods of time (about 500 milliseonds). This work extendsground breaking researh in TempoRAl Patterns (TRAPs) onduted by Sangita Sharma,Hynek Hermansky, and Pratibha Jain [52, 53, 54, 112, 62℄ whih will be disussed indetail in the next hapter. Our approah to improving the state-of-the-art performaneis to develop data-driven front-end features that extrat information from speeh energyin narrow-frequeny bands over long periods of time using neural networks. Instead ofdeveloping spetral features from narrow vertial retangles in the time/frequeny plane,we will extrat temporal features from long horizontal retangles as in Figure 1.4. Inaddition to developing these temporal features, the work in this thesis also ombines thesefeatures with the onventional spetral features. In this way, we use the informationaptured by the temporal features to omplement the information already provided by theonventional spetral features for the purpose of improving ASR on CTS whih ontainslarge amounts of speaker variation.1.3.2 Why Narrow-Frequeny Bands?We draw our motivation for learning in narrow-frequeny bands from a series ofhuman listening experiments. Harvey Flether's human listening experiments [37℄ and JontAllen's summary of his work [2℄ provide the main impetus for working on narrow-frequenybands. Flether's hypothesis is that independent, narrow-frequeny detetors, working inparallel, aount for the robustness of human auditory proessing. Flether introdued the
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Figure 1.4: Proposed temporal front-end feature alulation blok diagram.Artiulation Index (AI) model for prediting speeh artiulation5, whih states that thetotal artiulation error is equal to the produt of independent sub-band artiulation errors.Other listening experiments have also shown how humans seem to be able to disriminatebetween speeh sounds given only narrow-frequeny speeh. Greenberg, et. al. [44, 118℄and Warren, et. al. [128, 127℄ show independently how words an still be reognized despite�ltering out all frequenies of speeh exept for several narrow frequenies. Lippmann [83℄also shows that reognizing onsonants in nonsense CVC syllables an still be done e�e-tively by human listeners even when the speeh is missing middle frequenies from 800Hz to 3,150 Hz. His listeners ould orretly identify 91.6% of the onsonants even whenmissing these frequenies.Another set of listening experiments shows evidene that humans an robustlydetet some set of fundamental ategories or speeh attributes within narrow-band signals.Miller and Niely performed an analysis of onsonant identi�ation experiments where lis-teners were given speeh that had been �ltered by a series of high, low, and band-pass�lters [88℄. They found that the patterns of errors were not random. Instead, errors seem5Artiulation refers to the reognition of nonsense speeh sounds, while intelligibility refers to the reog-nition of meaningful speeh.



10 CHAPTER 1. INTRODUCTIONto be grouped along several speeh attributes like voiing, nasality, a�riation, plae ofartiulation, and an attribute they all duration to distinguish between /s/, /sh/, /z/, and/zh/. Confusions between onsonants sharing an attribute (e.g., voied onsonants) aremore often onfused with eah other, but not often onfused with onsonants not sharingthe attribute (e.g., unvoied onsonants). Also, they measured the mutual information ofspoken and pereived onsonants in noisy band-limited speeh and found that the infor-mation transmitted for the voiing attribute is the most robust, followed by nasality, whileplae is the attribute that is least robust to noise. These results show that ertain speehattributes are robustly deteted within narrow-frequeny bands, and these attributes aredeteted more robustly than larger units of speeh like onsonants.In this work we primarily fous on overlapping narrow-frequeny bands spanninga \ritial bandwidth". The ritial bandwidth omes from early hearing experimentsperformed by Harvey Flether whih showed that the threshold of hearing a pure sinusoidaltone with a noise signal entered at the tone inreases as the noise signal's bandwidth iswidened up to a ertain bandwidth. After exeeding this bandwidth, whih he referred toas a ritial bandwidth, there is no hange in the hearing threshold for the sinusoidal tone.In other words, only noise falling within the ritial bandwidth of a narrow-band signal anontribute to the masking, and in this way one an onsider ritial-bands as a series offrequeny seletive �lters. Motivation for using ritial-bands also omes from some workon deriving disriminant funtions in frequeny for ASR. Malayath and Hermansky usedlinear disriminant analysis (LDA) to derive �lters in the frequeny domain [85℄ and foundthat these �lters very muh resemble the bank of ritial-band �lters used in traditionalfront-end proessing tehniques like PLP and MFCC.1.3.3 Why Long-Term?Human reognition of phones in nonsense syllables has an error rate of about 1.5%aording to Allen's analysis of Flether's early listening experiments [2℄. In ontrast, theASR error rates on phone reognition tasks are still an order of magnitude worse [78, 27,106, 3℄. One reason for the disrepany in performane between humans and mahines isthat humans use longer-term information about the phone whih is not aptured by theurrent emphasis on the short-term spetral envelope in most ASR systems. Note, thislonger-term information does not simply ome from semanti ontext sine Flether's study



1.4. THESIS OVERVIEW 11used nonsense syllables. There must be some important long-term harateristis withinthe aoustis that are ues to the phoneti identity. Researhers have also shown, usinginformation theoreti analysis, that there is signi�ant disriminant information about theidentity of the urrent phone at times up to several hundred milliseonds away [130, 14℄.1.3.4 Complementarity to Conventional FeaturesFinally, by looking for disriminant information in very long time ontexts withinritial-bands, �nding information that is omplementary to the information in the short-term onventional analysis is highly likely. The temporal analysis in this thesis helps moreon some speeh sounds than the short-term onventional features and vie versa. Overthe years, many other ASR systems have greatly bene�ted by using multiple experts orstreams of information. Here is but a sampling of suessful ombination approahes forASR: [92, 71, 52, 115, 65, 86, 31, 12, 1, 73, 94℄. Performane in lean onditions as wellas robustness to noisy onditions improves greatly when ombining multiple streams ofinformation. This work is yet another example of the bene�ts obtained by ombiningdi�erent streams of information.1.4 Thesis Overview1.4.1 Thesis GoalsIn the past few years, several systems that utilize speeh information from narrow-frequeny hannels over long periods of time have demonstrated promising reognitionperformane improvements. The main thrust of this thesis is to further improve theselong-term narrow-band ASR systems. More spei�ally, this thesis has three main goals:1. To design and implement new neural network arhitetures for the learning of pho-netially disriminant patterns within ritial-bands over long periods of time.2. To integrate these new arhitetures with a state-of-the-art ASR system by usingthe outputs of the neural networks as a data-driven feature vetor for the purpose ofimproving reognition performane on hallenging ASR tasks, suh as onversationaltelephone speeh.



12 CHAPTER 1. INTRODUCTION3. To learn the strengths and weaknesses of these new neural network arhiteturesby omparing them to several existing methods for extrating information withinritial-bands over long periods of time.1.4.2 Thesis OutlineThis thesis proeeds as follows. Chapter 2 gives bakground information usefulfor understanding the thesis work. This inludes a survey of previous work to help thereader frame this work within the state-of-the-art in ASR researh. Chapter 3 presents twonew neural network arhitetures for extrating information within ritial-bands over longperiods of time: Hidden Ativation TRAP (HAT) and Tonotopi Multi-Layer Pereptron(TMLP). Performane on a phone reognition task for HAT, TMLP, and other temporalsystems is also presented in this hapter as well as their performane in arti�ial noiseand reverberant onditions. In Chapter 4 we explain the approah of using funtions ofposterior probabilities approximated by neural nets as features for a state-of-the-art ASRsystem and desribe the series of experiments that lead to our best system on�guration forthe onversational telephone speeh reognition task. A omparison of the various temporalsystems on a full onversational telephone speeh reognition task is presented in Chapter 5.We show that HAT and TMLP signi�antly outperform some other narrow-band temporalsystems, and we analyze where these improvements ome from. In Chapter 6 we presentan empirial study examining the optimal on�guration for TMLP given onstraints intotal parameters as well as training data. A setion on sharing ritial-band hidden unitsin the TMLP is also presented. By sharing these parameters, we are able to show whihdisriminant temporal patterns are ommon among di�erent ritial-bands. In Chapter 7,we summarize the major themes and points in this thesis and speulate on future diretions.Appendies C, D, and E ontains a gallery of disriminant temporal patterns learned inHAT and TMLP.
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Chapter 2
Bakground

Having motivated the general approah of extrating speeh information withinnarrow-frequeny bands over a relatively long amount of time, we survey the researhlandsape in this bakground hapter. Spei�ally, we are interested in showing how thework in this thesis \stands on the shoulders of giants"1 by reviewing relevant previouswork.2.1 Related Work2.1.1 Multi-Layer PereptronsMulti-Layer Pereptrons (MLPs) are arti�ial neural networks that have beensuessfully used in many ASR systems over the past 15 years. They are one of theentral tools used in this thesis, and so we provide a brief desription of them. MLPsan be thought of as universal funtion approximators and are ommonly used in ASRas phoneti posterior probability estimators. Given a set of input features, the MLPs aretrained to learn the mapping to phoneti probabilities posterior on the input features.Sine it has been shown theoretially that fully-onneted 3-layer neural networkswith a single, suÆiently large hidden layer of units an approximate any funtion [74, 75℄,3-layer MLPs are typially used. A 3-layer MLP, similar to ones used in this thesis, is1This quote is often attributed to Isaa Newton who wrote \If I have seen further it is by standing onye shoulders of Giants".



14 CHAPTER 2. BACKGROUNDpitured in Figure 2.1. The inputs to the neural net are opied into nodes of the �rst layer,whih is referred to as the input layer. The input layer is fully-onneted to the next layer,alled the hidden layer, whih means that the output of every hidden unit is a funtion ofevery input node. The value at the output of the jth hidden unit, Hj, is a weighted sumof all the inputs passed through a sigmoid nonlinearity:Hj def= sig0� Xi2inputs iniWi;j +Bj1A (2.1)where ini is the ith input, Wi;j is the trainable weight parameter between the ith inputand the jth hidden unit, and Bj is the trainable bias for the jth hidden unit. The sigmoidfuntion is given by: sig(x) def= 11 + exp(�x) (2.2)These hidden units are fully-onneted to the last layer whih is alled the output layer.The output of the kth output unit is given by the softmax funtion:Outk def= exp(Zk)PK2outputs exp(ZK) (2.3)where Zk is given by equation (2.4):Zk def= Xj2hiddenunitsHjWj;k +Bk (2.4)Wj;k and Bk are the trainable weights and bias for the kth output unit. For every ategorythat we wish to lassify, there is an output unit whose value approximates the posteriorprobability of the orresponding ategory after training.The training proedure that we use for these MLPs is the gradient desent-basederror bak-propagation algorithm [108℄. We use the ross-entropy error riterion [15℄ withthe training targets in a \1-of- oding". This means that there are  output lasses, andthe target vetor onsists of \0.0"s exept for the single dimension orresponding to thelabeled ategory whih gets a value of \1.0". The learning shedule is a form of earlystopping with ross-validation. This means that eah epoh's learning rate is determinedby how well the MLP is performing on a separate ross-validation data set. Initiallythe learning rate is high, and as improvements in auray on the ross-validation databeome smaller, the learning rate is exponentially redued. Finally, when no more aurayimprovements happen, the training is stopped to prevent over�tting. If the MLP has a
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Figure 2.1: A 3-Layer Multi-Layer PereptronsuÆiently large number of hidden units to approximate the mapping funtion betweenthe inputs and output lasses, then the outputs of an MLP trained in this way an beonsidered probabilities of the training ategories posterior on the inputs. For a detailedproof of this, as well as further desription of the learning approah, refer to [96℄.2.1.2 The Hybrid HMM/ANN and Tandem ASR ArhiteturesThe work presented in this thesis ontains many experimental results on theautomati reognition of words in various standard speeh databases, and it uses two dis-tint ASR arhitetures: the hybrid HMM/ANN [18℄ and the Tandem [54, 49, 34, 32℄arhitetures. Both of these arhitetures use feed-forward neural nets like the 3-layerMLPs desribed above to derive estimates of phone posterior probabilities. In the hy-brid HMM/ANN arhiteture, these phone probabilities are used diretly in a dynami-programming-based Viterbi searh [107, 105, 57℄, whih approximates the forward algo-rithm for HMMs [11℄, to reognize the best sequene of words. In the Tandem arhiteturethe MLP serves as a data-derived feature extrator. The estimated phone posteriors fromthe MLP are transformed and then used as front-end features to a standard Gaussianmixtures-based HMM system. A blok diagram for a typial hybrid HMM/ANN systemis depited in Figure 2.2, while that for a Tandem ASR system is pitured in Figure 2.3.
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2.1. RELATED WORK 17Muh of the new work in the ASR researh ommunity has foused on a ousinof the hybrid approah, whih uses Gaussian mixtures for modeling the aousti emis-sion probabilities in HMMs. Many powerful tehniques, like adaptation based on Maxi-mum Likelihood Linear Regression (MLLR) [39℄, speaker-adaptive feature transformation(SAT) [80℄, tied ontext dependent triphones [131℄, et. were developed for these Gaussianmixtures-based HMMs and led to major redutions in word error rates. These tehniqueswere harder to integrate within the hybrid system, and so they were either not tried or wereonly moderately e�etive. As a result, the perfomane of many hybrid systems lagged thatof the Gaussian mixtures-based HMMs. With the advent of the Tandem system, the advan-tage of disriminative training of the neural nets ould be ombined with all the powerfuladaptation tehniques developed for the Gaussian mixtures-based HMMs. In [12℄, Benitezet. al. improved the original Tandem setup by using the outputs of the MLPs to augmentthe traditional PLP features instead of replaing them. This led to great improvements inthe performane of the reognizer ompared to the baseline system that simply used thePLP features. There are several issues that arise when using the Tandem approah. First,the development time is greater beause of the additional training time needed for the neu-ral net. Also, there are issues involving the transformation of the MLP outputs (posteriorprobabilities) to features that are better suited for the modeling assumptions implied bythe Gaussian mixtures-based HMM. This involves hoosing suitable transformations andalso determining what amount of dimensionality redution is optimal.2.1.3 TempoRAl Patterns - TRAPsThe work in this thesis is most losely related to the study of temporal patternsor TRAPs. For deades, onventional ASR systems have based the feature extrationproess on the premise that eah of the various speeh sounds or phones have distintivepatterns in frequeny. For example, the spetral envelope of a typial /i/ sound, as in\beet", has magnitude peaks near 280, 2250, and 2900 Hz, while a typial /U/ sound,as in \book", has peaks near 450, 1030, and 2380 Hz. In a similar way, one an lookfor distintive patterns along time within narrow-frequeny bands. This is exatly whatHynek Hermansky and Sangita Sharma did in their TRAPs work [52, 53, 112℄. Usingspeeh data that was phonetially hand-transribed, they �rst omputed frames of logritial-band energies for every 10 milliseonds of speeh. Eah of these frames was given a
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2.1. RELATED WORK 19

-500ms 500ms0

/b/ /d/ /g/ /p/ /t/

/ch/ /bcl/

/gcl/ /kcl/

/sh//s/

/pcl/

/f/

/v/

/hh/

/dcl/

/k/ /jh/

/th/

/m/ /n/ /ng/

/tcl/

/l/

/r/ /w/ /iy/ /ih/ /eh/

/ey/ /ae/ /aa/ /aw/ /ay/

/ah/ /ao/ /ow/ /uw/ /er/

/axr/ /dx/ /ax/ /ix/ /sil/

/z/

Figure 2.5: Mean TRAPs for 45 phonemes for ritial-band 5 (446-637 Hz). The dottedline for eah of the TRAPs represents the enter frame, or time=0 milliseonds. Thepatterns separated by solid lines represent sounds with similar temporal patters. TheY-axis orresponds to the energy magnitude. Adapted from [112℄.



20 CHAPTER 2. BACKGROUNDTRAPs alulated for ritial-band 5 (446-637 Hz) adapted from [112℄. From this �gure,you an see how every phone has its unique temporal pattern. Some of the temporalpatterns look similar to eah other. Temporal patterns oming from vowels (/iy/, /ih/,/eh/, /ey/, /ae/, /aa/, /aw/, /ay/, /ah/, /ao/, /ow/, /uw/, /er/, and /axr/) look prettysimilar in that they all have high energy at the enter frame. Stop onsonants (/b/, /d/,/g/, /p/, /t/, and /k/) also look alike; eah has a low energy valley preeding the enterframe orresponding to the omplete losure in the voal trat.Based on these observations, Hermansky and Sharma surmised that they oulduse similarity measures to the Mean TRAPs in eah ritial-band as features for a neuralnet lassi�er. They reated 101-frame energy trajetories entered at every frame in thesame way as was done to reate the Mean TRAPs. Then they alulated the similaritysore (given by Equation 2.5) to eah of the Mean TRAPs in every ritial-band.d(x; y) = �2xy�x�y (2.5)d(x; y) is the distane between trajetory x and trajetory y as of funtion of the ovarianebetween x and y ( �2xy) and the standard deviations of x and y (�x and �y). This resultedin a set of numbers (15 ritial-bands by 29 phones) that were used as inputs to a mergerMLP trained on orresponding phone targets. Using this MLP in the hybrid HMM/ANNreognition setup, they ahieved a word error rate (WER) of 11.5% on the OGI Numbersorpus. State-of-the-art performane at that time hovered around 6% for this orpus, but11.5% was not a terrible result for suh a radially new approah.Sine many of the Mean TRAPs looked similar, Hermansky and Sharma alsolustered them agglomeratively using the same distane metri in Equation 2.5. Theyalled these luster entroids \Broad TRAPs" beause the Mean TRAPs automatiallygrouped into �ve broad phoneti ategories: vowels, stop-onsonants, friatives, shwas,and silene. A piture of the Broad TRAPs for ritial-band 5 as adapted from [112℄ isshown in Figure 2.6. Using these Broad TRAPs as the templates for reognition, theyagain omputed similarity measures of test speeh to these Broad TRAPs and used thesemeasures as input to an MLP trained to learn phone probabilities. Within the hybridHMM/ANN reognition setup, this Broad TRAP system gave a 12.8% WER on the OGINumbers orpus.To improve upon these initial TRAP-based systems, they developed the Neural
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Figure 2.6: Broad TRAP lusters of the �fth ritial-band (438 Hz - 629 Hz) time traje-tory. The thinner lines in eah plot represent the individual Mean TRAP of the phonemeslustered in one ategory. The thiker line is the Broad TRAP and represents the weightedmean of the onstituent Mean TRAPs. Adapted from [112℄.



22 CHAPTER 2. BACKGROUNDSystem WERBaseline 6.5%Neural TRAP 7.6%Mean TRAP 11.5%Broad TRAP 12.8%Combined: Baseline+Mean TRAP 6.0%Combined: Baseline+Neural TRAP 5.5%Table 2.1: Word error rate results on various systems on OGI Numbers orpus.TRAP system. The Neural TRAP system onsists of two stages of MLPs. The �rst stageMLPs are a set of ritial-band MLPs (one for eah ritial-band) that estimate ritial-band level phoneme probabilities from 101-frame energy trajetories. These ritial-bandMLPs replae the simple similarity metris with a powerful universal funtion approximatorthat is disriminant in nature. The seond stage of the Neural TRAP system onsists of asingle MLP that ombines the output of the eah of the ritial-band MLPs to form a singleestimate for the phone posterior probability. This Neural TRAP system outperformedtheir previous Mean TRAP system by ahieving a 7.6% word error rate on the same OGINumbers orpus.Table 2.1 summarizes the performane of the various hybrid HMM/ANN systemstested by Sharma on the OGI Numbers orpus [112, 52℄. The baseline system is a stan-dard HMM/ANN setup where 9 frames of 8th order PLP epstral oeÆients along with9 deltas and 9 aeleration oeÆients are used as inputs to an MLP outputting phoneposteriors. Note that the temporal ontext of this baseline system is 9 frames (about 100milliseonds). By themselves, the TRAP-based systems do not outperform the baselinesystem. Neural TRAP is ompetitive to the baseline (7.6% vs. 6.5%), while the MeanTRAP and Broad TRAP systems are muh worse. However, when ombining the out-puts of the TRAP-based MLPs (whih look at temporal extents of about 1 seond) tothat of the baseline MLP by simply averaging them in the log domain, reognition per-formane beats that of the baseline system (6.0% for ombination with Mean TRAP and5.5% for ombination with Neural TRAP). In general TRAP-based systems are typiallyompetitive with onventional systems that rely on the spetral envelope of speeh, butwhen ombined with these onventional systems, performane improves over that of ei-



2.1. RELATED WORK 23ther system alone. This suggests that the method of extrating information from speehwithin long-term and narrow-frequeny bands is providing omplementary information tothe onventional methods. Other TRAP-based studies have also shown results onsistentwith this generalization [54, 64, 24℄.Beause the work in this thesis and muh of the other related work on TRAPsrequires deeper understanding of the Neural TRAP system, we will now go into greaterdetail about the Neural TRAP system. Figure 2.7 shows a blok diagram explaining theproessing steps for the Neural TRAP setup. The inputs to the Neural TRAP setup are19 101-frame log ritial-band energy trajetories3. Eah energy trajetory is fed into theorresponding �rst stage ritial-band MLP whose outputs are then either taken beforethe �nal softmax or transformed by log and fed into the seond stage merger MLP. Totrain a omplete Neural TRAP system, the �rst step is to train the ritial-band MLPsusing the standard error bak-propagation algorithm. Hermansky and Sharma used theoverall phone labels as targets for eah of the ritial-band MLPs, so that eah ritial-band MLP would learn to gather all the evidene within ritial-band energy trajetoriesfor phone disrimination. One these MLPs were trained, the training data was forwardpassed through them to reate input training data for the merger MLP. The training pairsfor the merger MLP are either the outputs before the �nal softmax or the log outputsfrom the �rst stage MLPs and the same phone labels used in the �rst stage training. Theseond stage merger MLP is also trained with the error bak-propagation algorithm, andits outputs approximate phone posterior probabilities.It is interesting to disuss the nature of the narrow-frequeny long term energytrajetory that is learned by these various TRAP-based ASR systems. In the Mean TRAPASR system, an underlying representation of the temporal patterns for eah phone inevery ritial-band is aptured by averaging together all suh examples in the trainingdata. The Broad TRAP ASR system further ollapses these Mean TRAPs into 5 lusterentroids. Both of these systems learn basi anonial trajetory patterns that are thenused as a template for mathing during testing. In ontrast, the Neural TRAP systemlearns a disriminant mapping from the ritial-band trajetories to ritial-band levelphone probabilities. Suh mappings produe ritial-band level evidene for the presene3There are 19 ritial-bands when the sampling rate is 16000 Hz and 15 when the sampling rate is 8000Hz.
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Figure 2.7: The Neural TRAP arhiteture onsists of two stages of MLPs. The �rst stageis a set of ritial-band MLPs estimating the ritial-band level phone posteriors. Theseond stage is a merger MLP that ombines the ritial-band level phone posteriors toget an overall estimate of the phone posterior probabilities.or absene of eah phone. Neural TRAP works muh better than either the similarity-based Mean TRAP or Broad TRAP systems, whih suggest that the disriminant mappingprodued by the ritial-band MLP is better able to apture subtle di�erenes betweendi�erent phones not aptured by the similarity measure to Mean TRAPs or Broad TRAPs.It is also interesting to note that the performane di�erene between the MeanTRAP and Broad TRAP systems is not large, whih led Sharma to write that \full phonemelassi�ation on eah sub-band temporal energy pattern may not be neessary". Addition-ally, the mapping from ritial-band energy trajetories to phone probabilities learned bythe ritial-band MLPs in the Neural TRAP system is not perfet. The reported frame er-ror on the OGI Numbers orpus from [112℄ ranges from a low of 65% to a high of 69%. Onemay have expeted this sine it is really hard to distinguish one phone from another sim-ply given a ritial-band speeh signal. Still, this raises an important question: are phoneprobabilities at the ritial-band level the best information to extrat for better ASR per-formane? If not, then what other kind of evidene within ritial-band trajetories shouldbe olleted? The two new neural net arhitetures presented later in this thesis addressthese questions. The �rst new arhiteture, Hidden Ativation TRAP (HAT), shows thatmapping all the way to phones at the ritial-band level is not neessary and atuallyhurts performane. The seond arhiteture, Tonotopi Multi-Layer Pereptron (TMLP),



2.1. RELATED WORK 25automatially learns what is important at the ritial-band level to improve the overallphone lassi�ation rate.Other work that has built upon the foundation of Sharma's work an be groupedinto 3 ategories: improvements to the features presented to Neural TRAP; appliations toother ASR tasks or other speeh related problems; and explorations of di�erent tehniquesto learn important ritial-band level information.The �rst ategory onsists of researh devoted to improving the input features toNeural TRAP. One line of work within this �rst ategory is to replae the adjaent framesof log ritial-band energies with more elegant approahes that avoid artifats arising fromwindowing speeh and applying the short-term FFT. In [99℄, Motl���ek et al. derivedinputs to Neural TRAP diretly from the time domain signal using a bank of band-passGammatone �lters. In [7℄, Athineos et al. reated inputs for Neural TRAP by applyingFrequeny Domain Linear Predition to the speeh signal whih essentially �tted an all-pole model to the speeh signal's squared Hilbert envelope. Motl���ek's approah did notsigni�antly improve over the original Neural TRAP's inputs, while Athineos showed abouta 10% relative improvement on the OGI Numbers task.Another line of researh for improving the inputs to Neural TRAP is the prepro-essing of the original frames of log ritial-band energies with various �lters. In [46, 69℄,Grezl and Kara�at applied 1-dimensional and 2-dimensional �lters to the log ritial-bandspetrum whih in essene either averaged or di�erentiated the energy aross adjaent fre-queny bands and adjaent frames. After these modi�ations, they onatenated adjaentframes within eah ritial-band for input to the Neural TRAP lassi�er. They found thatin ombination with the original Neural TRAP, this new Neural TRAP based on modi�edfeatures gave some amount of omplementary information and improved performane overunombined systems. Jain found in her thesis that transforming the original ritial-bandenergy trajetory by performing prinipal omponents analysis (PCA) or a disrete osinetransform (DCT) and then keeping only half of the original features also improved theperformane of Neural TRAP [62℄. Finally, a push to using three adjaent ritial-bandenergy trajetories instead of one as inputs to eah �rst stage MLPs in Neural TRAP hasalso led to better performane than the original Neural TRAP. Using 3 bands, Jain andHermansky were able to beat the performane of the onventional HMM/ANN system thatused PLP features as input to the MLP on the OGI Numbers task [63℄.



26 CHAPTER 2. BACKGROUNDThe seond ategory of extensions to the original Neural TRAP system is theappliation of Neural TRAP to di�erent tasks, whether they be di�erent speeh reognitiontest sets or other non-ASR tasks. In [64℄, Neural TRAP was used to derive front-endfeatures for a distributed speeh reognition system applied to noisy digit reognition.Shwarz et al. [111℄ used Neural TRAP to perform TIMIT phoneme reognition, andKingsbury et al. used the Neural TRAP arhiteture applied on the task of robust voieativity detetion [70℄.The �nal ategory of extensions explore alternative methods to the learning ofritial-band level information. More spei�ally, what ategories of targets are appropriateto learn at the ritial-band level. As disussed before, the original Neural TRAP learns anonlinear disriminant mapping from the ritial-band energy trajetories to ritial-bandlevel phone probabilities, and these mappings are not very aurate. Jain and olleaguesdeveloped a modi�ed Neural TRAP that learned disriminant temporal patterns for las-sifying six broad ategories based on manner of artiulation [64℄, both at the ritial-bandlevel and full-band level. Using the outputs of their new system as features to augmentonventional MFCC features, they were able to show onsistent improvements on theAurora-2 noisy ontinuous digits data. Hermansky and Jain also explored a new methodbased on Neural TRAP that was designed to learn temporal patterns that are shared byspeeh sounds within the same ritial-band and aross di�erent ritial-bands [50℄. Mo-tivated by the lustering of Mean TRAPs into Broad TRAPs, they developed UniversalTRAP (UTRAP), whih basially used data-derived lass labels for the training of a singleritial-band MLP that replaed all the �rst stage ritial-band MLPs in the Neural TRAPsetup. While the seond stage merger MLP was still trained using phone targets, the �rststage ritial-band MLPs were trained using targets that were derived as follows: startingfrom the set of Mean TRAPs alulated for every phone in every ritial-band, they per-formed an agglomerative lustering (the similarity metri was given by Equation 2.5) ofall these Mean TRAPs to ome up with a set of 9 entroids. These 9 entroids representeddistint speeh events that ommonly oured in all ritial-bands. Next, they relabeledeah frame of speeh in every ritial-band with a label orresponding to the entroid thatwas most similar (as measured by Equation 2.5) to the temporal trajetory entered atthat partiular frame. They reported that the UTRAP system performed omparably toa Neural TRAP system where the ritial-band targets were the Broad TRAP ategories,



2.1. RELATED WORK 27while using many fewer parameters [50℄.2.1.4 Multi-BandThe Neural TRAP system desribed above is an example of a multi-band speehreognition system. In multi-band speeh reognition, evidene of phoneti events are�rst analyzed in independent sub-frequeny bands that are later merged for lassi�ationof speeh sounds. The main di�erene between Neural TRAP and more onventionalmulti-band systems is that the sub-frequeny bands in Neural TRAP are typially muhnarrower, and the temporal ontext for Neural TRAP is from 500 milliseonds to 1 seondompared with onventional multi-band systems that take evidene spanning no more than100 milliseonds.The ollaboration between Bourlard, Dupont, Hermansky, Tibrewala, Morgan,and Mirghafori reated omplete multi-band ASR systems for reognizing ontinuousspeeh within the hybrid HMM/ANN framework [16, 17, 55, 123, 92, 91℄. These sys-tems onsisted of MLPs estimating phone posteriors within sub-bands (omprised of 2 ormore adjaent ritial-bands), a fusion step to merge sub-band phone posteriors to reatean overall phone posterior (usually a simple frame-wise average or produt), and then theHMM Viterbi deoder. They tested their systems on various speeh databases rangingfrom a simple digits and ontinuous numbers orpus to the large voabulary onversa-tional Swithboard task. They also tested the noise robustness of multi-band systems byarti�ially orrupting their speeh data. Generally, the performane of multi-band sys-tems were as good (and in some ases better) than full-band systems in lean onditions;however, in band-limited noisy onditions, multi-band systems signi�antly outperformedfull-band systems. Moreover, in ombination with full-band systems, multi-band systemsfurther improved ASR performane over the baseline full-band systems. Other researhershave also orroborated these general �ndings in their own multi-band systems that werenot neessarily based upon the hybrid HMM/ANN framework [22, 23, 102, 103, 25, 98℄.One issue that ours in the design of multi-band systems is the hoie of ate-gories to lassify at the sub-band level that would lead to the best performane improve-ments for ASR at the full-band level. In the typial multi-band systems built within thehybrid HMM/ANN framework, sub-band MLPs are trained on the full-band phone targets



28 CHAPTER 2. BACKGROUNDin the same way the ritial-band MLPs in the Neural TRAP system are trained. Thismay not be the best kind of target beause sub-frequeny bands may not ontain all theinformation neessary to do full phone lassi�ation. For example, onsider the two fria-tives /f/ and /s/. At lower sub-bands, they are almost indistinguishable. Only at the highfrequeny sub-bands an one easily distinguish these two friatives. Mirghafori in [91℄ ob-served that the sub-band MLPs do onfuse ertain phones quite often. Her hypothesis wasthat by ombining the most onfusable sub-band phone lasses, the sub-band MLPs oulddevote more trainable parameters to better model those phones for whih the partiularsub-band ontained the most information for lassi�ation. One these sub-band phoneswere merged, she retrained MLPs on these new merged sub-band phone ategories. Shefound performane improvements at the frame auray level, whih did not translate toimprovements at the word level.Others have approahed this issue from a global optimization perspetive. Insteadof deriving merged sub-band phone ategories as Mirghafori does or deriving lusteredMean TRAP targets as Jain does in UTRAP, researhers have automatially learned whatis important at the sub-band levels via optimization proedures. Cerisara et al. [21℄ usedthe disriminant minimum lassi�ation error riterion (MCE) [66℄ to guide the trainingof eah sub-band lassi�er. Daoudi et al. in [25℄ and Saul et al. in [109, 110℄ treatedsub-band ategories as hidden variables within probabilisti graphial models and used theexpetation maximization algorithm [26℄ to automatially learn the model parameters tomaximize the likelihood on the training data. In Saul's work, various sub-band detetorsfor evidene of voiing or sonorane were automatially learned without the need for sub-band labeling of the evidene. One of the new neural net arhitetures presented in thisthesis, the Tonotopi Multi-Layer Pereptron, automatially learns what ritial-band levelategories are useful for phoneti lassi�ation using the error-bak propagation algorithm.2.1.5 Temporal FilteringThere has been a onsiderable amount of work devoted to the temporal �lteringof front-end features to improve ASR performane. Temporal �ltering in this ontext refersto the proessing of speeh features (or spetral energies of speeh) over time. All of theTRAP-based systems, inluding the systems developed later in this thesis, are examplesof data-derived temporal �lters. One of the earliest suessful approahes to the tempo-



2.1. RELATED WORK 29ral �ltering of features is Furui's veloity and aeleration oeÆients [38℄. By appendingthe alulated veloities and aelerations of eah of the original front-end features, ASRperformane improves so onsistently that the use of veloity and aeleration oeÆientstoday is ubiquitous. Cepstral Mean Subtration (CMS) [6℄ is another e�etive temporal�ltering tehnique that subtrats out the mean of eah of the epstral oeÆients alu-lated over long periods of time (whole utteranes, whole onversations, or all examples).CMS is often used to make ASR systems more robust to hanges in the hannel like theones aused by mirophone di�erenes. RASTA-PLP is also another tehnique that im-proves robustness to hannel e�ets [51℄ by suppressing onstant fators in eah spetralomponent of the speeh signal.All of these earlier instanes of temporal �ltering, whih led to inreased ASRauraies, an be studied from the point of view of modulation frequenies. Modulationfrequenies [59℄ are the rates at whih the spetral amplitudes of speeh hange. Justas the onventional speeh spetrum measures the energy ontent at various frequeniesor rates of hanges in the time domain speeh signal, a modulation spetrum measuresthe energy ontent at various modulation frequenies or rates of hanges of the spetralenergy over time [8℄. We an view all temporal �ltering tehniques as proesses thateither emphasize or deemphasize ertain modulation frequenies. CMS, whih removesunhanging omponents in the epstrum, �lters out 0 Hz modulations; RASTA-PLP passesomponents of the modulation spetrum between about 1 Hz and 12 Hz; and the veloityand aeleration features emphasize modulations at 10 Hz [51℄.For human speeh pereption, intelligibility of spoken words is diretly related tohow well slow hanges in the speeh spetrum (modulation frequenies less than 16 Hz)are preserved [58, 59℄. Others have also �ltered the spetrum (or epstrum) of speeh overtime to demonstrate in human pereptual experiments whih modulation frequenies arerequired for high intelligibility. Drullman et al. showed that modulation frequenies above16 Hz are not required for good intelligibility, and that signi�ant intelligibility remainswhen only rates less than 6 Hz are preserved [29℄. Arai et al. [5℄ extended Drullman'sresults to the logarithmi domain and applied various kinds of �lters (high-pass, low-pass,and band-pass) to show that modulation frequenies between 1 and 16 Hz are neessary topreserve speeh intelligibility. Kanedera et al. measured the e�et of modulation �lteringto ASR performane and also showed the importane of modulation frequenies between



30 CHAPTER 2. BACKGROUND1 and 16 Hz [68℄.Newer temporal �ltering tehniques an be roughly lassi�ed in one of two at-egories: knowledge-driven or data-driven. In knowledge-driven tehniques, the �lters aremostly designed based on expert knowledge, i.e., whih modulation frequenies are impor-tant for ASR. In data-driven tehniques, some part of the �lter design is guided by theminimization/maximization of an error/goodness sore on training data. We will brieysummarize newer temporal �ltering tehniques for ASR aording to these rough lassi�-ations.Knowledge-Driven Temporal FiltersMotivated by the pereptual studies on the relationship between intelligibilityand preservation of low modulation frequenies, Kingsbury et al. developed ModulationFiltered SpetroGram (MFSG) features [71℄. MFSG proessing steps were designed so thatmodulation frequenies outside of the range between 0 and 8 Hz were �ltered out, whilemodulations at 4 Hz were emphasized. As reported in [71℄, MFSG outperformed regularPLP features in noisy and reverberant onditions, but did not outperform RASTA-PLP,another temporal �ltering tehnique that is also sensitive to slow modulations in a di�erentway. Combining systems trained on RASTA-PLP features with that of MFSG featuresyielded signi�ant performane improvements.Nadeu et al. also developed temporal �lters that not only emphasize ertainregions in the modulation spetrum but also atten out the modulation spetrum withinthese regions [101℄. Aording to [101℄, this equalization of the modulation spetrummakes the �ltered features a better math for the modeling assumption of typial HMMswhih model the emission of features from a single HMM state as being independentand identially distributed. His �lters emphasized modulation frequenies at 3 Hz, whihhappens to be a ommon syllable rate of speeh. Nadeu extended his approah to timeand frequeny �ltering in [100℄. These tehniques also led to signi�ant ASR performaneimprovements in both lean and noisy onditions.Measurements of the average magnitude of modulation frequenies at di�erentauditory frequenies of Mandarin syllables motivated Shen et al. to develop a bank ofRASTA-like temporal �lters [82℄. The parameters of these �lters were set to emphasize



2.1. RELATED WORK 31the important modulation frequenies of their speeh data. They measured the di�erenebetween the magnitudes of noise and speeh with respet to modulation frequeny todetermine whih modulation frequenies were important. The lower this di�erene wasat a partiular modulation frequeny, the more important this frequeny was for speehintelligibility. They found that for Mandarin syllables in noisy and mismathed onditions(additive white noise and mirophone mismath) the regions of importane were between4-8 Hz and between 8-12 Hz.Ben Milner interpreted temporal �ltering tehniques as simply a matrix multi-pliation between a temporal �ltering matrix and a \staked" matrix of features formedby onatenating suessive feature vetors [89, 90℄. If the temporal �ltering matrix on-sisted of a set of Disrete Cosine Transform (DCT) basis funtions and the staked matrixonsisted of epstral vetors, Milner alled their produt Cepstral-Time Matries (CTMs).A subset of the elements in CTMs an be used as front-end features for ASR. Keeping apartiular element in a CTM orresponded to hoosing whih modulation frequenies atwhih quefrenies to preserve. He empirially optimized the hoies of elements in CTMson di�erent tasks and showed that 3.9-11.7 Hz in modulation frequeny is best for isolateddigits, 2.84-8.5 Hz is best for onneted digits, and 3.9-15.6 Hz is best for a sub-word townnames task [90℄.Finally, Yuo et al. developed a robust feature for ASR by temporal �ltering of theautoorrelation trajetories in speeh [132℄. They reasoned that if noise is unorrelatedwith speeh and if the noise is stationary4, then the rate of hange of the autoorrela-tion of noisy speeh is equal to the rate of hange of the autoorrelation of lean speeh;therefore, this rate of hange in the autoorrelation of noisy speeh is a good feature toalulate if you want to get a noise-free representation of the lean speeh. Calulating therate of hange in the autoorrelation sequenes is analogous to applying a di�erene �lterto the autoorrelation trajetories. These authors showed, unsurprisingly, that on arti�-ially added noisy speeh, their temporal �ltering tehnique gave great ASR performaneimprovements.
4A big assumption beause most noises are nonstationary.



32 CHAPTER 2. BACKGROUNDData-Driven Temporal FiltersAll Neural TRAP-like systems, inluding the extensions to Neural TRAP pre-sented in this thesis, are examples of data-derived temporal �lters. The hidden units ofthe ritial-band MLPs learn hyperplane separations in the long-term log energy trajetoryfeature spae. These hyperplane separations are in fat disriminant temporal �lters thathelp separate various phoneti sounds within the long-term log energy trajetories. Thesedisriminant temporal �lters are derived from the data beause they are learned as a resultof the error-bak propagation algorithm with speeh training data.Others have tried to derive temporal �lters from data in muh the same way as theTRAP-like systems. Generally, the steps are as follows: �rst, form either spetral energytrajetories (spetral energy measurements over a sequene of frames) or feature omponenttrajetories (like a partiular PLP oeÆient over a sequene of frames). Next, learn alinear projetion in the spae of these spetral energy/feature omponent trajetories tomaximize (minimize) some goodness (error) funtion on training data. Finally, use theselinear projetions as temporal �lters by applying them to inoming trajetories.Here are a sampling of ommon linear transformation tehniques that researhershave tried. Prinipal omponent analysis (PCA), also known as Karhunen L�oeve Transform(KLT), �nds the linear transformation that projets the data onto axes in the diretions ofthe maximal variation within the data [30℄. Linear Disriminant Analysis (LDA) �nds alinear projetion that best maximizes the ratio of the between-lass satter to the within-lass satter of the projeted data [30℄. When applied to ASR, people generally use sub-word units like phones or HMM states as lass labels for LDA. Independent ComponentAnalysis (ICA) projets the data into dimensions that are as statistially independentfrom eah other as possible [79℄. Minimum Classi�ation Error (MCE) [66℄ an be usedto �nd the linear projetion that minimizes the lassi�ation error funtion whih is thelikelihood ratio of the orret lass models to the inorret lass models, where the lassesare sub-word units like phones.All of the above linear transformation tehniques have been applied in the ontextof deriving temporal �lters for ASR [10, 124, 81, 115, 117, 116, 61, 60℄. These temporal�lters an be applied on individual trajetories of MFCCs as in [81, 61, 60℄, or on indi-vidual log ritial-band energies as in [10, 124, 115, 117, 116℄. These temporal �lters an



2.1. RELATED WORK 33also be designed to have built-in robustness to ertain environmental onditions by usingtraining data orrupted by these environmental onditions as in [117℄. In general, thesedata-driven linear transformation tehniques for deriving temporal �lters improved ASRperformane more than other knowledge-driven temporal �ltering tehniques like veloityand aeleration features or RASTA-PLP. Unlike Neural TRAP and other TRAP-like ex-tensions, these tehniques only involve a linear transformation, while the temporal �lterslearned by Neural TRAP are nonlinear transformations apable of apturing more omplexseparations in temporal trajetories.While there has been a lot of ativity on deriving temporal �lters within eahMFCC oeÆient or eah ritial-band energy trajetory, there is a body of work that allowsfor the learning of �lters that span regions in the spetro-temporal plane. A simple exampleof suh systems are the onventional hybrid HMM/ANN MLPs that take 9 frames of PLPfeature vetores as input features and outputs phone probabilities [18℄. The hidden unitslearn spetro-temporal �lters or hyperplane separations in time and frequeny. The neuralnets developed by Antoniou et al. also uses more frames as inputs to learn disriminativespetro-temporal information [4, 3℄. Reurrent Neural Nets are similar to these feed-forward MLPs, exept that they allow for feed-bak onnetions that an be used to learntemporal relations between suessive feature vetors [106℄. Time-Delay Neural Networks(TDNNs) [125℄ are similar to the standard hybrid HMM/ANN MLP in that they both anlearn temporal relations in the input spae of MFCC or PLP features.Other ativity on learning spetro-temporal �lters inlude: Kajarekar's applia-tion of LDA jointly in both time and frequeny in [67℄, Somervuo's experiments with othertypes of time-frequeny transformations [119, 120℄, and work by Kleinshmidt et al. [73, 72℄in deriving a set of Gabor shaped �lters in time and frequeny motivated by the existene ofspetro-temporal reeptive �elds of neurons in the primary auditory ortex. Kleinshmidtet al. started from a pool of Gabor �lter funtions, eah of whih is de�ned by a produt ofa 2-dimensional Gaussian envelope and a omplex exponential funtion whih gives the theGabor �lter a ripple. From this pool, he piked a subset of these Gabor �lters that gavethe best performane on development data. In [73℄, Kleinshmidt and Gelbart reported a7% relative improvement on the Aurora2 noisy digits task using this approah.



34
Chapter 3
Development of Novel TRAP-LikeClassi�ers

Chapter 1 motivated the approah of learning useful information within longspans of narrow-frequeny hannels in speeh for ASR, and Chapter 2 reviewed previousrelated approahes. In this hapter, we introdue two new neural net arhitetures for thelearning of phonetially disriminant ritial-band temporal patterns. The �rst is alledHidden Ativation TRAP (HAT) and the seond is alled Tonotopi Multi-Layer Perep-tron (TMLP). We will desribe both of these neural net arhitetures and the motivationleading to their design. This hapter also ontains a set of initial experiments on a widelyused ontinuous phone reognition task: TIMIT. We will show how HAT and TMLP re-due phone error rates on TIMIT while using 84% fewer parameters than a omparableNeural TRAP system.3.1 Improving the Original Neural TRAPAs desribed in Chapter 2, Neural TRAP [52℄1 takes a radially alternative ap-proah to extrating phonetially disriminant information from speeh. Instead of ex-trating phoneti information from spetral slies of short amounts of time (about 25 mil-liseonds), as onventional ASR systems do, Neural TRAP extrats phoneti informationfrom separate frequeny hannels (ritial-bands) spanning the full spetrum over a large1Reall from Chapter 2 that TRAP is a mnemoni for TempoRAl Pattern.
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Figure 3.1: The Neural TRAP aousti model with zoomed in view of a ritial-band MLP.amount of time (0.5 seond to 1 seond). In other words, Neural TRAP learns phonetiallydisriminant temporal information within narrow-frequeny bands. It is apable of ahiev-ing omparable performane to onventional ASR systems, but using it in ombinationwith onventional features, researhers have shown signi�ant performane improvementsin many onditions, espeially in high noise onditions [53, 64℄.Before developing the two new neural net extensions to Neural TRAP, we brieyreview how the Neural TRAP system works. A Neural TRAP aousti model as shownin Figure 3.1 onsists of two stages of 3-layer fully-onneted Multi-Layer Pereptrons(MLPs). The �rst stage is a nonlinear mapping from log ritial-band energy time traje-tories2 to ritial-band level phoneti probabilities, and the seond stage onsists of anotherMLP that ombines these ritial-band phoneti probabilities (one set per ritial-band)to obtain the overall phoneti probabilities.Let us fous our attention on the �rst stage of the Neural TRAP aousti model.For eah ritial-band, there is an MLP trained using the standard error bak-propagationalgorithm [108℄ to learn phone posteriors by minimizing the ross-entropy [15℄ betweenthe network output and target vetors. Eah net takes, as input, a half seond (or a 1seond as in [53, 112℄) long log ritial-band energy temporal trajetory onsisting of 51onseutive frames (one frame per 10 milliseonds alulated using a short-term FFT over2A log ritial-band energy time trajetory refers to a time sequene of log ritial-band energy values.



36 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERS25 milliseonds), and the training target is the phone label for the urrent frame. Aftertraining onverges to a minimum, we an interpret the transformations happening in eahof the layers.Webb and Lowe in [129℄ derived a general result for nonlinear adaptive feed-forward layered networks, of whih these ritial-band MLPs are an example. Their en-tral laim was that \minimising the error at the output of the network is equivalent tomaximising a partiular norm, the network disriminant funtion, at the outputs of thehidden units. The �rst part of the network is expliitly performing a nonlinear transfor-mation of the data into a spae in whih the lasses may be more easily separated. Thespei� nature of this transformation is onstrained to maximise the network disriminantfuntion." Although their result was derived with linear output units and sum of squareserror funtion, a similar result an be derived for softmax output units and ross-entropyerror riterion. Aording to Webb, the hidden units transform the input into a spae thatmakes the lasses more separate, while the output units map from this hidden spae tothe output lass (or lass probabilities in our ase). Applying this interpretation to NeuralTRAP, the hidden units of the �rst stage ritial-band MLPs learn hyperplane separationsin the input spae of the 0.5 seond long log ritial-band energy trajetories. Anotherway to look at it is that they learn mathed temporal �lters on the temporal evolution oflog ritial-band energies useful for separating phoneti lasses on the temporal evolutionof the log ritial-band energy, while the output units map the outputs of the mathedtemporal �lters to phone probabilities.In the original Neural TRAP system [52, 112℄ these ritial-band MLPs learn 300suh mathed �lters for eah ritial-band. The hidden-to-output layer of these ritial-band MLPs ombine the outputs of the mathed �lters to form phone probabilities. Theatual performane of these ritial-band MLPs on phone lassi�ation is atually quitelow. One way to see this is by measuring the frame lassi�ation auray. To omputethe frame lassi�ation auray (or onversely, the frame lassi�ation error rate), weount how many times the maximum output (i.e., the lass with the greatest posteriorprobability) of the MLP orresponds to the orret or labeled phone over all the frames ina test set. The auray is the ratio of this ount divided by the total number of frames3.3Classi�ation error is the ratio of the total number of frames minus this ount divided by the totalnumber of frames.
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Critial-Band Frequeny Range (Hz) MLP Frame Auray (%)1 18-163 30.992 118-267 28.393 220-379 29.974 329-502 31.695 446-637 33.426 575-790 33.687 720-965 33.078 885-1165 32.939 1073-1397 31.7210 1290-1667 30.7311 1542-1982 29.5812 1836-2350 30.4813 2180-2782 28.8014 2582-3289 27.8215 3055-3885 27.9316 3609-4587 28.6717 4262-5412 29.5418 5030-6383 30.3319 5933-7527 29.371-19 18-7527 61.85Table 3.1: Frame lassi�ation auray for �rst stage Neural TRAP ritial-band MLPlassi�ers on the TIMIT ross-validation set. The half power ut-o� points of eah ritial-band are also displayed. The MLPs are trained to lassify 1 of 61 phones and eah net has300 hidden units. Chane performane is 12.13%. The last line in the table is the frameauray for the seond stage Neural TRAP merger MLP.



38 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSTable 3.1 shows the frame lassi�ation auraies of �rst stage Neural TRAPritial-band MLPs on the ross-validation data from TIMIT. For omparison sake, theframe lassi�ation auray from the Neural TRAP merger MLP is also shown. The frameauraies for the ritial-band MLPs range from 27.82% to 33.68% whih is signi�antlygreater than the hane performane of 12.13%4. Although the frame auraies for theritial-band MLPs are muh better than hane, they are muh lower than the frameauray for the merger MLP whih integrates information from the entire frequeny rangeof the speeh data. It seems that there is not enough information within a 0.5 seondlong log ritial-band trajetory to aurately lassify all phones, whih is not surprisingonsidering that di�erent phones may look quite similar within a single narrow-frequenyband. To improve the Neural TRAP system, we think it is important to further examineand redesign the ritial-band level lassi�ers. More spei�ally, we believe that mappingto phone probabilities at the ritial-band level may not be optimal. This leads us to asktwo questions:1. Can we skip the mapping from the outputs of the mathed �lters to ritial-bandphone posteriors?2. Is there a better way to train ritial-band mathed �lters?3.1.1 Can we skip the mapping from the outputs of the mathed �ltersto ritial-band phone posteriors?We have noted how the low frame lassi�ation auraies suggest that we annotmake all phone distintions given only a single ritial-band temporal energy trajetory.We hypothesize that whatever important phoneti information that an be gleaned fromthe ritial-band trajetory is already aptured by the mathed �lters (ritial-band MLPhidden units). The additional mapping from the mathed �lters to phone posteriors maybe an extraneous and inaurate mapping. Why not skip this intermediate mapping andinstead use the outputs from the mathed �lters from every ritial-band as inputs for4Chane performane assumes a lassi�er that always hooses the lass with the highest prior probabilityin the training set. In the TIMIT training data, the silene phone is the lass with the highest priorprobability, and it makes up 12.13% of the ross-validation set.



3.2. HIDDEN ACTIVATION TRAP (HAT) 39the seond stage merger? In this way, we hope to �nd a more aurate and parsimoniousmodel.3.1.2 Is there a better way to train ritial-band mathed �lters?Beause training MLPs to learn phone posteriors from log ritial-band temporaltrajetories is too diÆult a task, what ategories, instead of phones, should we train the�rst stage Neural TRAP MLPs to learn? In [64℄ the ritial-band lassi�ers are trained tolearn six broad ategories based on manner of artiulation. One an also imagine trainingthe ritial-band lassi�ers to other linguisti feature-like lasses that an be better distin-guished at the ritial-band level; however, it would be better to learn what ategories areimportant from data. Furthermore, any training labels that we an speify at the sub-bandlevel based on full-band phoneti labels may be inaurate beause of potential asynhronyamong the sub-bands [93℄. We experiment with a new model for Neural TRAP whih on-sists of a single 4-layer neural network whose arhiteture resembles Neural TRAP andwhose training proedure obviates the need to speify ritial-band ategorial targets -the log ritial-band mathed �lters are learned automatially from data without speifyingritial-band level labels.3.2 Hidden Ativation TRAP (HAT)To answer the �rst question above, we have developed a variant of the NeuralTRAP aousti model that we all Hidden Ativation TRAP (HAT). The HAT arhitetureis very similar to the Neural TRAP arhiteture, but it di�ers in one ruial aspet: themappings from the ritial-band hidden units to ritial-band level phone posterior prob-abilities are disarded. More spei�ally, we train a bank of ritial-band MLPs whoseinputs are 51 frames of log ritial-band energies and target labels are the labeled phonefor the enter frame. This training proedure is idential to the �rst stage training forthe ritial-band MLPs of Neural TRAP; however, the hoie of how many hidden units isdetermined from frame auray urves (more about this below). One the ritial-bandMLPs are trained, we \hop o�" the hidden-to-output layer of every ritial-band MLP,leaving only the outputs (\ativations") of the hidden layer (hene, Hidden AtivationTRAP). After error bak-propagation training, one an interpret these hidden layer ati-
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44 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSas inputs. The output of the jth seond layer hidden units is given by Equation 3.3:Olayer2;j def= sig XI Olayer1;iWlayer2;i;j +Blayer2;j! (3.3)Wlayer2;i;j and Blayer2;j are the trainable weights and bias respetively for the jth seondlayer hidden unit. Finally, the outputs of the TMLP are given by Equation 3.4:Outk;f def= exp(Zk)PK exp(Zk) (3.4)where Zk is given by Equation 3.5:Zk def= XJ Olayer2;jWlayer3;j;k +Blayer3;k (3.5)Wlayer3;j;k and Blayer3;k are the trainable weights and bias for the kth output unit.Just like the HAT and Neural TRAP merger training, the TMLP is trained withoutput targets that are \1.0" orresponding to the phone labeled in the urrent frame, and\0" for all others. The TMLP is also trained to minimize ross-entropy error by using theerror bak propagation algorithm. Unlike HAT and Neural TRAP, the ritial-band levelategories of the TMLP orresponding to the ritial-band hidden units are learned as apart of the overall error bak-propagation. This obviates the need to speify any kind ofritial-band training targets beause the one stage training learns what is important forphone disrimination.3.4 Disussion: Learning in HAT and TMLPHaving desribed the two new arhitetures for learning disriminant temporalinformation, it is instrutive to disuss the nature of the speeh information that thesetwo models an extrat. Just as in the Neural TRAP ase, both HAT and TMLP aredesigned to learn phonetially disriminant information within long spanning (around 500milliseonds) narrow-frequeny hannel (ritial-bands) energy trajetories. All of thesemodels �rst onstrain the learning within ritial-bands, and then integrate the disrimi-nant information from all ritial-bands. Another way to say this is that Neural TRAP,HAT, and TMLP impose a onstraint upon the learning of temporal information from the



3.5. EXPERIMENTAL SETUP 45time-frequeny plane: orrelations among individual frames of energies from di�erent fre-queny bands are not diretly modeled. Instead, they model orrelation between long-termenergy trajetories from di�erent frequeny bands.It is also interesting to note that TMLP plaes less onstraints on the learningof disriminant temporal trajetory information than HAT and Neural TRAP. BeauseTMLP is a single neural network whose parameters are learned via the gradient desenterror bak-propagation algorithm, the ritial-band hyperplane separators in TMLP arenot onstrained to learn disriminants that are optimal for separating phone targets atthe ritial-band level. They an learn whatever is best for the next hidden layer to do itsjob. HAT and Neural TRAP learn the ritial-band hyperplane separators that are best forseparating the phones based on the ritial-band level labels that we provide. As desribedin Sub-setion 3.1.2, our ritial-band level phone labels may not be the right lasses tolearn, and they may also be inaurate. Beause HAT is a more onstrained model thanTMLP, the family of distributions that TMLP an learn is larger, and beause HAT hasthe same onnetions as TMLP, the family of distributions that HAT an learn is a subsetof that for TMLP. Figure 3.6 shows a artoon piture of the family of distributions learnedby these two new Neural TRAP extensions.While it is true that TMLP an potentially model a riher family of distributionsompared with HAT, sometimes onstraints an be helpful. In ases when training data issparse, onstraints an help the lassi�er fous on learning the important details. Also, inases when there is noise in the data, onstraints an help the lassi�er ignore irrelevantand misleading information.3.5 Experimental SetupIn subsequent setions, we will present experiments demonstrating the perfor-mane of HAT and TMLP on a small phone reognition speeh task, so in this setion, wedesribe our experimental setup. We use the TIMIT database [40℄ for the experimentalwork in this hapter. The TIMIT speeh database, reorded at TI and transribed at MIT(hene TIMIT), onsists of about 4.27 hours of speeh spoken by 630 di�erent speakersfrom the 8 major dialet regions in the United States. It was reorded at 16,000 Hz with alose talking mirophone in the studio. The prompts spoken by the speakers were designed
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Figure 3.6: Cartoon of the family of distributions modeled by TMLP and HAT.to provide a good overage of pairs of phones and to be diverse in sentene types and pho-neti ontexts. See timit.readme �le found in [40℄ for more details. There are a total of2,342 unique prompts found in TIMIT, and they do not sound ompletely like sentenespeople would naturally utter. For example, the most famous TIMIT prompt is: \She hadyour dark suit in greasy wash water all year". Beause of the odd nature of the promptsand beause there are so few of them, speeh reognition researhers have tended to useTIMIT for phone reognition experiments only.Using the reommended training set onsisting of 3,696 utteranes, we set aside10% of these utteranes (370 utteranes, 111,446 frames, .31 hours) for a separate ross-validation set, and keep the remaining 90% (3,326 utteranes, 1,124,823 frames, 2.81 hours)for training our various MLPs. The ross-validation set is used for adjusting the learningrate during MLP training and also for determining the early stopping point to preventover�tting. For all of our test results we use the omplete TIMIT test set onsisting of1,344 utteranes (410,920 frames, 1.14 hours) and 51,664 total phone tokens.In the experiments of this hapter, we use the hybrid ANN/HMM speeh reog-



3.5. EXPERIMENTAL SETUP 47nition framework [18℄ desribed in Chapter 2. The arti�ial neural nets estimate phoneposteriors. These posteriors are then saled by the phone priors to produe the saled like-lihoods needed for the HMM bak-end Viterbi deoder. We use the Chronos deoder [107℄as well a standard phone bigram language model during deoding.Eah of the various neural nets is trained to learn the original 61 TIMIT phonesshown in Table 3.2. The best phone sequene deoded by Chronos is at �rst a sequeneof these 61 original phones. In many previous studies using TIMIT, researhers map these61 phones into a smaller set of 39 phones [77℄ and report their results using this smallerphone set. Table 3.2 also shows the mapping from the original 61 phones to this smaller 39phone set. We perform the same mapping on the best phone sequene deoded. To obtainour �nal phone error rate whih is the sum of %substitutions+%deletions+%insertions,we perform a standard dynami programming string alignment to the TIMIT test set'sreferene phone sequenes whih are also mapped to the 39 phone set5.In the following setions we present results in lean ondition as well as in noisyand reverberant onditions. Please note, however, that all training was done using leanspeeh, so that we an test the robustness of eah of the systems to unseen onditions. Wehave experimented with two noisy onditions: Meredes Benz noise (reorded inside thear) and exhibition hall noise (ontaining mainly speeh babble, e.g., people talking in thebakground). The noise �les ome from the Wall Street Journal Task for the AURORA2evaluations [56℄. We add these noises to the lean �les at di�erent signal to noise ratios.We also onvolve the lean signals with a room impulse response to give a moderatelyreverberant testing ondition. This room impulse response has a 60 dB reverberation timeof 0.8 seonds whih means that it takes 0.8 seonds for the ehoes to beome 60 dB lesspowerful than the original speeh signal. We are grateful to Jim West, Gary Elko, andCarlos Avenda~no who olleted this impulse response in the Bell Labs Varehoi hamberand made it available to our researh group [126, 9℄.The features fed to our various TRAP-like aousti models are alulated fromthe lean, noisy and reverberant speeh waveforms. These features are log ritial-band5The phone error rates that we obtain using this simple 61 to 39 mapping are atually underestimatesof our potential performane. Lower phone error rates an be obtained by performing the mapping at anearlier stage. By summing the posterior probabilities orresponding to phones from the 61 phone set thatare mapped to a single phone from the 39 phone set, posteriors for the 39 phone set an be obtained.Using these 39 phone set posteriors for deoding leads to lower phone error rates, but for simpliity hoseto perform the mapping after the deoding step.
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ASR Phoneme SymbolsTIMIT 61 Example TIMIT 39 TIMIT 61 Example TIMIT 39b bee b l like ld day d el bottle lg gay g r right rp pea p w wire wt tea t y yes yk key k hh hay hhdx dirty dx hv ahead hhbl (b losure) h# iy beet iydl (d losure) h# ih bit ixgl (g losure) h# eh bet ehpl (p losure) h# ey bait eytl (t losure) h# ae bat aekl (k losure) h# aa father aajh joke jh aw about awh hoke h ay bite ays sound s ah but axsh shout zh ao bought aaz zoo z oy boy oyzh azure zh ow boat owf fish f uh book uhth thin th uw boot uwv vote v ux toot uwdh then dh er bird erm moon m axr butter erem bottom m ax about axn noon n ax-h suspet axnx winner n ix debit ixng sing ng h# (non-speeh events) h#eng washington ng pau (pause) h#en button n epi (epentheti silene) h#q (glottal stop) h#Table 3.2: The 61 original TIMIT phones, their 39 phone equivalents, and an example ofthe phone.



3.6. CLEAN RESULTS 49energies alulated for every ritial-band and for eah frame every 10 milliseonds. Themean and standard deviation of the energies from eah ritial-band are alulated andsubtrated (divided in the ase of standard deviation) on a per utterane basis. 51 on-seutive frames of the log energies from eah ritial-band form the input features for oursystems at the time orresponding to the 26th frame. These 51 onseutive log energy val-ues form ritial-band energy trajetories spanning a time ontext of half a seond whihis twie as long as the average syllable duration of 250 milliseonds.3.6 Clean ResultsIn order to demonstrate the performane of our two new temporal ASR systemsin lean onditions, we trained and tested four systems aording to the experimental setupdesribed in setion 3.5. This setion presents results of experiments in lean onditions,where \lean" refers to the fat that we did not arti�ially ontaminate either the trainingor test sets with noise nor reverberation. Speaker and speaking variations, however, arestill present within the reordings.We trained a Neural TRAP baseline, a HAT, a TMLP, and a onventional hybridANN/HMM ASR system that uses 9 frames of PLP features. The baseline Neural TRAPsystem is similar to the one presented in [53℄. This Neural TRAP system has 300 hiddenunits per ritial-band MLP and a merger MLP with 317 hidden units for a total of1,032,377 trainable parameters. The HAT system has 20 hidden units per ritial-bandand also 317 hidden units for the merger. The total number of parameters for the HATsystem is 159,935. The TMLP system also ontains 20 hidden units per ritial-band, 317hidden units for the merger and has the same number of parameters as the HAT system.Finally, for omparison with a onventional ANN/HMM system, we made a PLP systemthat uses 12th order PLP [48℄ plus energy and �rst and seond derivatives as input features.These features undergo a per-utterane mean and variane normalization and are then fedto an MLP with 9 frames of input ontext whih estimates the phone posteriors andontains roughly 160,000 parameters also. The results on the unorrupted TIMIT test setare shown in Table 3.3 where PLP denotes the onventional ANN/HMM system. We havealso added a olumn for relative improvements of the new temporal systems ompared withthe baseline Neural TRAP. Beause PLP di�ers signi�antly from the temporal systems



50 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSSystem Phone Error RelativeDesription Rate (%) Improvement (%)Baseline:Neural TRAP 32.7 -HAT 29.8 8.9TMLP 31.0 5.2PLP 29.7 N/ATable 3.3: Phone error rates of 3 di�erent temporal ASR systems and a typial ASR systemon the full TIMIT test set mapped to 39 phones under lean onditions.
System Phone Error RelativeDesription Rate (%) Improvement (%)Baseline:PLP 29.7 -PLP+Neural TRAP 27.2 8.4PLP+HAT 26.5 10.8PLP+TMLP 26.8 9.8Table 3.4: Phone error rates of the frame-wise produt of posterior ombination of 3temporal MLPs and a PLP MLP on the full TIMIT test set under lean onditions.

whih fous on learning long narrow-frequeny patterns rather than short spetral slies,the relative improvement omparison to Neural TRAP is not appropriate.In addition to these stand-alone results, we have also tried ombining all tem-poral systems with the onventional PLP system. Beause the PLP system is extratinginformation from spetral slies and not from ritial-band energy trajetories, we expetto see great improvements when the temporal systems are ombined with PLP. Althoughthere are more elaborate ways to ombine posterior probabilities, we simply multiplied theposterior probabilities from the two di�erent systems and saled them by the square of thepriors for eah phone. This implies the that the two probability streams are onditionallyindependent given the underlying phone. This ombination tehnique has worked well inprior ombination studies [65℄. The phone error rates of the ombination systems on theTIMIT test set are shown in Table 3.4.



3.7. CLEAN DISCUSSION 513.7 Clean Disussion
HAT outperforms Neural TRAP by 2.9% absolute on the TIMIT test set onsist-ing of 51,664 phone tokens. This result is signi�ant at the 0.05 level using a \di�ereneof proportions" signi�ane test. This partiular signi�ane test assumes that the twoerror rates are samples from a binomial distribution, and then tests the two binomialsfor being signi�antly di�erent using a Z-sore. TMLP also outperforms Neural TRAP,but this time by only 1.7% absolute. This too is statistially signi�ant at the 0.05 level.The di�erene in performane between HAT and TMLP is also statistially signi�ant atthe 0.05 level; however, the di�erene between HAT and the onventional PLP system isnot statistially signi�ant. From this, we see that both of the two new temporal systemsoutperform Neural TRAP, and HAT is omparable in phone reognition performane tothe onventional PLP system.With only 20 disriminative patterns per ritial-band in the HAT and TMLPsystems, we an ahieve better phone reognition performane in lean onditions thanNeural TRAP whih uses 300 disriminative patterns per ritial-band. Additionally, theHAT and TMLP systems have 84% fewer parameters than Neural TRAP. Beause HAToutperforms Neural TRAP, we an begin to answer question 1 from above; dropping theadditional mapping from hidden unit ativations to ritial-band phone posteriors helps.Unfortunately, in lean onditions, it does not yet seem helpful to unonstrain the ritial-band learning targets beause TMLP does not outperform HAT. Constraints are oftenuseful when there is not enough data, suggesting perhaps that TMLP might not be gettingenough data for training.The ombination of all of these temporal systems with the onventional PLPsystem all give wonderful performane improvements over the PLP system alone (8.4% -10.8% relative improvements). The di�erene in performane between the ombination ofHAT with PLP and the ombination of Neural TRAP with PLP is statistially signi�antat the 0.05 level; however, the di�erene between the Neural TRAP ombination and theTMLP ombination is only signi�ant at the 0.01 level. HAT gives the most improvementof all the temporal systems in ombination with PLP.



52 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSTest System DesriptionCondition Neural TRAP HAT TMLP PLPReverberant 56.3% 54.2% 58.0% 59.2%Benz Noise20 dB 35.9% 33.8% 35.5% 36.5%10 dB 42.7% 42.2% 42.8% 42.2%0 dB 55.0% 56.7% 54.2% 50.5%Exhib. Noise20 dB 41.6% 39.9% 41.8% 40.4%10 dB 61.4% 63.4% 62.0% 60.0%0 dB 102.2% 95.7% 86.5% 95.9%Table 3.5: Phone error rates of the four systems on the TIMIT test set mapped to 39phones under various noise and reverberant onditions. The noises are added at 3 di�erentsignal-to-noise ratios (20 dB, 10 dB, and 0 dB), and the best system performanes are inbold.3.8 Noisy and Reverberation ResultsWe have also tested our new temporal systems in noisy and reverberant on-ditions. For noisy test onditions, we arti�ially added two types of noises at di�erentsignal-to-noise ratios. For the reverberant onditions, we onvolved a room impulse re-sponse to the test sets as desribed in Setion 3.5. Table 3.5 shows the stand-alone phoneerror rates of Neural TRAP, HAT, TMLP, and PLP, while Table 3.6 shows the phone errorrates for the three temporal systems in ombination with PLP.3.9 Noisy and Reverberation DisussionIt has been shown in [114℄, that in reverberant onditions, systems that use dis-riminant temporal �lters are more e�etive than onventional features. Here, we see thatall of the other temporal systems signi�antly outperform PLP in moderate reverberation.HAT performs the best at 54.2%, and Neural TRAP is better than TMLP. Again, in ombi-nation with PLP, these temporal systems add additional improvements to PLP alone. Theombination of HAT and PLP is the best followed by Neural TRAP and PLP, and TMLPand PLP. From this, we onlude that the long-term temporal proessing tehniques aremore e�etive in dealing with reverberation than the shorter-term spetral proessing of



3.9. NOISY AND REVERBERATION DISCUSSION 53Test Combination SystemCondition PLP+ Neural TRAP PLP+HAT PLP+TMLPReverberant 52.9% 52.4% 54.1%Benz Noise20 dB 30.9% 30.7% 30.9%10 dB 35.9% 36.2% 36.3%0 dB 44.9% 45.8% 44.9%Exhib. Noise20 dB 36.2% 35.8% 36.5%10 dB 54.4% 55.7% 55.6%0 dB 79.9% 65.8% 81.3%Table 3.6: Phone error rates of the ombined systems on the TIMIT test set mapped to39 phones under noise and reverberant onditions. The noises are added at 3 di�erentsignal-to-noise ratios (20 dB, 10 dB, and 0 dB), and the best system performanes are inbold.PLP. Constraining the ritial-band hidden units to learn disriminants useful for ritial-band phone targets as we do with HAT and Neural TRAP is more e�etive than TMLP'sglobal optimization in reverberant onditions.When orrupting the test set with Meredes Benz noise whih predominantly hasspetral energy in the low frequenies, we see that the performane depends on the signal-to-noise ratio (SNR). In 20 dB and 10 dB SNRs, HAT outperforms both Neural TRAP andTMLP, but in 0 dB SNR, both Neural TRAP and TMLP outperform HAT. Compared withPLP, the temporal systems only show better results in 20 dB SNR. The ombination resultsare quite omparable with none of the temporal systems showing signi�ant advantages overone another exept both the Neural TRAP and TMLP ombinations with PLP outperformthe HAT ombination at 0 dB SNR. As in all previous onditions inluding the leanondition, the ombination of the temporal systems with PLP greatly redues the phoneerror rates ompared to non-ombined systems.Exhibition hall noise is the toughest noise ondition beause the noise is speeh.Among the temporal systems, there is no lear winner beause HAT does best at the 20dB SNR level, and Neural TRAP is the winner at the 10 dB SNR level, and TMLP winsat the 0 dB SNR level. PLP also performs at roughly the same levels as the temporalsystems. Finally, the ombination of PLP with the temporal systems provide a huge boostin performane, lowering the phone error rates greatly.



54 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERS3.10 Narrow-Band Disriminant Temporal PatternsAs desribed in Setion 3.1, one an onsider that the ritial-band hidden unitsof HAT and TMLP learn mathed temporal �lters useful for phoneti lassi�ation onthe temporal evolution of the log ritial-band energy. These mathed �lters detet er-tain narrow-band disriminant temporal patterns for phoneti lassi�ation; when thesepatterns are present in the speeh, ritial-band hidden units tuned to detet these pat-terns output high ativation values. As with any �lter, these mathed �lters also have afrequeny response. Sine these mathed �lters operate on the time evolution of energywithin a frequeny band of speeh, their frequeny response shows whih rates of hangein the energy trajetory a mathed �lter is sensitive to. These rates are alled modula-tion frequenies and are desribed further in Setion 2.1.5. It has been shown by manyresearhers that modulation frequenies between 0 and about 16 Hz are important forspeeh reognition [58, 59, 29, 5, 68℄.It is interesting to see what are the narrow-band disriminant temporal patternsthat HAT and TMLP have learned after training them to perform phoneti lassi�ation onTIMIT. In Appendix C we plot luster entroids of these patterns for both HAT and TMLP.More spei�ally, we take the input-to-hidden unit weights of eah ritial-band hiddenunits (these are the mathed �lters), and then luster them agglomeratively sine there aretoo many of them to display and sine many of them resemble eah other. We then plotthese patterns and their orresponding modulation frequeny responses. Figures 3.7, 3.8show examples of disriminant temporal patterns and orresponding modulation frequenyresponses learned by the HAT trained on TIMIT, and Figures 3.9, 3.10 show examples forthe TMLP trained on TIMIT. The disriminant temporal patterns are entered at frame0 (x-axis) and range from 25 frames in the past (-25) to 25 frames in the future (25).There are 51 total frames whih spans about 500 milliseonds of ontext. The y-axis forthe patterns is the magnitude. The x-axis for the orresponding modulation frequenyresponse is the modulation frequeny, while the y-axis is the �lter gain in deibels.From these examples and others like them in Appendix C, we observe that allof the patterns are sensitive to modulation frequenies between 0 and about 20 Hz. Thisis nearly onsistent with previous �ndings about the importane of low modulation fre-quenies for speeh reognition. Another interesting observation is that some of these
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Figure 3.7: An example input to ritial-band hidden unit weight pattern (mathed �lter)for the HAT trained on TIMIT and its orresponding frequeny response.
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Figure 3.8: An example input to ritial-band hidden unit weight pattern (mathed �lter)for the HAT trained on TIMIT and its orresponding frequeny response.
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Figure 3.9: An example input to ritial-band hidden unit weight pattern (mathed �lter)for the TMLP trained on TIMIT and its orresponding frequeny response.
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Figure 3.10: An example input to ritial-band hidden unit weight pattern (mathed �lter)for the TMLP trained on TIMIT and its orresponding frequeny response.



3.11. CONCLUSIONS 57patterns resemble temporal patterns used by other researhers for the temporal �ltering ofspeeh. Figures 3.7 and 3.9 resemble the \Mexian hat" �lters whih detet high energy,and Figures 3.8 and 3.10 resemble the \derivative" �lters whih detet onsets of energy.Both of these patterns were learned when applying Linear Disriminant Analysis (LDA)to temporal energy trajetories in [10, 124, 115, 67℄; moreover, some of the patterns in Ap-pendix C look similar to the Mean TRAPs found in [112℄. From a reusability standpoint,the similarity of these patterns in future appliations important. Sine ertain temporalpatterns seem to appear over and over again as a result of training using di�erent ap-proahes on di�erent training databases, it would be reasonable to �x them and reusethem in future ASR appliations on di�erent tasks as a preproessing step in feature ex-tration. In Chapter 5 we look at the patterns learned by HAT and TMLP trained ononversational telephone speeh and also ompare them to patterns learned using bothPrinipal Components Analysis (PCA) and LDA.3.11 ConlusionsIn this hapter we have developed two new variants to Neural TRAP: Hidden A-tivation TRAP (HAT) and Tonotopi Multi-Layer Pereptron (TMLP). Both have beenshown to drastially redue the number of parameters required while improving the phonereognition performane under lean ondition ompared to Neural TRAP. We have foundthat approximately 20 disriminative temporal �lters per ritial-band is suÆient to per-form TIMIT phone reognition. By showing how HAT outperforms Neural TRAP, we haveshown that skipping the mapping from the outputs of the disriminant mathed �lters toritial-band phone posteriors is helpful. So far, we have not notied any signi�ant ad-vantages to allowing the ritial-band �lters to be globally optimized (as in TMLP) andnot onstrained to learn separators for ritial-band level phone targets (as in HAT).In noisy and reverberant onditions, these temporal systems (Neural TRAP, HAT,and TMLP) show varying degrees of improvements. Under additive noise onditions alltemporal systems are omparable to the PLP system. In a moderately reverberant ondi-tion, all temporal systems outperform the traditional PLP system.We have also seen how e�etive it is to ombine the temporal systems whih learndisriminant long-term narrow-frequeny patterns with onventional systems whih learn



58 CHAPTER 3. DEVELOPMENT OF NOVEL TRAP-LIKE CLASSIFIERSdisriminants in spetral slies. All ombination results in every ondition tested outper-form all unombined results. Our lean ombination results are lose to the best publishedTIMIT phone reognition error rate that we are aware of. The PLP+HAT ombinationerror rate on lean, 26.5%, is slightly greater than the best published TIMIT phone reog-nition error rate of 24.2% in [3℄. Finally, the narrow-band disriminant temporal patternslearned by both HAT and TMLP in this hapter preserve the low modulation frequeniesof speeh whih are important for reognition.
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Chapter 4
Temporal Systems for CTS

In the previous hapter, we introdued two new temporal ASR systems, HATand TMLP, and showed promising improvements over Neural TRAP on a small phonereognition task. In this hapter, we explore the integration of Neural TRAP into a state-of-the-art Gaussian mixtures-based HMM reognizer. Our goal is to develop a baselinetemporal ASR system setup that is apable of ompetitive performane on the hallengingtask of onversational telephone speeh (CTS). One this baseline setup is developed, wewill be able to ompare various temporal feature extration tehniques like HAT and TMLPto Neural TRAP on CTS in subsequent hapters.Our basi approah to the baseline setup uses the phone posteriors estimatedby Neural TRAP to augment onventional front-end features. This hapter presents aseries of experiments on progressively more diÆult speeh reognition tasks that we useto guide the design of our baseline setup and to show how our approah an improve ASRperformane over a wide range of speeh data.4.1 Posterior Probabilities as FeaturesFor deades, the feature extration omponent of speeh reognition engines hasonsisted of some form of loal spetral envelope estimation, typially with some simpletransformation. Current typial front-ends onsist largely of the Mel epstrum [87℄ orPLP [48℄ omputed from an analysis window of roughly 25 or 30 ms surrounding a entralsignal point, stepped along every 10 ms. These features are often augmented by delta
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FeaturesFigure 4.1: Blok diagram of a onventional ASR system using PLP front-end features fora standard Gaussian mixtures-based HMM system.features [38℄ and transformed by various linear transformations (e.g., linear disriminantanalysis and heteroskedasti disriminant analysis) whih makes the e�etive temporalontext of these features around 90 milliseonds. A piture of the onventional ASR systemusing PLP features is shown in Figure 4.1.These standard front-end features were designed based on expert knowledge. Inreent years, there has been a push for more data-driven approahes for deriving front-end features. One suh approah, Tandem aousti modeling [49, 34, 32℄ as desribed inChapter 2, uses an MLP to learn posterior probabilities of phoneti units. These posteriorprobabilities are then transformed and used as features for a standard Gaussian mixtures-based hidden Markov model (GMHMM). The transformations applied to the posteriorsare designed to make the resulting features more Gaussian and deorrelated whih tend tohelp the Gaussian mixture models with diagonal ovariane matries better model thesefeatures. The transformations are the logarithm followed by prinipal omponents analysis(PCA). Figure 4.2 shows a typial Tandem ASR system.MLPs learning posterior probabilities of sub-word units are exellent feature ex-trators. The ideal feature for ASR is one in whih variabilities suh as speaker di�erenesare suppressed, while variabilities in phoneti units are enhaned. Phoneti posteriorprobabilities possess these qualities. In [134℄, Zhu et al. alulated the variane of speakeradaptive transform (SAT) matries aross all speakers in a CTS test set for standard PLPfeatures as well as for MLP-based features. The variane of eah omponent in the SATmatrix is diretly proportional to the amount of speaker variability present in the orre-sponding feature omponent. The omponents in the PLP features showed muh higherspeaker variability than the omponents in the MLP-based features.
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Figure 4.2: Blok diagram of the Tandem ASR system. It uses transformed posterior prob-abilities estimated by an MLP as data-derived front-end features for a standard Gaussianmixtures-based HMM system.Another bene�t of the Tandem setup is how it is readily amenable to lassi�erombination. Multiple MLPs an be trained to extrat disriminant speeh informationin vastly di�erent ways and then ombined to give muh better estimates of phonetiposteriors. In Chapter 3, we found that ombining a standard spetral MLP lassi�er witheah of the temporal MLP lassi�ers (Neural TRAP, HAT, and TMLP) gave signi�antperformane improvements. Using simple ombination tehniques within the Tandem setupis straightforward and an lead to signi�ant redutions in word error rates. Figure 4.3shows the ombination of a spetral MLP lassi�er and a temporal MLP lassi�er in theTandem setup.One weakness of the Tandem setup whih was observed when researhers at theInternational Computer Siene Institute tried to use the Tandem setup for reognizingdigits in noisy test onditions was that the feature extrating MLPs trained in lean on-ditions did not always estimate the phone posteriors very well in noisy test onditions. Aswith many disriminative training tehniques, the resulting lassi�ers an be suseptibleto mismath between training and testing onditions. To alleviate some of the e�ets ofmismath, Stephane Dupont proposed to use the MLP-based features to augment the ex-isting onventional features instead of replaing them [12℄. When the MLP-based features
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Figure 4.3: Blok diagram of a multi-stream Tandem ASR system. Two MLPs extratingdisriminant speeh information in di�erent yet omplementary ways are used to deriveposterior probability-based front-end features. The outputs of these MLPs are ombined,transformed, and then used as front-end features for a standard Gaussian mixtures-basedHMM system.give poor estimates of phone posteriors, the original PLP features might help the HMMbak-end to still ome up with the orret lassi�ation. Figure 4.4 shows the augmen-tation of standard PLP features with MLP-based features oming from a ombination oftwo di�erent MLPs.By ombining MLP lassi�ers that extrat information di�erently than onven-tional features, the resulting augmented Tandem ASR system an apture speeh infor-mation from three (or more when ombining more than two MLP lassi�ers) di�erentsnapshots. The �rst snapshot omes from the onventional features whih allows the re-ognizer to apture information from narrow spetral slies. The seond and third snapshotsome from the di�erent MLP approahes. We will test the e�etiveness of the ombinationof an MLP reieving 9 frames of onventional PLP features with Neural TRAP in the fol-lowing setions. The 9 frame PLP/MLP an apture speeh information from intermediatewidth spetral slies (100 ms), while Neural TRAP extrats information from long-termnarrow-frequeny log energy trajetories.This Tandem augmentation approah proved to be very e�etive in reduing worderror rates on small digit reognition tasks [12℄; however, suess in small reognition tasksdoes not neessarily sale to more diÆult tasks where the voabulary is muh larger and
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Figure 4.4: Blok diagram of a multi-stream augmented Tandem ASR system. Two MLPsextrating disriminant speeh information in di�erent yet omplementary ways are used toderive posterior probability-based front-end features. The outputs of these MLPs are om-bined, transformed, dimensionality redued, and then onatenated to onventional front-end features. The resulting augmented front-end feature is input to a standard Gaussianmixtures-based HMM system.
the speaker variabilities are muh greater and the systems used tend to model muh moredetail and use more elaborate tehniques that an be inorporated given large amountsof training data. Our goal in the rest of this hapter is to test the e�etiveness of thisTandem augmentation approah on a series of more diÆult speeh reognition tasks aswell as to determine a good operating on�guration for the setup. When using this Tandemaugmentation approah there are some system issues that must be addressed for optimalperformane. The �rst one is what type of ombination tehnique should be used for theMLP lassi�ers. The seond one is to determine the best number of MLP-based featuredimensions to keep after PCA. Keeping too many features may require muh more trainingdata and parameters for the GMHMM, while too few may mean a loss in useful informationfor reognition.



64 CHAPTER 4. TEMPORAL SYSTEMS FOR CTS4.2 Combination Tehniques and Dimensionality RedutionWe are interested in testing out several simple frame-wise posterior ombina-tion tehniques that have performed omparably to more ompliated ombination teh-niques [65, 94℄. All of these frame-wise posterior ombination tehniques an be representedby a weighted sum of posteriors or log posteriors. Generally, the ombined posterior prob-ability of the kth phone, qk, given the features X an be written as Equation 4.1:P(qkjX) = !1P(qkjX1) + !2P(qkjX2) (4.1)where P(qkjX1) and P(qkjX2) are the posterior probabilities (or log posterior probabilities)of the phone lass qk given evidene from stream 1 (X1) and stream 2 (X2) respetivelyfor a single frame of speeh. !1 and !2 are the stream weights whih depend on theombination tehnique used.We have tested three frame-wise posterior ombination methods: the average ofthe posteriors ombination (AVG); the average of log posteriors ombination (AVGLog),and �nally, the inverse entropy weighted ombination (INVENT) [94℄. The �rst two om-bination methods essentially assume that eah MLP feature stream is equally important,while the entropy-based ombination assumes that the MLP feature with lower entropy ismore important than an MLP feature with high entropy. This is intuitively orret, sinea low entropy posterior distribution (suh as would our with a high single peak) impliesstrong on�dene in lass identity.For both the average ombination and the average of the log ombinations ,!1=!2=0.5, but in the average of the log ombinations, we �rst apply log to the posteriorsbefore the weighted sum in Equation 4.1. In the inverse entropy-based posterior ombina-tion, !i is the inverse entropy omputed over one frame for the MLP output from stream i.Then all of the '!'s are normalized so that they sum to one. A threshold of 1.0 is appliedfor all entropy alulations. If the entropy for a frame from an MLP is greater than 1.0,it is set to a large value (e.g., 10,000) so that the weight is a very small number. Notethat the inverse entropy ombination tehnique dynamially weights eah stream. Thealulated entropies hange from frame to frame, but in both average ombinations theweights remain �xed at 0.5.The other main issue for the augmented Tandem setup is the optimal dimen-sionality of the MLP-based features. Our neural nets are trained to learn posteriors of



4.3. EXPERIMENTAL SETUP 6546 monophones, so without trunating the number of features after PCA the total aug-mented feature vetor will have a size of 85 (39 original PLP features + 46 posterior-basedfeatures = 85 augmented features). Inreasing the number of features an potentially in-rease separability of the lasses, but adding too many features may lead to the urse ofdimensionality: the number of training examples and parameters in the model required forhigh performane grows exponentially with respet to the number of feature dimensions.Keeping all 46 posterior-based features may also not be neessary beause some featuresontain more information than others.Another tehnial detail that we enountered when implementing our augmentedTandem setup is the e�et of a tuning parameter alled the Gaussian weight1. In the SRIreognition system, this weight ontrols the relative ontribution of eah of the Gaussianomponents in the Gaussian mixture model to the overall likelihood sore. The likelihoodof a partiular frame of features X is given by Equation 4.2.P(Xjq) =XmiPi(Xjq) (4.2)where mi is the ith mixture weight, Pi(Xjq) is the ith Gaussian, and  is the Gaussianweight parameter. There are other tuning parameters like the Gaussian weight that areimportant in pratie for good reognition performane. Some of these inlude the lan-guage model weight and word transition weight whih balane the relative inuene of thelanguage model sores and word transitions respetively on the sores of possible sentenehypotheses. We investigate the e�et of tuning the Gaussian weight, while varying thenumber of dimensions of the MLP-based features on reognition performane.4.3 Experimental SetupIn all of the experiments we perform in this hapter, our baseline feature vetoronsists of 12th order PLP oeÆients plus energy omputed over a 25 ms frame windowevery 10 ms. 1st and 2nd order deltas are alulated and appended together to yield a39 dimensional baseline feature. We also normalize the PLP features by subtrating themean and dividing by the standard deviation alulated over an entire onversation side.1This is a tuning parameter that is found in the SRI reognition system and may not exist in other largevoabulary reognition systems.



66 CHAPTER 4. TEMPORAL SYSTEMS FOR CTSFor ontrast, we augment the baseline PLP features with a ombination of twoprobability-based feature streams: PLP/MLP features and Neural TRAP features. Forthe PLP/MLP stream, we train an MLP using 9 onseutive frames of the baseline PLPfeatures as inputs and 46 phone targets generated from fored alignments using SRI In-ternational's state-of-the-art Gaussian mixtures-based HMM ASR system. For the NeuralTRAP stream, the �rst stage MLPs take PCA transformed log ritial-band energy tra-jetories formed by taking 51 onseutive frames of log ritial-band energies every 10ms.These ritial-band MLPs are trained with the same phone targets as used for training thePLP/MLP stream. A merger MLP (trained with these same phoneme targets) ombinesthe ritial-band MLPs' outputs to give one estimate of phone posteriors every 10 ms.We ombine the outputs of the Neural TRAP lassi�er and the PLP/MLP usingone of the frame-wise posterior probability ombination tehniques desribed above. Afterombination, we take the log of the posterior vetor to redue its skew (in pratie thismakes the posterior vetor more Gaussian), and then orthogonalize and redue the dimen-sionality of the posterior vetor using PCA. The resulting variables are then appended tothe original PLP epstra to form the augmented feature vetor. It is important to note thatthis ombined-augmented feature integrates information about speeh from three di�erenttime sales. The original PLP features apture short-term information (about 25 millise-onds), the PLP/MLP stream aptures intermediate-term information (approximately 100milliseonds), and the Neural TRAP stream aptures long-term information (around 500milliseonds). Refer to Figure 4.4 for a blok diagram of this proess.In what follows, we refer to these augmented features asPLP+ombomethod(Streams) features, where ombomethod an be one of the threeframe-wise posterior ombination methods: the average of the posteriors ombination(AVG); the average of log posteriors ombination (AVGLog), and �nally, the inverseentropy weighted ombination (INVENT). Streams refers to the PLP/MLP feature streamand the Neural TRAP feature stream. These features serve as the front-end features forour reognition experiments. We use a stripped-down version of SRI's state-of-the-artHub-5 onversational speeh transription system for our HMM bak-end. In partiular,the bak-end that we used was similar to the �rst pass of the system desribed in [122℄,using a bigram language model and within-word triphone aousti models. For fairnessof omparison, all HMMs have roughly the same number of trainable parameters. The



4.4. STAGE 1: THE NUMBERS TASK 67HMMs also share the same training set with all of the neural net systems.4.4 Stage 1: The Numbers TaskAs noted previously, all the basi tehniques employed here were originally de-veloped using quite small tasks. In partiular, prior to the experiments reported here,the MLP-based feature transformations, the temporal features (Neural TRAP), and themethods used to ombine and use them within the augmented Tandem approah were alltrained and tested on a number of smaller tasks inluding the OGI Numbers task [20℄ (theNumbers95 orpus). In these earlier Numbers experiments, Numbers data was used forboth training and testing. As explained earlier augmenting the baseline features with aombination of PLP/MLP and Neural TRAP-based features improves ASR performane.Whether this result sales to larger tasks is an open question.In the remaining setions of this hapter, we want to apply this augmented Tan-dem approah to a series of larger and more diÆult ASR tasks. Our �nal goal is to reatean augmented Tandem system for the diÆult task of onversational telephone speeh(CTS). Simply taking the features and applying them to the CTS task risked failure with-out obvious diagnosti potential. Consequently, we designed a three-stage approah to thedevelopment proess. Our initial step was to train on a ombination of CTS data and readspeeh, and then test on OGI Numbers.4.4.1 The Numbers Task DesriptionThe training set for this stage was an 18.7 hour subset of the old \short" SRIHub5 training set for CTS. 48% of the training data was male and 52% female. 4.4 hoursof this training set omes from English CallHome [19℄, 2.7 hours from Hand TransribedSwithboard [45℄, 2.0 hours from Swithboard Credit Card Corpus [42℄, and 9.6 hours fromMarophone [13℄ (read speeh whih ontains many examples of ontinuous numbers). Allof these training soures are large voabulary orpora (onsisting of more than 25,000di�erent words). In ontrast, the OGI Numbers orpus whih we use as the test dataonsists of only 32 words.We divided the entire OGI Numbers orpus into three sets. One was used for



68 CHAPTER 4. TEMPORAL SYSTEMS FOR CTSsystem parameter tuning, one for development testing, and another for �nal testing. Weused the oÆial dev set (0.6 hours) of the Numbers95 orpus to tune the language modelweight and word transition weight. We report our results on the �nal test set whihontains 1.3 hours of speeh (2,519 utteranes and 9,699 word tokens).After training MLPs for posterior estimation, we alulated the lassi�ation a-uray on the development set. For PLP/MLP, this auray was 67% omputed over415,985 frames, and for Neural TRAP it was 68%. Combining the two using inverse en-tropy weighting or simply averaging the posterior gave roughly the same frame lassi�ationauray of about 70.9%. Thus the two MLPs an be simply ombined to signi�antly im-prove frame auray, whih suggests that they provide information that is omplementary.4.4.2 Results on the Numbers TaskUsing the training set de�ned above, we trained triphone gender-independentHMMs using the SRI speeh reognition system. Although the reognition task was num-bers, the HMMs were trained for broader voabulary and speaker overage. Thus we hopedthat the onlusions reahed with this training data might generalize better to other tasks.The testing ditionary ontained thirty words for numbers and two words for hesitation,and we used a simple bigram language model trained on our Numbers tuning set.RelativeSystem Numbers Test RedutionSet WER WERPLP Baseline 4.0% -PLP+AVG(Streams) 3.3% 17.5%PLP+AVGLog(Streams) 3.2% 20.0%PLP+INVENT(Streams) 3.3% 17.5%Table 4.1: Word error rate (WER) and relative redution of WER on Numbers usingdi�erent ombination approahes. Streams denotes the PLP/MLP feature stream and theNeural TRAP feature stream.We inorporated PLP/MLP and Neural TRAP features by frame-wise poste-rior ombination. The ombined features were then redued in dimension to 17 us-ing PCA and onatenated to the baseline PLP features to reate an augmented fea-ture vetor of dimension 56. As noted previously, we used several frame-wise poste-
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Figure 4.5: Word error rate on the Numbers 95 test set as a funtion of the number ofPCA dimensions kept in the PLP+INVENT(Streams) system without tuning the Gaussianweight.rior ombination methods: the average of posteriors PLP+AVG(Streams), the averageof log posteriors PLP+AVGLog(Streams), and the inverse entropy weighted ombinationPLP+INVENT(Streams) (see Table 4.1). All three performed roughly the same, ahievinga 17.5-20% relative redution in word error rate.Note, before we tried tuning the Gaussian weight, trunation of the PCA output(that is, eliminating some low-variane omponents) was ritial to performane. Keepingthe top 17 dimensions was the optimal length on all of our tuning data without hangingthe Gaussian weight. Figure 4.5 shows the e�et of the PCA dimensions kept on worderror rate on the Numbers95 test set without hanging the Gaussian weight. The per-formane urve is from the augmented Tandem system using inverse entropy ombination(PLP+INVENT(Streams)). Notie that the WER is quite sensitive to the number of di-mensions. Just hanging the number of dimensions by two an ause degradations of .4%absolute.



70 CHAPTER 4. TEMPORAL SYSTEMS FOR CTSThese experiments showed that the ombination of the three features (baselinePLP, PLP/MLP, and Neural TRAP) an improve the reognition performane over usingthe baseline PLP features alone. On the other hand, all the approahes to posteriorombination were roughly equivalent in this ase. These preliminary onlusions wouldlater be tested on tasks of inreasing omplexity.4.5 Stage 2: The Top-500 Word CTS TaskOur methods ontinued to work well on the small voabulary ontinuous numberstask even when we did not train expliitly only on ontinuous numbers. Before applyingour approahes to the full voabulary Swithboard task, we onsidered a seond stagetask, that of reognizing the 500 most ommon words2 in Swithboard I [41℄. There wereseveral advantages to using this intermediate task. First, sine the reognition voabularyonsisted of ommon words from Swithboard, it was likely that error rate redution wouldapply to the larger task as well. Seond, there were many examples of these 500 words inthe training data, so less training data was required than would be needed for the full task.This in turn redued training time aordingly. Lastly, reognition omplexity in this taskwas smaller, whih also redued experimental turn-around time.4.5.1 Top-500 Words Task DesriptionFor training, we reated a subset of the \short" training set used at SRI for CTSsystem development, whih we referred to as the Random Utteranes of Short Hub or theRUSH set. This RUSH set onsists of utteranes from 217 female and 205 male speakers,whih was the same number of speakers as the short CTS training set, but ontains onethird of the total number of utteranes. The female speeh onsists of 0.92 hours fromEnglish CallHome, 10.63 hours from Swithboard I [41℄ with transriptions fromMississippiState [28℄, and 0.69 hours from the Swithboard Cellular Database [43℄. The male speehonsists of 0.19 hours from English CallHome, 10.08 hours from Swithboard I, 0.59 hoursfrom Swithboard Cellular, and 0.06 hours from the Swithboard Credit Card Corpus.The top-500 word test set was a subset of the 2001 Hub-5 evaluation data2This task was proposed by our olleague George Doddington.



4.5. STAGE 2: THE TOP-500 WORD CTS TASK 71(Eval2001). Given the 500 most ommon words in Swithboard I, we hose utteranes3from the Eval2001 data in whih 90% or more of the words in the utterane were on theword list. In other words, we allowed at most 10% of the words in an utterane to beout of voabulary (OOV) words. 49.6% of the utteranes in the Eval2001 data met thisrequirement, and the total OOV rate was 3.2%. We partitioned this set into a tuning set(0.97 hours, 8242 total word tokens) and a test set (1.42 hours, 11845 total word tokens).We used the tuning set to tune system parameters like word transition weight and languagemodel weight, and we determined word error rates on the test set. The language modelused in both the 500 word task as well as the full voabulary task was the �rst-pass bigramlanguage model used by SRI for the large voabulary evaluations in 2000.4.5.2 Results on Top-500 Words TaskUsing the baseline PLP features, we trained gender dependent triphone HMMson the 23 hour RUSH training set, and then tested this system on the 500 word testset ahieving a 43.8% word error rate (see Table 4.2, whih shows the word error ratesof our various systems on the top-500 word test set). As seen in the table, the worderror rate was redued about 10% relative by augmenting the baseline features with theombined PLP/MLP and Neural TRAP features. In this ase, we trained gender dependentPLP/MLP feature nets and Neural TRAP systems.500 Word RelativeSystem Test Set RedutionWER WERPLP Baseline 43.8% -PLP+AVG(Streams) 39.4% 10.0%PLP+AVGLog(Streams) 39.5% 9.8%PLP+INVENT(Streams) 39.2% 10.5%Table 4.2: Word error rate (WER) and relative redution of WER on the top-500 word testset of systems trained on the RUSH set using di�erent ombination approahes. Streamsdenotes the PLP/MLP feature stream and the Neural TRAP feature stream.All three ombination methods performed roughly the same. Even though themore ompliated inverse entropy ombination tehnique performed only slightly better3An utterane is de�ned to be a string of words separated by less than 0.3 seonds, and greater than0.3 seonds of separation at the beginning and end.



72 CHAPTER 4. TEMPORAL SYSTEMS FOR CTSthan the simple average ombination methods, both styles have their appeal. The averagingmethods are ertainly simple and don't rely on any estimation method. On the other hand,the inverse entropy ombination tehnique is potentially robust to poor lassi�er streams.We experiened this property for one of our later (CTS) experiments. Due to a bug in ourproedures, we unintentionally ombined a badly degraded Neural TRAP stream with theother features using both methods. When probabilities were ombined using the AVG andAVGLog methods, the degraded stream hurt performane badly. On the other hand, theinverse entropy-weighting redued the importane of the poor stream so that the overallperformane essentially mathed what we had for a feature that onsisted of the baselinePLP features onatenated with the PLP/MLP feature alone. Thus, the entropy-basedapproah to ombination appears to be more robust to unexpetedly poor streams. Weexpet that this property might be partiularly useful for future e�orts in whih we mightombine a larger number of streams where some streams may sometimes provide less usefulinformation.As in the numbers task stage, we plot the WER urve showing the e�et of thenumber of dimensions after PCA for the PLP+INVENT(Streams) system in Figure 4.6.Without tuning the Gaussian weight, we again see that the best hoie of number ofdimensions is still at 17, and the WER is quite sensitive to this hoie (espeially tooverestimates of the dimension). When hanging the number of dimensions kept from 17to 19 the WER jumps from 39.6% to 40.4% on the top-500 word tuning set.4.6 Stage 3: Full CTS VoabularyHaving seen how our approahes saled with inreasing test set omplexity, weapplied these approahes to the third and last stage: full voabulary CTS task.4.6.1 The Full CTS Task DesriptionWe tried using our previously de�ned RUSH training set for this task and foundit inadequate for training given the inrease in voabulary. Error rates on Swithboardtest sets were unaeptably high for the RUSH training set. Instead, we used SRI's entire\Short" CTS training set from whih RUSH was derived. This set ontained a total of68.95 hours of CTS. 2.75 hours of English CallHome, 31.30 hours from Mississippi State
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Figure 4.6: Word error rate on the top-500 word tuning set as a funtion of the number ofPCA dimensions kept in the PLP+INVENT(Streams) system without tuning the Gaussianweight.



74 CHAPTER 4. TEMPORAL SYSTEMS FOR CTStransribed Swithboard I, and 2.03 hours of Swithboard Cellular form the data fromfemale speakers. The male speaker data ame from 0.56 hours of English CallHome,30.28 hours from Swithboard I, 1.83 hours from Swithboard Cellular, and 0.20 hours ofSwithboard Credit Card Corpus. As in the 500 word task, we trained triphone genderdependent HMMs as well as gender dependent PLP/MLP and Neural TRAP systems.For testing, we used the 2001 Hub-5 Swithboard evaluation set (Eval2001) fromwhih our top-500 word test set was derived. This evaluation set ontains a total of 6.33hours of speeh, 62,890 total word tokens. For tuning our system parameters, we used asubset of the 2001 Hub-5 development set.4.6.2 Results on the Full CTS TaskThe baseline system ahieved a 43.8% word error rate on the Eval2001 set (seeTable 4.3, whih shows the word error rates of our various systems on the Eval2001 set).The augmented features redued the error rate by about 7% relative. For this task, therewas a small penalty for the AVGLog ombination method in omparison to the otherapproahes. Hub-5 RelativeSystem EVAL2001 RedutionWER WERPLP Baseline 43.8% -PLP+AVG(Streams) 40.5% 7.5%PLP+AVGLog(Streams) 41.0% 6.4%PLP+INVENT(Streams) 40.6% 7.3%Table 4.3: Word error rate (WER) and relative redution of WER on the 2001 Hub-5 evaluation set of systems trained on SRI's \Short" CTS training set using di�erentombination approahes. Streams denotes the PLP/MLP feature stream and the NeuralTRAP feature stream.
4.7 Dimensionality TuningIn the previous setions we showed how all the various frame-wise posterior om-bination tehniques yielded similar results. Now, we want to further investigate the e�et



4.7. DIMENSIONALITY TUNING 75Desription Dimensions Retained15 17 19 25 35RUSH TrainingTop-500 Test WER (%) 38.4 38.5 39.0 39.2 39.4NSH5 TrainingEval 2001 WER (%) 39.7 39.6 39.4 39.1 39.3Table 4.4: The e�et on word error rates from the PLP+INVENT(Streams) features whilevarying the number of dimensions retained after PCA and tuning the Gaussian weight.on performane when modifying both the number of dimensions kept after PCA and thevalue of the Gaussian weight in the SRI reognition system. In previous experiments, wefound that performane was optimal when keeping only the top 17 dimensions after PCAand that small hanges in the dimensionality led to large hanges in performane. In theexperiments below, we �nd that this e�et an be lessened by tuning the Gaussian weight.To tune this Gaussian weight parameter, we simply set the Gaussian weight to variousvalues and ran the reognizer on our tuning data. Then we piked the Gaussian weightvalue that gave the smallest WER and used this value for reognition of the test set. Ta-ble 4.4 shows the e�ets on WER when tuning both the number of dimensions after PCAand the Gaussian weight. The features used are the baseline 39-dimensional PLP featuresaugmented with the inverse entropy ombination of PLP/MLP and Neural TRAP.The di�erenes in WER for di�erent dimensions range from 1.0% absolute inthe top-500 word test to 0.6% absolute on the Eval 2001 test set. These di�erenes arestatistially signi�ant whih means that the number of dimensions kept after PCA is stillvital for good performane; however, the absolute di�erenes in WER when the number ofdimensions is lose to the minimum is quite small and statistially insigni�ant. For thetop-500 word test the minimum WER is ahieved with 15 dimensions, while in the ase ofEval 2001 the best number of dimensions is 25. Compare, for example, the WER for thetop-500 word test at 15 and 17 dimensions. These only di�er by .1% absolute (38.4% vs.38.5%). Also ompare the WER on Eval 2001 at 25, 19, and 35 dimensions. The absolutedi�erenes are only .2%-.3% whih is quite small onsidering the large jump in number ofdimensions. When tuning the Gaussian weight and the number of dimensions onurrently,performane still depends to a large degree on the number of dimensions kept, but onethe number of dimensions is near the optimal, the WER di�erenes are not signi�ant.



76 CHAPTER 4. TEMPORAL SYSTEMS FOR CTS4.8 ConlusionWe applied the PLP/MLP and the Neural TRAP features, developed for a verysmall task, to a series of suessively larger problems. We found that:1. Word error rate was signi�antly redued for the small tasks as well as the largertasks,2. The ombination methods, whih gave equivalent performane for the smaller task,were also omparable on the larger tasks,3. And tuning the Gaussian weight onurrently with the number of dimensions was animportant step to ahieve optimal performane.Regarding the �rst point, the approah of using a ombination of PLP/MLP andNeural TRAP features to augment the baseline PLP features onsistently improves ASRperformane on a variety of training/testing sets. An absolute error rate redution of over3% on Swithboard is quite signi�ant. However, the typial relative redution in error issomewhat smaller for the larger tasks (ranging from 20% on the Numbers task to 7% on thefull CTS task). Thus, having statistially signi�ant error rate redution may sale, butthe degree of improvement may not without further work using the CTS task. Nonetheless,even a 7% relative improvement is often of signi�ant interest for larger tasks like CTS.For suh tasks, sizable improvements are typially only obtained by a ombination of manysmall innovations.The seond observation seems to be unequivoally on�rmed in these three stagesof experiments - we observed no onsistent (salable) advantage to using any of the threehosen methods for ombining posteriors as part of the proess of generating probability-based front-end features. On the other hand, as noted earlier, the inverse entropy methodappears to be quite robust to atastrophi degradations of feature streams. We also shouldemphasize the limitation of this experiment, in whih we were only ombining two streams,both of whih were fairly e�etive for phoneti disrimination. If we begin to use a signi�-antly larger number of streams, some streams will be more likely to be ine�etive at leastsome of the time, and a dynami weighting method like the inverse entropy approah mayshow a learer advantage. This view seems to be supported by earlier work at IDIAP [94℄.



4.8. CONCLUSION 77The third observation is a pratial matter of tweaking the system to ahieve thebest possible results. While we annot make any generalization about the exat numberof dimensions to keep after PCA for any other speeh reognition task, we an say thatthe number of dimensions to keep should be tuned. Furthermore, tuning the Gaussianweight in onjuntion with the dimensionality an lessen the importane of getting theexat optimal dimensionality.Finally, we have ahieved our goal of setting up a ompetitive baseline reognizerfor CTS. The word error rates reported in this hapter are around 40% on Eval 2001whih is similar to the performane of a typial state-of-the-art reognizer performing onlya �rst-pass deode (i.e., a simple Viterbi deode using a bigram language model withoutlater adaptation, 4-gram language model, system ombination, et.) on similar CTS testdata [35℄.



78
Chapter 5
Comparison of Temporal Systemsfor CTS

In Chapter 2 we introdued several new temporal systems based on the Neu-ral TRAP idea: Hidden Ativation TRAP (HAT) and Tonotopi Multi-Layer Pereptron(TMLP). Eah of these temporal systems learn disriminant phoneti information withinlong-spanning narrow-frequeny hannels. We developed ASR system on�gurations thatutilize Neural TRAP for improving performane on onversational telephone speeh (CTS)in Chapter 4. Now we are poised to undertake a omparative study between various ap-proahes inorporating information from long time spans (about 500 milliseonds) using theASR system on�gurations introdued in Chapter 4 for the improvement of performaneon CTS. Spei�ally, we are interested in omparing:1. The narrow-band onstraint of learning long-term information versus unonstrainedversions,2. The nonlinear approah to learning phonetially disriminant ritial-band informa-tion versus various linear approahes,3. And various nonlinear MLP-based approahes with eah other.We also orroborate one of the key �ndings about temporal systems in the previous haptersas well as in previous work: temporal systems o�er omplementary phoneti informationin ombination with onventional systems that extrat phoneti information from shorter



5.1. VARIOUS TEMPORAL SYSTEMS 79time spans over the entire spetrum. We �nd that the ombination of a onventional front-end feature (spanning approximately 25 milliseonds), a onventional MLP-based feature(spanning about 100 milliseonds), and a temporal system-based feature (spanning around500 milliseonds) ahieves impressive performane improvements on CTS.5.1 Various Temporal SystemsIn this setion we desribe all of the di�erent approahes to learning long-termspeeh information for phoneti lassi�ation. Beause these approahes extrat informa-tion in time, we refer to these approahes as temporal systems. Typial ASR front-endfeatures extrat information from short-term spetral slies of about 25 milliseonds, whiletraditional hybrid ANN/HMMs model medium-term spetral hunks spanning about 100milliseonds by learning transformations over 9 onseutive frames of features. All thetemporal systems below extrat information from long-term speeh energies spanning ap-proximately 500 milliseonds. Eah of the temporal systems an be grouped into one ofthree ategories based on whether there is a narrow-frequeny band onstraint and whetherthe initial transformation on the spetral energies is linear or nonlinear.The starting point for all of these temporal systems is the log ritial-band energyspetrum of speeh. Every 10 milliseonds in the speeh signal, we apply a entered 25-milliseond Hamming window and then alulate the squared magnitude of a 256-pointFFT. 15 Critial-band energies are alulated from these squared magnitudes by averagingadjaent magnitudes within eah of the 15 ritial-band �lters. We then apply the log andnormalize by subtrating the mean and dividing by the standard deviation alulated overall frames1 within a single utterane. See Figure 1.2 in Chapter 1 for an illustration of thisproess.5.1.1 Unonstrained ApproahesIn the unonstrained approahes, we allow the MLP lassi�ers to learn any infor-mation ontained within the 15 ritial-bands x 51 frames of log ritial-band energy input.Essentially, we simply feed 51 onseutive frames (about 500 milliseonds) of log ritial-1A frame orresponds to the speeh measurements alulated every 10 milliseonds.
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time=tFigure 5.1: Arhiteture for unonstrained approah.band energies from all 15 ritial-bands to the MLP lassi�er and let it learn what it needsto estimate the phone posteriors. We have experimented with two di�erent fully-onnetedMLPs: a 3-layer MLP onsisting of a single hidden layer, and a 4-layer MLP onsistingof two hidden layers. Figure 5.1 illustrates the unonstrained approah for building atemporal system.It is important to note that these unonstrained temporal systems an learnany kind of relationship among all of the 15x51=765 log energy values. For example,these unonstrained temporal systems an diretly model events suh as high energy atlow frequenies 20 frames before the urrent frame onurrently with high energy at highfrequenies 23 frames after the urrent frame. The main di�erene between the 3-layerand 4-layer MLP is an extra hidden layer in the 4-layer MLP whih may simplify thejob of learning phone posteriors by breaking the intermediate modeling into two stages.The number of �rst and seond layer hidden units in the 4-layer MLP was determinedby optimizing the frame lassi�ation auray under the onstraint of keeping the totalnumber of weights and biases the same as the total for the 3-layer MLP (516,000 weightsand biases). The 3-layer MLP has 765 input units, 636 hidden units, and 46 output units,while the 4-layer MLP has 765 input units, 318 �rst hidden layer units, 750 seond hiddenlayer units, and 46 output units. In what follows we refer to the 3-layer MLP system by\15 x 51 MLP3" and the 4-layer MLP system by \15 x 51 MLP4".All MLPs in this hapter are trained on 46 phone targets derived from foredaligned phone labels provided by SRI's state-of-the-art ASR system [121℄. The trainingproedure proeeds as explained in Chapter 2 where the weights and biases are modi�ed



5.1. VARIOUS TEMPORAL SYSTEMS 81to redue an error measurement between the training targets and MLP outputs. Aftertraining, the outputs approximate posterior probabilities of the target lasses whih arephones in our ase. For fairness of omparison, all temporal systems have the same numberof trainable parameters (516,000 trainable parameters on about 30 hours of speeh pergender, orresponding to approximately 12,000,000 frames, for frames-to-parameters ratioof about 23.). Also, for all MLPs, the hidden units have a sigmoid nonlinearity and theoutput units have a softmax nonlinearity.5.1.2 Constrained Linear ApproahesIn ontrast to the unonstrained approahes, the onstrained approahes �rst re-strit the lassi�ers to learn information within ritial-band energy trajetories spanninghalf a seond. These onstrained arhitetures are fored to represent temporal stru-ture. We investigate several arhitetures that partition the learning into two onstrainedstages. The �rst stage learns what is important for phoneti lassi�ation given individualritial-band energy trajetories of 51 frames (about 500 milliseonds), and the seond stageombines what was learned at eah ritial-band to learn overall phone posteriors. This\divide and onquer" approah to learning splits the task into two smaller and possiblysimpler sub-learning tasks.In this subsetion we desribe linear approahes to learning narrow-frequenytemporal information. The �rst of these two-stage arhitetures alulates prinipal om-ponent analysis (PCA) transforms on suessive 51-frame log ritial-band energy trajeto-ries for eah of the 15 bands. We use the resulting transform matries to orthogonalize thetemporal trajetory in eah band, retaining only the top 40 dimensions per ritial-band.PCA projets the original 51 dimensional energy trajetory in diretions of maximal vari-ane. Figure 5.2 shows how we then use these transformed (and dimensionally redued)ritial-band \features" as input to an MLP that estimates phone posteriors. This mergerMLP has 750 hidden units.In a related approah, we replae PCA with linear disriminant analysis (LDA)\trained" on the same phone targets used for MLP training. This transform projets the logritial-band energy trajetories of a single band onto vetors that maximize the between-lass variane and minimize the within-lass variane for phone lasses. We also keep the
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84 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSband energy inputs with the input to hidden unit weights of the orresponding ritial-bandMLP. Another way to say this is that the values before the sigmoid in eah ritial-bandhidden unit are used as the inputs to the seond stage merger MLP. We refer to thisarhiteture as \HAT Before Sigmoid" beause it uses the hidden ativations before thesigmoid nonlinearity as inputs to the merger. While this �rst approah onsists of a linearmatrix multiply, we ategorize it in this subsetion beause the matrix is learned as partof a struture that inludes nonlinear sigmoid funtions, whih have a signi�ant e�et onthe values learned.The seond approah, Hidden Ativation TRAP or \HAT", takes the outputs ofeah hidden unit as the input to the merger MLP. The third approah takes the valuesafter the hidden-to-output weight matrix multipliation, but just before the �nal softmaxnonlinearity of the ritial-band MLPs. This approah is equivalent to the Neural TRAParhiteture, so it is denoted as \Neural TRAP". The fourth approah uses the regular ati-vations from the ritial-band MLPs that are phoneme posterior probabilities onditionedon the log ritial-band energy inputs. This nonlinear approah is denoted as \NeuralTRAP Post Softmax".As disussed in more detail in Chapter 3, the ritial-band MLPs trained toapproximate ritial-band phone posterior probabilities do not ahieve high lassi�ationauray suggesting that phone lassi�ation at the ritial-band level is very diÆult. Wedeveloped HAT to show that whatever useful information within the ritial-band is alreadyaptured in the ritial-band hidden unit representations, and that further mapping fromthis hidden representation to ritial-band phone probabilities is unneessary and leadsto poorer overall lassi�ation auray. The omparisons of these Neural TRAP-basedtemporal systems orroborate these earlier �ndings in the ontext of ASR on CTS.The last of the nonlinear approahes to learning temporal information is theTMLP whih is fully desribed in Chapter 3. Figure 5.4 shows the TMLP setup. TMLPhas the same onnetions as HAT exept that the ritial-band hidden units are learned viaa global error bak-propagation algorithm. This allows the TMLP to learn a riher lassof distributions beause the ritial-band hidden units are not onstrained to minimizelassi�ation error of ritial-band level phone targets.The hoie of number of ritial-band level hidden units as well as the numberof merger hidden units for the �ve systems desribed above is optimized for HAT while



5.2. TWO CONVENTIONAL FEATURES 85
Output:
Phone

Posterior
Probabilities

at Time t
time

fr
e
qu

e
nc

y

Critical-Band Spectrum

51 Frames (~0.5 sec.)

TMLP

Merging
Layer

Critical-Band 
Layer

time=t

Figure 5.4: Arhiteture for TMLP.�xing the total number of trainable parameter to about 516,000. Using 40 hidden unitsper ritial-band and 750 hidden units in the merger ahieves the best frame aurayresult for HAT on the 2001 Hub-5 evaluation data (Eval2001). This hoie may not beoptimal for Neural TRAP systems, but we will explore the e�et of having a larger numberof ritial-band units for Neural TRAP in Setion 5.4.8.5.2 Two Conventional FeaturesThe typial hoie for front-end features in state-of-the-art ASR systems is ei-ther Mel-Frequeny Cepstral CoeÆients (MFCC) or Pereptual Linear Preditive (PLP)features. Both derive features from very short time spans (about 25 milliseonds). Inthe Tandem ASR system as desribed in [49℄, MLP-based features are derived from 9onseutive frames of PLP features whih span an intermediate time ontext (about 100ms). In the experiments that follow, we ompare eah of the various temporal systems inon�gurations that augment the onventional short time span features with and withoutframe-wise ombination with the intermediate time MLP-based features.We use the SRI 2003 evaluation system's onventional front-end feature for theshort time span features. These features ome from 12th order PLP features plus energywith the �rst three derivatives. This 52 dimensional feature is transformed and reduedin dimension to 39 via a heteroskedasti linear disriminant analysis (HLDA) transforma-



86 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTStion trained on Gaussian state targets. We denote this short-term onventional featureas \HLDA(PLP+3d)". Our intermediate time MLP-based features ome from a fully-onneted 3-layer MLP trained on the same phone targets used to train the temporalsystems. This MLP takes 9 frames of 12th order PLP features plus energy with the �rsttwo derivatives as input, and we refer to this as \9 Frame PLP MLP". The PLP featuresare mean and variane normalized over an entire onversation side before being used asinputs to the MLP. This MLP has about 516,000 parameters for fair omparisons with thetemporal systems.5.3 ASR System Con�gurations5.3.1 Experimental SetupFor all of the experiments reported in this hapter, we show test results on the2001 Hub-5 evaluation data (Eval2001), a large voabulary onversational telephone speehtest set onsisting of a total of 2,255,609 frames (6.27 hours) and 62,890 words. Weuse the 2001 Hub-5 development data (Devel2001) to tune the language model weight,word transition weight, and the Gaussian weight. We optimize these weights to maximizeperformane on Devel2001, and then use the optimal values for reognition on Eval2001.The training set that we use for both MLP and HMM training onsists of about68 hours of onversational telephone speeh data from four soures: English CallHome,Swithboard I with transriptions from Mississippi State, and Swithboard Cellular. Thistraining set orresponds to the one used in [97℄ without Swithboard Credit Card data.Training for both MLPs and HMMs was done separately for eah gender, and the testresults presented later reet the overall performane on both genders. We hold out 10%of the training data as a ross-validation set in MLP training. For fairness in omparison,all MLP-based feature extrators have roughly the same number trainable parameters(about 516,000 on about 30 hours of speeh per gender, orresponding to approximately12,000,000 frames, for a frames-to-parameters ratio of about 23.).One the MLPs are trained, we use them to generate various front-end featuresfor the bak-end SRI reognizer in a similar manner as was done in [34℄. More spei�ally,we use these MLP-based features in one of three system on�gurations:
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Figure 5.5: In the stand-alone Tandem ASR system on�guration, the phone posteriorprobabilities of an MLP lassi�er are transformed and used as front-end features for theSRI Gaussian mixtures-based HMM reognizer.1. stand-alone Tandem features,2. augmenting standard short-term HLDA(PLP+3d) features,3. and in ombination with the intermediate-term 9 Frame PLP MLP features andaugmenting standard short-term HLDA(PLP+3d) features.The bak-end SRI reognizer that we use is similar to the �rst pass of the system desribedin [122℄ with a bigram language model and within-word triphone aousti models.5.3.2 Stand-Alone TandemThe �rst ASR on�guration that we use for our omparison tests is the stand-alone Tandem feature setup. This setup allows us to test how well a partiular MLPis at extrating useful phoneti information by itself. The MLP's phone posteriors aretransformed and used as the front-end feature for the bak-end Gaussian mixtures-basedHMM reognizer. This stand-alone setup is pitured in 5.5. The box labeled \TemporalClassi�er" is one of the various temporal systems desribed earlier.
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90 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem WER onDesription Eval2001(%)Non-AugmentedHLDA(PLP+3d) 37.2Table 5.1: Word error rate performane on Eval2001 of a system using onventional featureextration based on modeling spetral slies.level. Also note that for fairness of omparisons, the bak-end Gaussian mixtures-basedHMMs all have roughly the same number of trainable parameters.5.4.1 Conventional FeaturesWhen using the onventional short-term HLDA(PLP+3d) features, a simple for-ward deoding of Eval2001 by the SRI reognizer ahieves a 37.2% word error rate (WER)as shown in Table 5.1. For a simple forward deoding pass without adaptation and systemombination, 37.2% on Eval2001 is respetable. Indeed, this was state-of-the-art perfor-mane a few years ago.Table 5.2 summarizes the results when using the intermediate-term (about 100milliseonds) 9 Frame PLP MLP feature. It has a frame auray of 67.57%, whih is prettygood for MLP lassi�ers on Eval2001. When we use the transformed posteriors from the9 Frame PLP MLP as features, the SRI reognizer sores a 41.2% WER on Eval2001.This is muh worse than the short-term feature alone (41.2% vs. 37.2%), but when weonatenate the dimensionality redued 9 Frame PLP MLP feature with HLDA(PLP+3d),the system redues the WER to 35.6%. This is a 4.3% relative redution in WER fromthe system that uses the HLDA(PLP+3d) features alone. Relative redutions of 3% ormore are typially onsidered suesses when trying to improve system performane on thehallenging CTS tasks.5.4.2 Unonstrained ApproahesThe unonstrained approahes for temporal systems ideally ould learn any las-si�ation funtion within the 15 ritial-bands x 51 frames of log energies. The 3-layerfully-onneted 15 x 51 MLP3 lassi�es 64.73% of the frames orretly, ahieves 48.0%



5.4. RESULTS 91System Frames Stand-Alone AugmentDesription Corret WER (%) WER (%)(%)9 Frame PLP MLP 67.57 41.2 35.6Table 5.2: Conventional 9 Frame PLP MLP system performanes on Eval2001.System Frames Stand-Alone Augment Combined-Desription Corret WER (%) WER (%) Augment(%) WER (%)15 x 51 MLP3 64.73 48.0 36.6 34.815 x 51 MLP4 67.88 44.3 35.6 34.3Table 5.3: Unonstrained temporal system performanes on Eval2001.
WER in stand-alone feature on�guration, performs at 36.6% WER when augmentingHLDA(PLP+3d), and redues WER to 34.8% in ombination with 9 Frame PLP MLPand augmenting HLDA(PLP+3d). In ontrast, the 4-layer fully-onneted 15 x 51 MLP4lassi�es 67.88% of the frames orretly, ahieves 44.3% WER in stand-alone feature on-�guration, performs at 35.6% WER when augmenting HLDA(PLP+3d), and redues WERto 34.3% in ombination with 9 Frame PLP MLP and augmenting HLDA(PLP+3d). Ta-ble 5.3 lists the results for these unonstrained approahes.15 x 51 MLP4 signi�antly outperforms 15 x 51 MLP3 in all feature on�gurationsas well as in frame lassi�ation. Although, both have the same total number of parameters,the 4-layer 15 x 51 MLP4 is better able to leverage these parameters for the learning ofphonetially disriminant information. Theoretially a 3-layer MLP an learn any mappingfuntion given a suÆient amount of hidden units; however, in pratie when there maybe onstraints in the total number of parameters allowable, a 4-layer MLP an outperformthe 3-layer MLP beause the extra hidden layer an make the modeling job of later layerseasier2.2We also tried 5-layer MLPs but were unable to ahieve omparable performane.



92 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Frames Stand-Alone Augment Combined-Desription Corret WER (%) WER (%) Augment(%) WER (%)PCA40 65.50 45.3 36.2 34.6LDA40 65.52 46.5 36.4 34.5Table 5.4: Constrained linear temporal system performanes on Eval2001.5.4.3 Constrained Linear ApproahesTable 5.4 shows the performane results for the onstrained linear approahesfor temporal system design. Both PCA40 and LDA40 perform at roughly the same levelsexept for the stand-alone feature on�guration where PCA40 signi�antly outperformsLDA40 (45.3% vs 46.5%). As previously disussed, PCA transforms data in diretions ofmaximal spread, while LDA transforms data in diretions of maximal lass separability.From these results, performane does not improve by transforming the log ritial-band en-ergy trajetories in diretions of maximal lass separability ompared to simply projetingthe trajetories along diretions of maximal spread.5.4.4 Constrained Nonlinear ApproahesThe �rst four onstrained nonlinear approahes are based on the two-stage NeuralTRAP arhiteture and di�er only in the point at whih to take the inputs for the seondstage merger MLP. All of these two-stage Neural TRAP-based systems learn disriminantinformation at the ritial-band level useful for lassifying ritial-band level phone targets.On the other hand the TMLP learns ritial-band level information useful for lassifyingfull-band phone targets. The results of these �ve approahes are summarized in Table 5.5.Looking at the Table 5.5, we notie that two systems perform at notieably higherlevels than the other three systems in all feature on�gurations and frame auray. HATand TMLP both outperform HAT Before Sigmoid, Neural TRAP, and Neural TRAP PostSoftmax. In terms of frame auray, HAT and TMLP perform similarly (66.91% for HATand 67.12% for TMLP). The losest ompetitor is Neural TRAP whih performs at 65.85%auray. When using these �ve systems in stand-alone feature on�guration, HAT andTMLP have a 44.5% and 44.9% WER respetively. The losest any other system gets to



5.4. RESULTS 93this performane level is 45.9% WER ahieved by both Neural TRAP and HAT BeforeSigmoid whih is statistially signi�antly worse.The story is onsistent when augmenting the HLDA(PLP+3d) features withthe onstrained nonlinear temporal features. Using HAT and TMLP to augmentHLDA(PLP+3d), the WER is 35.6% and 35.5% respetively. The others temporal systemsget as lose as 36.3% WER ahieved by the HAT Before Sigmoid system whih is still statis-tially signi�antly worse. Finally, in the ombined and augmented feature on�guration,HAT and TMLP ahieve a 34.1% and 33.9% WER on Eval2001. The other systems stillunderperform HAT and TMLP, but this time only TMLP is signi�antly better than theothers at the 0.05 level. Another .1% absolute di�erene would make HAT's performaneimprovement signi�ant.One of the main �ndings in Chapter 4 is that HAT and TMLP perform betterthan Neural TRAP in lean onditions on the TIMIT phone reognition task. The aboveresults on CTS also orroborate these �nding; HAT and TMLP outperform all other NeuralTRAP-based systems in lean onditions.In this hapter we an also make some omments about whih ritial-band mea-surements to use as inputs to a merger MLP. Comparing HAT Before Sigmoid, HAT,Neural TRAP, and Neural TRAP Post Softmax, we have already ommented that HATsigni�antly outperforms all the others. The only di�erene between HAT and HAT BeforeSigmoid is the sigmoid nonlinearity. Both learn ritial-band energy trajetory patterns,but HAT uses the sigmoid to transform the inner produt of the learned energy traje-tory patterns and the input energy trajetories into \probabilities" of these learned energytrajetory patterns. Neural TRAP di�ers from HAT by adding an additional mappingfrom the ritial-band hidden unit output spae to ritial-band level phones. This ex-tra mapping to phones redues performane, suggesting that phone ategories are not thebest targets at the ritial-band level. Neural TRAP Post Softmax normalizes the NeuralTRAP inputs to the merger MLP to sum to one in eah ritial-band. The merger MLPin Neural TRAP Post Softmax uses ritial-band phone posteriors as input features. Thisalso, does not work very well and ompared to Neural TRAP performane su�ers whenperforming this normalization.Comparing TMLP with HAT, we do see a slight improvement from TMLP aug-menting the short-term HLDA(PLP+3d) features as well as in ombination with the



94 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Frames Stand-Alone Augment Combined-Desription Corret WER (%) WER (%) Augment(%) WER (%)HAT Before Sigmoid 65.80 45.9 36.3 34.9HAT 66.91 44.5 35.6 34.1Neural TRAP 65.85 45.9 36.5 34.5Neural TRAP Post Softmax 63.96 48.2 36.8 34.5TMLP 67.12 44.9 35.5 33.9Table 5.5: Nonlinear temporal system performanes on Eval2001.intermediate-term 9 Frame PLP MLP and augmenting HLDA(PLP+3d) features. How-ever, as a stand-alone feature TMLP performs worse than HAT. From this, it seems thatthe more unonstrained TMLP learns information that is marginally more omplementaryto the onventional features than HAT.5.4.5 Augmenting Conventional FeaturesIn this subsetion we take a loser look at the improvements that eah of the MLP-based systems bring when augmenting the short-term HLDA(PLP+3d) features. Table 5.6summarizes the WER results and relative improvements over using HLDA(PLP+3d) fea-tures alone for the various MLP-based features augmenting the HLDA(PLP+3d) features.9 Frame PLP MLP, 15 x 51 MLP4, HAT, and TMLP all outperform the other MLP-basedfeatures obtaining a 35.6%, 35.6%, 35.6%, and 35.5% WER respetively on Eval2001. Therest of the systems perform onsiderably worse at 36.2% and higher. As ommented before,a 3% relative redution or more in WER is onsidered impressive for suh a diÆult taskas CTS. All long-term systems improve WER ompared to HLDA(PLP+3d) alone. Theintermediate-term 9 Frame PLP MLP also improves performane signi�antly, and it doesso to the same extent as the long-term systems of 15 x 51 MLP4, HAT, and TMLP.5.4.6 Combined-Augmented FeaturesTable 5.7 displays the WER results for all of the temporal systems-based featuresin ombination with the 9 Frame PLP MLP features whih are then used to augment theHLDA(PLP+3d) features. From these results, we an see how muh more improvement



5.4. RESULTS 95System Eval2001 RelativeDesription WER (%) Improvement(%)Baseline: -Non-Augmented 37.2HLDA(PLP+3d)9 Frame PLP MLP 35.6 4.315 x 51 MLP3 36.6 1.615 x 51 MLP4 35.6 4.3PCA40 36.2 2.7LDA40 36.4 2.2HAT Before Sigmoid 36.3 2.4HAT 35.6 4.3Neural TRAP 36.5 1.9Neural TRAP Post Softmax 36.8 1.1TMLP 35.5 4.6Table 5.6: Comparison of all MLP-based features used to augment the short-termHLDA(PLP+3d) features. WER results as well as relative improvement over theHLDA(PLP+3d) features alone reported for Eval2001.
we an obtain by ombining the long-term information to the medium and short-terminformation streams. The baseline performane omes from the augmenting the short-term features with the intermediate-term features of 9 Frame PLP MLP. This baselinesystem gets a 35.6% WER on Eval2001.Combining the any of the long-term information streams to the short andintermediate-term streams improves performane. The best long-term information streamomes from TMLP followed losely by HAT. The unonstrained 15 x 51 MLP4 is slightlyworse than TMLP and HAT, but slightly better than all of the other temporal systems.We surmise that the narrow-band frequeny onstraints imposed by HAT and TMLP helpit to learn more omplementary information to the 9 Frame PLP MLP system than thatlearned by the unonstrained 15 x 51 MLP4 system. From this, we onlude that thenarrow-band frequeny onstraint in the long-term systems is useful in ombination withthe onventional 9 Frame PLP MLP system, but it must be implemented appropriately(for example, in the form of HAT or TMLP or perhaps other improved Neural TRAP-basedextensions that we did not test here).



96 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Eval2001 RelativeDesription WER (%) Improvement(%)Baseline: 9 Frame PLP MLP 35.6 -15 x 51 MLP3 34.8 2.215 x 51 MLP4 34.3 3.7PCA40 34.6 2.8LDA40 34.5 3.1HAT Before Sigmoid 34.9 2.0HAT 34.1 4.2Neural TRAP 34.5 3.1Neural TRAP Post Softmax 34.5 3.1TMLP 33.9 4.8Table 5.7: Table of results for systems ombined with the 9 Frame PLP MLP featuresand augmenting the HLDA(PLP+3d) features. WER and relative improvements over thebaseline 9 Frame PLP MLP augmented system on Eval2001 are reported.5.4.7 Overall Comparison of Temporal SystemsTable 5.8 shows the rankings for eah of the various temporal systems in all of thedi�erent feature on�gurations and their frame auraies. The 15 x 51 MLP4 system doesthe best at the frame level as well as in the stand-alone feature on�guration; however,when ombined with the other full-band features, HAT and TMLP perform better thanthe 15 x 51 MLP4 system. We mention again that this is beause of the narrow-frequenyonstraints imposed by the HAT and TMLP systems, whih fore these two systems tomodel ritial-band temporal patterns. The 15 x 51 MLP3 and Neural TRAP Post Softmaxsystems almost always perform the worse, while all the other systems show no preditablepattern of performane. The nonlinear onstrained approahes onsistently perform betterthan their linear ounterparts only when using HAT and TMLP. To summarize these�ndings:1. The narrow-band onstraints are most helpful in ombination with either the full-band short and intermediate-term feature streams if implemented in the form of HATor TMLP.2. The HAT and TMLP nonlinear onstrained systems perform better in all featureon�gurations than the linear onstrained systems.



5.5. FRAME ACCURACY ANALYSIS OF THE BEST TEMPORAL SYSTEMS 97System Frames Stand-Alone Augment Combined-Desription Corret Rank Rank AugmentRank Rank15 x 51 MLP3 8 8 8 815 x 51 MLP4 1 1 2 3PCA40 7 4 4 7LDA40 6 7 6 4HAT Before Sigmoid 5 5 5 9HAT 3 2 2 2Neural TRAP 4 5 7 4Neural TRAP Post Softmax 9 9 9 4TMLP 2 3 1 1Table 5.8: Rankings of the various temporal systems on Eval20015.4.8 Neural TRAP With More Hidden UnitsIn previous implementations of Neural TRAP (e.g [53, 112, 62℄), researhers usemany more hidden units than the 40 hidden unit implementations in this hapter. Table 5.9shows the performane of Neural TRAP systems with both 40 and 300 hidden units perritial-band. The TRAP systems with 300 hidden units per ritial-band have about380,000 more total parameters than the ones with 40. In general both the 40 and 300 hiddenunit versions perform equally exept in two ases: 1) Neural TRAP in the augmentedfeature on�guration where the 300 hidden unit version is signi�antly better (36.0% versus36.5%), and 2) Neural TRAP Post Softmax in the stand-alone feature on�guration wherethe 300 hidden unit version is muh worse. We annot onlude that inreasing the numberof ritial-band hidden units to 300 always improves performane for Neural TRAP PostSoftmax, but in the Neural TRAP systems inreasing to 300 never leads to performanedegradation.5.5 Frame Auray Analysis of the Best Temporal SystemsIn the previous setions we have seen how the MLP-based features derived fromtemporal systems have omplemented both the intermediate and short-term features, lead-ing to substantial redutions in the word error rate on a CTS task. In this setion we would



98 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSSystem Frames Stand-Alone Augment Combined-Desription Corret WER (%) WER (%) Augment(%) WER (%)40 Neural TRAP 65.85 45.9 36.5 34.5300 Neural TRAP 66.43 45.9 36.0 34.340 Neural TRAP Post Softmax 63.96 48.2 36.8 34.5300 Neural TRAP Post Softmax 63.73 49.1 36.6 34.2Table 5.9: System performanes on Eval2001 of Neural TRAP with 40 hidden units versusNeural TRAP with 300 hidden units per ritial-band. With 300 hidden units per ritial-band Neural TRAP and Neural TRAP Post Softmax perform at about the same level asHAT in the ombined-augmented on�guration using 380,000 more parameters.like to dig a little deeper and �nd out what phone ategories these temporal systems dopartiularly well on ompared to the intermediate-term 9 Frame PLP MLP as well as toeah other. Beause HAT, TMLP, and 15 x 51 MLP4, outperformed all other temporalsystems, we fous our attention on these three temporal systems in our analysis.All temporal systems and the intermediate-term 9 Frame PLP MLP system areMLP-based lassi�ers that we train to learn 46 phone lasses. As desribed earlier, thephone targets for MLP training ome from fored-alignments from the SRI reognizerwhose ditionary of words onsists of sequenes of these 46 phones. Table 5.10 lists allof the phone lasses (as well as an example or desription of its usage) that we train ourMLPs on. One trained, our MLP-based lassi�ers output a phone probability distributionfor every frame of speeh. We onsider a lassi�er to have orretly lassi�ed a partiularframe of speeh when the maximum phone probability output orresponds to the labeledphone target. As desribed in Setion 3.1, frame auray is alulated by ounting howmany frames a lassi�er gets orret divided by the total number of test frames.When omparing two lassi�ers at the frame level, we an do better than simplyomparing the gross frame auray measure. We an alulate auray measures on aper phone lass basis to see whih lassi�er does better on what phone. For any frame,one of four outomes is possible: 1) both lassi�ers get the frame orret, 2) only the�rst lassi�er gets it orret, 3) only the seond lassi�er gets it orret, or 4) both get itwrong. If we sum up the ounts of these outomes for frames labeled a ertain phone, wean immediately see whih lassi�er is better at lassifying this phone. For example, the�rst lassi�er is better for this phone if the ounts of ase 2 outomes is greater than the
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ASR Phoneme SymbolsSRI 46 Example SRI 46 Examplesil (silene) k keyaa father l likeae bat lau (laughter)ah but m moonao bought n noonaw about ng singax about ow boatay bite oy boyb bee p peah hoke puh (�lled-pause vowel)d day pum (�lled-pause nasal)dh then r rightdx dirty s soundeh bet sh shouter bird t teaey bait th thinf fish uh book(word fragment�p interruption uw bootpoint)g gay v votehh hay w wireih bit y yesiy beet z zoojh joke zh azureTable 5.10: The 46 monophone targets used for MLP training.as de�ned for SRI's reog-nition system.



100 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSounts of ase 3 outomes. The ounts of ase 1 and ase 4 outomes reveal the diÆultyof lassifying a partiular phone and possibly the inauray of the labeling of the phonethat we use as ground truth. Mostly, we are interested in the ounts of ase 2 and ase 3beause they give us an indiation of whih lassi�er is better.In Tables 5.11-5.13, we alulate the ounts for all of the above ases normalizedby the total number of frames for a partiular phone. The result is the perentage of framesthat the outome ours for a partiular phone. The phone are listed in order of how wellthe temporal system does on that phone ompared with the 9 Frame PLP MLP system,and we only list those phones for whih the temporal system is better. The tables also listthe average phone duration in frames and the total number of frames labeled with thatphone on the Eval2001 set. Using these tables, we address the following questions:1. Do the temporal systems perform better on longer phones?2. What phones do the temporal systems do onsistently better on than the 9 FramePLP MLP system?3. As we remove onstraints in the learning of long-term information, what phones aremore aurately lassi�ed?4. As we add onstraints in the learning of long-term information, what phones aremore aurately lassi�ed?5.5.1 Temporal Systems and Longer PhonesTo answer the �rst question, we alulate the average phone durations for all thephones that a partiular temporal system is better at lassifying than the 9 Frame PLPMLP system and vie versa. When omparing HAT and 9 Frame PLP MLP, the averagephone duration of all the phones that HAT is better at lassifying is 13.0 frames, whilethe the average phone duration for the phones that 9 Frame PLP MLP is better at is8.7 frames. The phones that TMLP is better at lassifying have an average duration of11.1 frames ompared to 9.4 frames for the phones that 9 Frame PLP MLP is better at.Finally, when omparing 15 x 51 MLP4 with 9 Frame PLP MLP, the average durationsare 10.5 frames for 15 x 51 MLP4 and 10.0 frames for 9 Frame PLP MLP. Overall, thetemporal systems do perform better on longer phones. These results are onsistent with



5.5. FRAME ACCURACY ANALYSIS OF THE BEST TEMPORAL SYSTEMS 101Avg. Both HAT PLP MLP Both TotalPhone Dur. Right Right Right Wrong Phone(Frames) (%) (%) (%) (%) Countsoy 14.00 11.0 17.6 8.5 63.0 2028ae 11.00 49.6 17.4 9.6 23.4 73780hh 5.00 25.6 14.3 8.8 51.3 32070zh 10.00 24.3 14.8 10.2 50.7 391ay 15.00 53.8 13.2 9.5 23.5 73458z 3.00 38.3 14.8 11.4 35.5 32521ey 12.00 40.7 14.5 11.6 33.1 35987ow 11.00 34.8 16.2 13.3 35.6 56401puh 19.00 48.7 14.8 12.2 24.3 45210dx 5.00 28.7 12.1 10.1 49.1 5284pum 11.00 30.4 15.9 14.7 39.0 33913ax 5.00 34.2 11.9 10.7 43.2 75242th 21.00 23.3 13.2 12.0 51.5 10507lau 41.00 45.5 13.8 13.2 27.5 38014aw 21.00 20.5 14.8 14.3 50.5 14675�p 3.00 0.2 2.0 1.8 95.9 4351Table 5.11: Frame level lassi�ation statistis for HAT versus 9 Frame PLP MLP.
what we would expet beause the long-term systems are learning patterns spanning 51frames, while the 9 Frame PLP MLP system only gets 9 frames of input ontext to workwith. Reall, that we an view the progression of going from HAT to TMLP to 15 x51 MLP4 as a progression of loosening onstraints. As we move from HAT to TMLP, weare loosening the onstraint of learning ritial-band level phone labels. As we move fromTMLP to 15 x 51 MLP4, we remove the narrow-frequeny hannel onstraint. As we loosenthe onstraints on the learning of long-term patterns (i.e., going from HAT to TMLP to15 x 51 MLP4), the di�erene between the average duration from the temporal systemand the average duration from 9 Frame PLP MLP dereases. It seems that the eah ofthe onstraints help the temporal systems better fous on learning long-term informationfrom phones that have higher average durations.
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Avg. Both TMLP PLP MLP Both TotalPhone Dur. Right Right Right Wrong Phone(Frames) (%) (%) (%) (%) Countsae 11.00 50.4 18.0 8.8 22.8 73780oy 14.00 10.2 16.1 9.3 64.4 2028puh 19.00 51.0 16.4 9.9 22.7 45210ow 11.00 36.7 17.0 11.5 34.9 56401th 21.00 25.6 15.0 9.6 49.9 10507hh 5.00 26.0 13.5 8.4 52.0 32070ay 15.00 54.2 13.4 9.0 23.4 73458ey 12.00 41.6 14.9 10.7 32.8 35987z 3.00 39.4 14.5 10.3 35.9 32521lau 41.00 47.9 14.9 10.8 26.4 38014aw 21.00 22.5 16.2 12.3 49.0 14675ax 5.00 35.7 13.0 9.2 42.1 75242f 7.00 40.8 14.5 11.5 33.1 24710dh 3.00 33.2 14.5 12.4 40.0 29534dx 5.00 29.2 11.7 9.7 49.4 5284pum 11.00 30.7 15.9 14.4 39.0 33913y 9.00 54.1 12.2 10.7 23.1 38136uw 3.00 36.7 12.4 11.5 39.4 29316d 6.00 22.8 10.9 10.2 56.2 35311aa 9.00 24.7 14.7 14.1 46.6 24764jh 13.00 40.5 11.9 11.5 36.1 8795�p 3.00 0.1 2.2 1.9 95.8 4351sil 16.00 92.0 2.7 2.4 3.0 762542ng 11.00 37.8 10.6 10.3 41.3 17417ah 3.00 22.3 12.4 12.3 53.0 30033Table 5.12: Frame level lassi�ation statistis for TMLP versus 9 Frame PLP MLP
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Avg. Both MLP4 PLP MLP Both TotalPhone Dur. Right Right Right Wrong Phone(Frames) (%) (%) (%) (%) Countsoy 14.00 11.2 19.8 8.2 60.8 2028aw 21.00 24.8 19.9 10.1 45.3 14675ae 11.00 50.3 17.5 8.9 23.3 73780ow 11.00 37.0 18.0 11.1 33.9 56401puh 19.00 49.7 16.4 11.2 22.7 45210ay 15.00 54.5 13.7 8.8 23.1 73458ey 12.00 42.2 14.8 10.1 32.9 35987hh 5.00 26.1 12.4 8.4 53.2 32070z 3.00 38.6 14.3 11.0 36.1 32521ax 5.00 35.3 12.9 9.6 42.3 75242dx 5.00 29.2 12.7 9.6 48.5 5284lau 41.00 47.2 14.4 11.4 27.0 38014pum 11.00 32.1 15.9 13.1 39.1 33913aa 9.00 25.4 15.6 13.3 45.6 24764th 21.00 23.7 13.7 11.5 51.1 10507s 6.00 54.2 13.2 11.2 21.4 70534r 6.00 47.4 14.6 12.6 25.4 51308y 9.00 53.9 12.2 10.8 23.1 38136eh 5.00 21.0 12.9 11.8 54.3 33454dh 3.00 32.5 14.0 13.0 40.4 29534f 7.00 40.0 13.3 12.4 34.3 24710ah 3.00 22.2 13.3 12.4 52.1 30033zh 10.00 21.5 13.8 13.0 51.7 391d 6.00 22.5 11.1 10.5 55.9 35311jh 13.00 40.5 11.8 11.6 36.2 8795uw 3.00 36.2 12.2 12.0 39.6 29316t 4.00 33.4 11.5 11.3 43.8 73020sil 16.00 91.9 2.5 2.4 3.1 762542Table 5.13: Frame level lassi�ation statistis for 15 x 51 MLP4 vs. 9 Frame PLP MLP



104 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTS5.5.2 Temporal Systems Versus 9 Frame PLP MLPTo answer the seond question of what phones the temporal systems are generallybetter at lassifying than 9 Frame PLP MLP, we examined the intersetion of the phonesthat appear in Tables 5.11, 5.12, and 5.13. These phones are the phones for whih all threetemporal systems are better at lassifying than 9 Frame PLP MLP. The most prominentobservation from this is that all of the temporal systems onsistently lassify diphthongs(/aw/, /ay/, /ey/, /ow/, and /oy/) better than 9 Frame PLP MLP. Diphthongs are phonesthat start o� sounding like one vowel and end sounding like another vowel. The averageduration of diphthongs is 13.6 frames in the Eval2001 data set, whih is 4.6 frames morethan the input ontext to 9 Frame PLP MLP. Beause the temporal systems have 51frames of ontext to work with, they an better model these diphthongs.Other phones whih these temporal systems are onsistently better at lassifyinginlude: /ae/, /puh/, /pum/, /hh/, /th/, /z/, /ax/, /lau/, and /dx/. /ae/, /puh/,/pum/, /th/, and /lau/ have average durations longer than 9 frames. The �lled pausedvowel /puh/ (as used when people say \uh") and the �lled paused nasal /pum/ (as usedwhen people say \ummm"), seem like phones that an be easily onfused with regularphones like /ah/ and /m/. With more temporal ontext, HAT, TMLP, and 15 x 51 MLP4seem to be able to disambiguate these �lled pause phones better than the 9 Frame PLPMLP system. It is interesting that these temporal systems outperform 9 Frame PLP MLPon some short phones also (i.e., /hh/, /z/, /ax/, and /dx/). Perhaps, there is a lot ofontextual information about these phones that the temporal systems are able to aptureand exploit.5.5.3 Temporal Systems Versus Eah OtherIn the ontext of our augmented ombination system, where we ombine theoutputs of one of the temporal systems with the outputs from the intermediate-term 9Frame PLP MLP system, and use this ombination to augment the onventional short-term features, it is interesting to analyze what happens when we remove or add learningonstraints on the temporal systems. As we move from HAT to TMLP to 15 x 51 MLP4, weare removing onstraints on the learning of long-term information. We an see the e�etof removing onstraints on performane by looking at all the phones for whih a more



5.6. NARROW-BAND DISCRIMINANT TEMPORAL PATTERNS 105onstrained temporal system performs better at than 9 Frame PLP MLP but that theless onstrained temporal system does not perform better at than 9 Frame PLP MLP. Forexample, by looking for phones that appear in Table 5.12 but do not appear in Table 5.11,we an see whih phones are better lassi�ed when removing the onstraint of learningritial-band phone labels. Similarly, by looking for phones that appear in Table 5.13 butdo not appear in Table 5.12, we an see whih phones are better lassi�ed when removingthe onstraint of learning within ritial-bands. To see the e�et of adding onstraints, wesimply reverse the order of our table omparisons and look for phones whih appear in thetable for the more onstrained system but do not appear in the less onstrained system'stable. Comparing HAT to TMLP, we see from Tables 5.11 and 5.12 that the followingphones appear in Table 5.12 but not in Table 5.11: /f/, /dh/, /y/, /uw/, /d/, /aa/, /jh/,/sil/, /ng/, and /ah/. Removing the ritial-band onstraints (going from TMLP to 15x 51 MLP4, we see from Tables 5.12 and 5.13 that the phones /s/, /r/, /eh/, /zh/, and/t/ are better lassi�ed. When tightening the onstraints from 15 x 51 MLP4 to TMLP,/ng/ is the only phone that is improved, while going from TMLP to HAT only /zh/is improved. Generally, loosening the onstraints helps the temporal systems to betterlassify phones, but we have also notied that in ombination with 15 x 51 MLP4, thenarrow-band onstraint does make the temporal systems more omplementary leading tolarger redutions in word error rates (e.g., ompare the ombined-augmented results forTMLP, 33.9%, versus 15 x 51 MLP4, 34.3%).5.6 Narrow-Band Disriminant Temporal PatternsIn Setion 3.10, we disussed the nature of the disriminant temporal patternslearned by HAT and TMLP on TIMIT speeh data. In this setion, we not only examinewhat was learned by HAT and TMLP on CTS data, but we also look at what temporalpatterns were learned by PCA40 and LDA40. As explained in Setion 3.10, the ritial-band hidden units of HAT and TMLP perform �ltering operations on the log ritial-bandenergy trajetories of speeh. When trained on TIMIT data these mathed temporal �ltersoming from both HAT and TMLP tended to �lter out modulation frequenies above 20Hz. The PCA40 and LDA40 transformations that we trained on the log ritial-band



106 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSenergy trajetories an similarly be onsidered as mathed temporal �lters as well. InAppendix D, we show plots of the luster entroids of input-to-hidden weights of ritial-band hidden units for the HAT and TMLP systems trained on the female portion of theCTS training set in this hapter. In Appendix E, we show plots of the luster entroids ofthe PCA40 and LDA40 transformation vetors trained on the female portion of the CTStraining set in this hapter.Comments similar to the ones in Setion 3.10 an be made here also. The HATand TMLP disriminant temporal patterns mostly tend to emphasize only modulationfrequenies below 20 Hz whih has been shown to be important for speeh reognition.TMLP patterns tend to also exhibit more shifting in time than the HAT patterns: thereseem to be more patterns where the regions of varying magnitudes are not entered atframe 0. Like the patterns in Setion 3.10 and Appendix C, the patterns learned by HATand TMLP in this hapter do resemble previous patterns found in literature [10, 124, 115,67, 112℄. There are onset detetor patterns, \Mexian hat" energy detetor patterns, andpatterns that resemble Mean TRAPs.The most striking di�erenes ome from looking at the patterns learned by HATand TMLP versus those learned by PCA40 and LDA40. The �rst main di�erene betweenthe sets is that both PCA40 and LDA40 have learned some patterns that are sensitive tomodulation frequenies greater than 20 Hz. These patterns are apturing temporal infor-mation that is not neessarily essential for speeh reognition whih explains to some extentwhy the PCA40 and LDA40 temporal systems in this hapter were less e�etive than theHAT and TMLP systems for improving performane. The next striking di�erene is thatall of the PCA40 patterns look like sinusoids of di�erent frequenies. What this impliesabout speeh within narrow-frequeny bands is interesting: this means that the diretionsof highest variane all orrespond to sinusoidal funtions with di�erent osillation frequen-ies. Finally, the LDA40 patterns look somewhat like a mix between PCA40 patterns andHAT patterns. Of all the LDA40 patterns some also look like rapidly varying sinusoids,but there are other patterns that more resemble those learned by HAT and TMLP. Wehave also observed that the top LDA40 disriminants (i.e., the ones orresponding to thehighest eigenvalues) look like the onset detetors and \Mexian hat" patterns onsistentwith previous LDA studies.



5.7. HAT AND TMLP PRACTICAL TRADE-OFFS 1075.7 HAT and TMLP Pratial Trade-o�sThere are some notable observations onerning the training proess of HAT andTMLP. As explained earlier, the training of HAT proeeds in two stages. The �rst stageis to train all the ritial-band MLPs. In the seond stage, we �rst ompute the hiddenunit outputs of all ritial-band MLPs from the input ritial-band energy trajetories ofthe training data. The set of all of these hidden unit outputs beomes the input trainingdata for the seond stage merger MLP training. The �rst stage an be parallelized totrain on several omputers simultaneously. There is some savings in time by training this�rst stage in parallel; however, the �rst stage training is muh quiker than the seondstage merger training beause the ritial-band MLPs are rather small (only 20 hiddenunits in Chapter 3 and 40 hidden units in this hapter), and so the overall training time isdominated by the seond stage merger training.One potential drawbak from our implementation of this two-stage HAT trainingis the need for temporary disk spae to store the hidden unit outputs from all the ritial-band MLPs on the omplete training set. A small training set suh as the one in Chapter 3(about 1 million frames), requires 380 million 4 byte oats (1 million frames x 20 hiddenunits per ritial-band x 19 ritial-bands x 4 bytes = 1.52 gigabytes) of temporary diskstorage. The CTS training sets in this hapter have about 12 million frames per genderwhih means that we need about 29 gigabytes of temporary disk storage (12 million framesx 40 hidden units per ritial-band x 15 ritial-bands x 4 byte oats = 28.8 gigabytes) pergender for training HAT3. TMLP, in ontrast, requires no suh temporary disk spae sineall ritial-band hidden unit outputs are propagated within the network during training.Although temporary disk spae is not an issue for training TMLP, there is atrade-o� with the time needed for training. The time required for training TMLP istypially longer than that for training HAT. In HAT the ritial-band hidden units anbe trained in parallel, but in TMLP the ritial-band hidden units are trained along withall the other TMLP parameters within a single network optimization routine. Anotherreason why TMLP trains slower than HAT is that the optimized linear algebra routinesrun less eÆiently beause the TMLP's band-onstrained 2 hidden layer topology leads to3The training set used for training SRI's 2004 CTS reognizer has about 40 times more frames pergender than the training set used in this hapter whih would require over a terabyte of temporary diskstorage!



108 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTS33 Hour Set 66 Hour SetApprox. Temporary Approx. TemporarySystem Training Disk Training DiskTime Spae Time SpaeHAT 28.5 hours 28.8 GB 100.5 hours 86.4 GBTMLP 32.9 hours 0 140.8 hours 0Table 5.14: A omparison of training time and disk spae requirements for HAT and TMLPtrained on a 33-hour and 66-hour training set. The systems trained on the 33-hour set haveabout 516,000 parameters and 40 hidden units per ritial-band, and the systems trainedon the 66-hour set have about 1,032,000 parameters and 60 hidden units per ritial-band.
operations on matries that are either thin and tall or short and wide. Beause eah stageof HAT training operates on single hidden layer MLPs with regular topologies, the linearalgebra routines run faster allowing for quiker HAT training.To ompare training times of HAT and TMLP, we trained both HAT and TMLPon two di�erent training sets. The �rst training set is the one used in this hapter fortraining male systems (about 33 hours and 12 million frames). The seond training set isa superset of the �rst and ontains about twie as muh male speeh data (about 66 hoursand 24 million frames). The HAT and TMLP systems trained on the �rst set have about516,000 total parameters and 40 hidden units per ritial-band, while the systems trainedon the seond set have twie as many total parameters and 60 hidden units per ritial-band. Table 5.14 shows the atual training times and temporary disk spae required fortraining eah of the four systems on an Intel Xeon 2.80GHz mahine with 3 GB of memory.The HAT training times inludes the savings from parallelizing the ritial-band hiddenunit training and the time needed to proess the intermediate hidden unit ativation �lesfor the seond stage training.Table 5.14 illustrates the pratial trade-o� of training HAT and TMLP. HATtrainings run faster at the ost of large amounts of temporary disk spae, while TMLPtrainings run slower and save in disk spae as well as human operator e�ort required forpreparing the intermediate HAT training �les.



5.8. CONCLUSIONS 1095.8 ConlusionsIn this hapter we have ompared various temporal systems for the learning oflong-term (about 500 milliseonds) information useful for ASR on CTS. We omparedtheir performane using three di�erent Tandem ASR on�gurations: stand-alone Tandem,augmented Tandem, and ombined-augmented Tandem. The various temporal systemsonstrain the learning of long-term information in di�erent ways. The 15 x 51 MLP3and 15 x 51 MLP4 systems do not onstrain the learning within the 15 ritial-bandsby 51 frames matrix of log energies. The TMLP system onstrains the lassi�er to learnimportant distintions within individual 51-frame ritial-band energy trajetories. Finally,the PCA40, LDA40, HAT Before Sigmoid, HAT, Neural TRAP, and Neural TRAP PostSoftmax systems onstrain the learning within ritial-bands, but also fores the systems tolearn transformations useful for lassifying phone labels at the ritial-band level (exeptfor the PCA40 system whih learns transformations in diretions of highest variane).We found that three temporal systems outperformed all others in all three sys-tem on�gurations: the unonstrained 15 x 51 MLP4, TMLP, and HAT temporal systems.When omparing these three systems, we saw an advantage to the ritial-band onstrainedTMLP, and HAT temporal systems in ombination with the intermediate-term 9 FramePLP MLP system, suggesting that the ritial-band onstraints help to make our tem-poral systems more omplementary to the 9 Frame PLP MLP system. Also, the twobest nonlinear ritial-band onstrained systems, TMLP and HAT, outperformed all lin-ear ritial-band onstrained systems, PCA40 and LDA40, in all system on�gurations.This suggests that it is important to learn \probabilities" of something fundamentallydisriminant at the ritial-band level for later stages in the MLP lassi�er.Performing further analysis as to whih phone lasses our temporal systems las-sify better, we found that the temporal systems tend to do better on phones that havelonger average durations. Compared with the intermediate-term 9 Frame PLP MLP sys-tem, we also found that the temporal systems onsistently perform better on diphthongs,�lled pauses, laughter, and a few other phones (/ae/, /hh/, /th/, /z/, /ax/, and /dx/).The narrow-band frequeny patterns learned by HAT and TMLP systems againpreserve the important low modulation frequenies of speeh needed for reognizing words.The patterns learned by LDA40 and PCA40 di�er from those learned by HAT and TMLP



110 CHAPTER 5. COMPARISON OF TEMPORAL SYSTEMS FOR CTSin that they also pass modulation frequenies greater than 20 Hz. Moreover, the pat-terns learned by PCA40 all look like sinusoidal funtions of di�erent frequenies. Lowerorder LDA40 basis vetors look somewhat like noisy sinusoids, while the higher order onesresemble patterns learned by HAT and TMLP.When training HAT and TMLP systems, we ommented that in general HATsystems train faster, but TMLP systems do not require any temporary disk spae fortraining. Our best system in this hapter, the ombination of TMLP and 9 Frame PLPMLP features augmenting the onventional HLDA(PLP+3d) features, ahieved a WER of33.9% on Eval2001. The onventional HLDA(PLP+3d) features get a WER of 37.2%.This is an absolute redution in WER of 3.3% (or 8.9% relative) ompared to usingHLDA(PLP+3d) features alone, whih was the state-of-the-art feature used in 2003. Animprovement of this magnitude on CTS is onsidered impressive and is about half the gainahieved by most evaluation teams after a year of olletive work.



111
Chapter 6
Further Explorations With TMLP

In previous hapters we developed several new neural net arhitetures for thelearning of long-term narrow-frequeny band information useful for ASR. We started bytesting HAT, TMLP, and Neural TRAP on a small reognition task - reognizing phonesfrom the TIMIT orpus. Then we set up a series of reognition tasks leading to thedevelopment of a baseline system utilizing new front-end feature for the reognition ofonversational telephone speeh (CTS). In Chapter 5, we ompared various neural netsystems learning long-term information for reognizing CTS. In this hapter we furtherexplore one of the best long-term systems: the TMLP.We begin by examining the hoie in the number of ritial-band hidden unitsin the TMLP. Spei�ally, we are interested in determining how performane is a�etedby the hoie in the number of ritial-band hidden units as the amount of training dataand total parameters are varied. Beause the ritial-band hidden units an be thoughtof as probability estimators of disriminant temporal patterns, hoosing how many ofthem to use is equivalent to hoosing how many disriminant temporal patterns we wouldlike the TMLP to learn. From previous work on Mean TRAPs, there seems to be a�nite number of important temporal patterns at the ritial-band level neessary for highauray. Likewise, we �nd that the optimal number of ritial-band hidden units doesnot grow when inreasing the amount of training data.In the seond part of this hapter, motivated by previous work on UTRAP [50℄whih hypothesized that multiple ritial-bands have similar temporal patterns, we inves-



112 CHAPTER 6. FURTHER EXPLORATIONS WITH TMLPtigate whether the disriminant temporal patterns an be shared aross multiple ritial-bands. We develop TMLPs that an share the parameters of ritial-band hidden unitsamong di�erent ritial-bands. These shared hidden units are trained and applied onspeeh data oming from multiple ritial-bands. We �nd that performane remains highwhen sharing ritial-band hidden units suggesting that di�erent ritial-bands share sim-ilar disriminant temporal patterns useful for ASR.6.1 The Growth of Critial-Band Hidden UnitsWhen we moved to apply HAT and TMLP on CTS, the optimal number of hiddenunits per ritial-band jumped from 20 for the smaller TIMIT task to 40 for the CTS task.Perhaps this omes from having muh more training data in the CTS task than in TIMITtraining (3.12 hours of TIMIT training data versus about 35 hours of CTS training dataper gender1.). This leads us to the question that we wish to answer in this setion:� How does the amount of training data a�et the optimal hoie for the number ofhidden units per ritial-band in the TMLP?To answer this question, we reated four CTS training sets di�ering in the totalnumber of hours of speeh. These four CTS training sets ome from the same soures usedfor reating the baseline CTS training set in Chapter 5: English CallHome [19℄, Swith-board I with transriptions from Mississippi State [41, 28℄, and Swithboard Cellular [43℄.The �rst new training set onsists of about 124.9 hours (about 20 million frames per gender)of speeh data from the above soures. In all of the four new training sets, we maintainedan equal balane between the amount of male and female training data. Subsampling the124.9 hour set by 2, 4, and 8 resulted in a 62.4 hour (about 10 million frames per gender),31.2 hour (about 5 million frames per gender), and 15.6 hour (about 2.5 million framesper gender) training set respetively.One these training sets were ompleted, we started to investigate the interationsbetween the number of ritial-band hidden units, the total number of trainable param-eters, and the amount of training data. We trained TMLPs with 20, 30, 40, 50, and 601Reall that the TIMIT nets are gender independent nets, while the CTS nets are gender dependentnets (one net for eah gender), so for fairness of omparison, we ompare how muh data it takes to trainsingle networks.



6.1. THE GROWTH OF CRITICAL-BAND HIDDEN UNITS 113hidden units per ritial-band, and for eah of these ases, we hose the seond hiddenlayer size suh that the total number of parameters was either 250,000, 500,000, 1,000,000,or 2,000,000. Training for eah TMLP setting was done separately for eah gender, andthe performane numbers that follow reet the average performane from both genders.The training proedure was the same proedure used for training TMLPs in Chapter 5.Basially, we alulated 15 log ritial-band energies for every 10 milliseonds of speeh,normalized the mean and variane of these energies over every utterane, and used these asinput features for the TMLPs. Holding out 10% of the training data as a ross-validationset, we used the error bak-propagation algorithm to minimize the ross-entropy betweenthe TMLP outputs and the phone targets. These phone targets were the same kind ofphone targets derived from fored alignments from the SRI reognizer in Chapter 5.One training ompleted, we measured the frame auraies on the separateEval2001 CTS test set as desribed in Subsetion 5.3.1. Figure 6.1 shows four graphsof frame auray on Eval2001 versus the number of hidden units per ritial-band ofTMLPs for the four di�erent amounts of training data. Eah panel orresponds to one ofthe four training set sizes (15.6 hours, 31.2 hours, 62.4 hours, or 124.9 hours), and withineah panel there are four urves of frame auraies orresponding to the four TMLP sizes(250,000, 500,000, 1,000,000, or 2,000,000).All urves in Figure 6.1 exhibit a max auray between 30 and 50 hidden unitsper ritial-band exept for the 1M parameters/15.6 hour ase whih has a max at 60.Only the 500k parameters/15.6 hour and 1M parameters/15.6 hour ases show trends thatmay indiate higher auraies for greater than 60 hidden units per ritial-band. Toanswer whether inreasing the amount of training data leads to an inreasing number ofhidden units per ritial-band for optimal performane, ompare the lines orrespondingto TMLPs with the same number of trainable parameters in eah of the four panels. Theurves for 250,000 parameters exhibit a maximum at 30 hidden units per ritial-bandregardless of the amount of data. For the TMLPs with 500,000 parameters, the maximumauray moves from 40, to 50, to 40, to 40 hidden units per ritial-band as we double theamount of training data. In the 1,000,000 parameters ase, the maximum auraies goesfrom 60, to 60, to 40, to 40 hidden units per ritial-band, and in the 2,000,000 parametersase, the maximum goes from 50, to 50, to 40, to 40 hidden units per ritial-band for eahdoubling in the amount of training data.
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6.1. THE GROWTH OF CRITICAL-BAND HIDDEN UNITS 115From these observations, we �nd that as we inrease the amount of training data,the optimal hoie for the number of hidden units per ritial-band atually dereases whenkeeping the total number of parameters �xed. However, it does appear to be the ase thatas the number of total parameters inreases, the best number of ritial-band hidden unitsinreases slightly. This an be seen learly in the 62.4 and 124.9 hour panels. See how thebest number of hidden units goes from 30 for 250k parameters to between 30-40 for 500kparameters, and to 40 for 1M and 2M parameters.In a previous empirial study on training MLPs for use in a hybrid ANN/HMMsystem on Broadast News [33℄, Ellis et al. explored the optimal ratio of the number oftraining examples to number of trainable MLP parameters for a �xed training time. Theyfound that the optimal ratio of number of training example frames to number of parameterswas in the range of 10 to 40 for a onstant produt of training frames and parameters. Theprodut of training frames and parameters gives a measure of how long it takes to trainan MLP beause in eah epoh of training all the parameters are updated N times whereN is a number proportional to the number of total training frames2.We plot the average frame auraies for TMLPs of onstant N (onnetion up-dates (CUPs) per epoh) versus the ratio of frames to parameters in Figure 6.2. From this�gure we an see a slowing of auray improvements as the ratio of frames per parameterinreases. There is a derease in auray for the 19.5 million onnetion updates per epoh(19.5 MCUP) line when frames per parameter is greater than 20. Table 6.1 show word errorrate results on the Eval2001 test set for stand-alone Tandem systems using posterior-basedfeatures from TMLPs of this onstant 19.5 MCUP. Eah of the TMLPs in the table have40 hidden units per ritial-band, and the SRI reognizer HMMs were trained using thesame training set as in Chapter 5. The TMLP with 80 frames-to-parameters performed thebest ahieving a 43.9% WER on Eval2001. Lowering the frames-to-parameters ratio to 20,auses WER to go up to 44.1%, while lowering this ratio to 5 and 1.25 auses WER to goup to 45.8% and 48.1% respetively. From Figure 6.2 and Table 6.1, it is unlear where theoptimal ratio of training frames-to-parameters lies. We annot onlude as in [33℄ that theoptimal range of training frames-to-parameters is between 10 and 40, but we an say thatthe range is likely to begin at 40. It is interesting to note that the systems with 40 or more2N depends on the degree to whih the training is done online or in bath mode. Our trainings are donein a bunh (or semi-bath) mode where the parameter updates happen one every 256 training frames.
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Figure 6.2: Frame auraies on Eval2001 for TMLPs of equal training time.frames per parameter (i.e., 124.9 hours/250k parameters, 124.9 hours/500k parameters,and 62.4 hours/250k parameters) have 30 or 40 as the best number of ritial-band hiddenunits. To summarize the �ndings from this setion we make several onluding state-ments.� Overall, the dominant onlusion that one an draw from these experiments is thatthe optimal number of ritial-band hidden units is not all that sensitive to theamount of training data or the total number of parameters.1. For a �xed number of TMLP parameters, inreasing the amount of trainingdata does not lead to an inrease in the optimal number of hidden units perritial-band. This is true even when inreasing the amount of training data byalmost 10-fold (15.6 hours versus 124.9 hours).2. For a �xed amount of training data, inreasing the number of total parameters



6.2. SHARING CRITICAL-BAND HIDDEN UNITS 117Frames-to-ParametersSystem 1.25 5 20 80Desription WER (%) WER (%) WER (%) WER (%)19.5 MCUP 48.1 45.8 44.1 43.9Table 6.1: Word error rate results on Eval2001 for stand-alone Tandem systems usingTMLPs of a onstant training omplexity (19.5 MCUP), 40 hidden units per ritial-band,and varying training frames-to-parameters ratio. Even though the TMLPs were trainedusing di�erent training set sizes, the SRI reognizer models were all trained using thetraining set used in Chapter 5.leads to only a slight inrease in the optimal number of hidden units per ritial-band.� For a �xed training time onstraint, the optimal ratio of frames-to-parameters isgreater than 40. Furthermore, TMLPs with ratios in this range have between 30 and40 hidden units per ritial-band.6.2 Sharing Critial-Band Hidden UnitsWhen looking at ritial-band mean temporal patterns like the ones shownin [112, 62℄ and in Figure 2.5, we immediately notie that many temporal patterns are verysimilar within a partiular ritial-band and also among di�erent ritial-bands. In [50℄,Hermansky et al. developed a version of Neural TRAP alled UTRAP, whih used a singleritial-band MLP for all ritial-bands. They reasoned that sine the ritial-band tem-poral patterns are so similar even among temporal patterns from di�erent ritial-bands,then a single \universal" MLP ould be used to extrat the disriminant temporal infor-mation for all ritial-bands. Besides reduing the amount of memory and omputationrequirements, another reason for developing UTRAP is that sharing this one \universal"MLP aross all ritial-bands in this way, o�ered potential for improving generalizationby lessening the sensitivity to training and test set variations. Their experiments on adigit reognition task showed that UTRAP performed omparably to a Neural TRAPsystem [62℄.Another interesting observation about the temporal information learned by Neu-ral TRAP-like systems omes from examining the input-to-hidden weights of the ritial-
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Figure 6.3: Input to hidden weights of various ritial-band hidden units from a femaleHAT network trained on the female CTS training data in Chapter 5. These hidden unitsare gathered from di�erent ritial-bands.band hidden units in HAT and TMLP. As desribed in Chapter 3, these input-to-hiddenweights are ritial-band mathed �lters ating on the log ritial-band energy trajeto-ries of speeh. Eah of these �lters has a frequeny response whih tells us how the �ltera�ets ertain modulation frequenies. When looking at plots of these ritial-band input-to-hidden weights for HAT and TMLP, we notie that many of these weights have similarshapes. Figures 6.3 and 6.4 show several input-to-hidden weights from hidden units atdi�erent ritial-bands for HAT and TMLP respetively. Notie how similar they are.Appendies C and D ontain many similar plots of input-to-hidden weights of ritial-band hidden units for HAT and TMLP trained on TIMIT and CTS. Appendix E hasorresponding temporal patterns learned by PCA and LDA on CTS.The omparable performane of UTRAP to Neural TRAP and the similarityof the input-to-hidden weights of ritial-band hidden units learned by HAT and TMLPsuggest that disriminant temporal patterns an be shared aross di�erent ritial-bands.
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Figure 6.4: Input to hidden weights of various ritial-band hidden units from a femaleTMLP network trained on the female CTS training data in Chapter 5. These hidden unitsare gathered from di�erent ritial-bands.



120 CHAPTER 6. FURTHER EXPLORATIONS WITH TMLPWe further explore this suggestion in this setion using our TMLP. The main idea is toshare (or tie) ritial-band hidden units aross multiple ritial-bands in the TMLP. Thismeans that ertain ritial-band hidden units will have the same weights and biases butappear in di�erent positions within the TMLP. For example, if we speify that hidden unit4 of ritial-band 8 be shared with hidden unit 15 of ritial-band 5, then these two ritial-band hidden units will have the same weights and biases. Training proeeds normally, butwhen the parameters of hidden unit 4 of ritial-band 8 are updated, the parameters ofhidden unit 15 of ritial-band 5 are updated identially. In this way we e�etively haveidential ritial-band disriminators that are trained and applied over multiple ritial-bands. In Chapter 5 we trained gender dependent TMLPs on a 68-hour CTS trainingset. In this setion we train our gender dependent TMLPs that share ritial-band hiddenunits on the same training set. One on�guration for the sharing of ritial-band hiddenunits is to share eah ritial-band hidden unit aross all ritial-bands. For example, if wehoose to have 30 total hidden units per ritial-band, this type of sharing means that eahof the 30 hidden units appears in every one of the ritial-bands. To make this learer,hidden unit 1 of ritial-band 1 shares parameters with hidden unit 1 of ritial-bands 2-15.Similarly, hidden unit 2 of ritial-band 1 shares parameters with hidden unit 2 of ritial-bands 2-15, and so on and so forth. Figure 6.5 shows the frame auray performane onEval2001 for TMLPs whose ritial-band hidden units are shared aross all ritial-bands.Eah of the TMLPs only di�er by the total number of ritial-band hidden units (eah ofwhih is shared aross all ritial-bands).Frame auray performane starts to plateau after 25 ritial-band hidden units.It is safe to assume that 40 shared ritial-band hidden units are suÆient for ahieving highframe auray. We ompare reognition performane between a omparable non-weightsharing TMLP with 40 hidden units per ritial-band (this is the same TMLP in Chapter 5)with the weight sharing TMLP with 40 shared ritial-band hidden units (TMLP S40) inTable 6.2. We measure the performane in terms of frame auray and word error rates(WER) on Eval2001, and the WERs ome from the 3 ASR system on�gurations testedin Chapter 5 (e.g., stand-alone Tandem, augmented Tandem, and ombined-augmentedTandem). The performane of TMLP S40 is always worse than TMLP exept in the aseof frame auray where TMLP S40 gives a higher auray than TMLP. The WERs for
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Figure 6.5: Frame auray on Eval2001 for TMLPs whose ritial-band hidden units areshared aross all ritial-bands.
TMLP S40 are worse by .4%-.6% absolute whih is a statistially signi�ant margin.It makes sense that the weight sharing TMLP S40 would produe worse resultsthan the non-weight sharing TMLP beause weight sharing further onstrains the modelreduing the size of the family of distributions that TMLP S40 an model. However, whatis somewhat surprising is that the TMLP S40 does so well. The margins in performanebetween TMLP S40 and TMLP are not very large. Our motivation for exploring weightsharing in the TMLP ame from observations that temporal patterns (either those fromMean TRAPs or from input-to-hidden weights of ritial-band hidden units in HAT andTMLP) from di�erent ritial-bands look similar. Beause TMLP S40 performs ompara-bly to TMLP, disriminant temporal patterns an indeed be shared by di�erent ritial-bands without inurring a large penalty in performane. This may be espeially ruialin appliations where the amount of memory and omputation is limited (i.e., in mobiledevies). The TMLP S40 has about 30,000 fewer parameters than the TMLP. Moreover,the TMLP S40 an potentially give better generalization performane in more mismathedtraining and testing onditions beause of its more parsimonious representation.



122 CHAPTER 6. FURTHER EXPLORATIONS WITH TMLPSystem Frames Stand-Alone Augment CombineDesription Corret WER (%) WER (%) Augment(%) WER (%)TMLP 67.12 44.9 35.5 33.9TMLP S40 67.92 45.5 35.9 34.3Table 6.2: Performane of TMLPs with 40 hidden units per ritial-band on Eval2001.TMLP does not have weight sharing, while TMLP S40 shares all 40 hidden units over allritial-bands.6.2.1 Narrow-Band Disriminant Temporal PatternsIn Setion 5.6 we disussed the temporal patterns learned by HAT and TMLPtrained on CTS data. In this subsetion, we do the same for the weight sharing TMLPS40. Appendix D ontains plots of the ritial-band input-to-hidden unit weights of TMLPS40 as well as orresponding modulation frequeny responses.The narrow-band disriminant temporal patterns learned by TMLP S40 resem-ble the entroids of the patterns learned by TMLP in Chapter 5 and also displayed inAppendix D. Present are the ubiquitous onset \derivative" patterns, the energy detet-ing \Mexian hat" patterns, and other patterns that have also been learned by HAT andTMLP in previous hapters. What is important is that all of the modulation frequenyresponses pass speeh modulations between 0 and 20 Hz. Again, these low modulationfrequenies have been shown to be important for speeh reognition.
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Chapter 7
Conlusion
7.1 SummaryConventional state-of-the-art speeh reognition systems typially only extratinformation from speeh within short-term spetral slies lasting about 25 milliseonds.Relying solely on short-term spetral slies for the modeling of speeh, these speeh reog-nition systems are vulnerable to variabilities in speeh that do not a�et human speehreognition performane. The work presented in this thesis further showed a novel way ofmodeling speeh and integrated it within the framework of a state-of-the-art large voab-ulary ontinuous speeh reognizer. Instead of using just short-term spetral slies, thesystems developed in this thesis extrat information useful for automati speeh reognition(ASR) from long-term narrow-frequeny bands of speeh spanning about 500 milliseonds.The motivation for extrating information within narrow-frequeny bands omesmainly from human listening experiments that showed that human reognition performaneremains quite high when given band-limited speeh. Humans an also aurately detetertain harateristis of speeh quite robustly from narrow-frequeny bands of speeh.The motivation for extrating long-term information omes from human listening experi-ments showing how humans rely on longer aousti ontext for the aurate reognition ofnonsense syllables. Moreover, information theoreti analyses of speeh showed that signi�-ant amounts of disriminant information about the identity of a phone exist at times up toseveral hundred milliseonds before and after. Finally, it was our hope that by extratingspeeh information in this radially di�erent way, our new long-term narrow-band (tem-



124 CHAPTER 7. CONCLUSIONporal) systems would be able to omplement the traditional systems leading to signi�antredutions in word error rates.Prior to this work, Hermansky and Sharma developed a system that improvedASR performane by extrating information from long-term narrow-frequeny bands. TheNeural TRAP system [52℄ proved to be quite omparable with traditional ASR systems;however, in ombination with traditional systems, Neural TRAP further redued worderror rates. Building o� their suess, we developed some Neural TRAP extensions thataddressed one of the major issues in Neural TRAP: the hoie of narrow-band informationto extrat. Neural TRAP uses ritial-band level phone posteriors as the narrow-band in-formation soure. Multi-layer pereptrons (MLPs) are trained on ritial-band level labelsof phones to learn phone posterior probabilities from ritial-band log energy trajetoriesof speeh lasting about 500 milliseonds. Phone posteriors from all ritial-bands are thenused as inputs to a merger MLP that estimates the overall phone posterior probabilities.The problem here is that ritial-band level phone posterior estimation is quite diÆultbeause of the dearth of information for lassifying phones within ritial-band log energytrajetories. Beause of these diÆulties, we developed two new neural net arhitetures forextrating long-term narrow-band speeh information: Hidden Ativation TRAP (HAT)and Tonotopi Multi-Layer Pereptron (TMLP).HAT was built on the premise that the mappings from the ritial-band hiddenunit spae to the ritial-band phone posteriors of ritial-band MLPs in Neural TRAPwere extraneous and inaurate. Whatever useful information for disriminating betweenphones at the ritial-band level is already aptured by the input-to-hidden weights of theritial-band MLPs. These input-to-hidden weights at as mathed �lters on the inputritial-band log energy trajetories, and they emphasize/deemphasize ertain modula-tion frequenies of speeh. Unlike Neural TRAP, HAT uses the ritial-band hidden unitativations as the input to the merger MLP instead of the ritial-band phone posteriors.TMLP has the same network onnetions as HAT, but in TMLP the ritial-band hidden unit onnetions are learned as a result of the global gradient desent errorminimization training algorithm. Instead of onstraining the ritial-band hidden unitonnetions to learn what is best for ritial-band level phone lassi�ation, TMLP ritial-band hidden unit onnetions are set to whatever is best for the overall phone lassi�ation.Thus, the family of distributions that TMLP an model is greater than HAT.



7.1. SUMMARY 125In Chapter 3, we ompared the performane of HAT, TMLP, and Neural TRAPsystems on the TIMIT phone reognition task. We used the hybrid ANN/HMM ASR setupand found that HAT and TMLP outperform standard Neural TRAP in lean onditionswhile using 84% fewer parameters. We also ompared these temporal systems with a moretraditional system that used 9 frames of Pereptual Linear Preditive (PLP) features plusenergy and deltas and double deltas as inputs to the MLP. The temporal systems performedomparably in lean onditions to this PLP system, but in reverberant onditions alltemporal systems outperformed this PLP system. We also tested these systems in thepresene of additive ar and exhibition hall noise at various signal-to-noise ratios. No learwinner was delared from these tasks. The main �nding whih supported earlier �ndings onNeural TRAP was that in ombination with the PLP system, HAT and TMLP signi�antlyimproved performane. Beause HAT and TMLP performed very well ompared to NeuralTRAP we onluded that is was good to skip the mapping to ritial-band phones. BeauseTMLP did not signi�antly outperform HAT, there was not yet a lear advantage fromfurther unonstraining the learning of ritial-band hidden unit weights in TMLP; however,TMLP did have the pratial advantage of not having to use large amounts of temporarydisk spae to store all of the ritial-band hidden unit ativations. This pratial advantagewas espeially lear when we worked on training sets with muh more data.In Chapter 4, we integrated the Neural TRAP system with a state-of-the-art re-ognizer for onversational telephone speeh (CTS). In partiular, we ombined the phoneposteriors estimated by Neural TRAP with the phone posteriors from a 9 frame PLP MLPand transformed the ombined phone posteriors into front-end features. These featureswere then onatenated with onventional PLP features, resulting in an augmented fea-ture vetor that aptured speeh information from multiple time sales. We tested thissetup over a series of inreasingly omplex reognition tasks (numbers, 500 most ommonlyused words from Swithboard, and full voabulary CTS) and found that this approahonsistently redued reognition errors. We showed that the simple posterior ombinationmethods tested (e.g., averaging the posteriors, averaging the log posteriors, and inverse en-tropy weighted averaging of the posteriors) all performed roughly the same, but the inverseentropy weighted ombination method demonstrated some robustness to atastrophi er-rors within a single posterior stream. We also ited the importane of tuning the Gaussian



126 CHAPTER 7. CONCLUSIONWeight parameter1 to redue the importane of piking the optimal number of dimensionsto keep from the posterior stream. Conatenating the ombined posterior features withthe onventional PLP features led to a larger dimensional front-end feature vetor whihhad to be ompensated for by adjusting the Gaussian Weight.After suessfully integrating Neural TRAP within a state-of-the-art reognizer,we proeeded to ompare various approahes for the extration of useful information fromlong-term ontexts for reognizing CTS in a variety of ASR system on�gurations. Thethree main types of long-term or temporal systems were:1. Totally unonstrained - These systems simply took the 15 bands by 51 frames of logenergies as inputs. 15 x 51 MLP3 used a single hidden layer MLP, while 15 x 51MLP4 used a double hidden layer MLP.2. Band-onstrained linear - These systems alulated linear transforms on the logritial-band energy trajetories. PCA40 used prinipal omponents analysis toprojet the input trajetories along diretions orresponding to the top forty dimen-sions. LDA40 used linear disriminant analysis to transform the input trajetoriesalong the top forty most disriminant diretions.3. Band-onstrained nonlinear - These systems used some form of ritial-band MLPto extrat information from the input ritial-band trajetories. HAT Before Sig-moid, HAT, Neural TRAP, Neural TRAP Post Softmax used outputs from variouspoints within ritial-band MLPs trained to learn ritial-band level phone posteri-ors. TMLP was like HAT exept that the ritial-band hidden unit onnetions werelearned to optimize the overall phone posterior estimate.The three types of ASR system on�gurations for the omparison tests were:1. Stand-Alone Tandem - The phone posterior outputs of the temporal systems weretransformed and used as the front-end features for a onventional Gaussian mixtures-based HMM reognizer.2. Augmented Tandem - The phone posterior outputs of the temporal systems weretransformed and onatenated with onventional short-term front-end features. The1Reall that this is a spei� weighting fator found in the SRI reognizer.



7.1. SUMMARY 127resulting feature vetor was then used as the front-end feature vetor for a onven-tional Gaussian mixtures-based HMM reognizer.3. Combined-Augmented Tandem - The phone posterior outputs of the temporal sys-tems were ombined with the phone posterior outputs from an MLP whose inputswere 9 frames of PLP features (9 Frame PLP MLP). These were transformed andonatenated with onventional short-term front-end features. The resulting featurevetor was then used as the front-end feature vetor for a onventional Gaussianmixtures-based HMM reognizer.We found that 15 x 51 MLP4, HAT and TMLP onsistently outperformed allother temporal systems in all ASR system on�gurations. The band-onstrained HATand TMLP systems performed better in the ombined-augmented Tandem on�gurationthan the unonstrained 15 x 51 MLP suggesting that the ritial-band onstraint foundin HAT and TMLP are more helpful for learning omplementary information to the 9Frame PLP MLP. HAT and TMLP outperformed band-onstrained linear temporal sys-tems, suggesting that probabilities of ertain ritial-band ategories are important forhigher reognition performane. HAT and TMLP outperformed other band-onstrainednonlinear temporal systems, suggesting that phone posteriors at the ritial-band level arenot the optimal ritial-band level information to extrat. Rather, it is the informationaptured by the ritial-band hidden units (i.e., the mathed temporal �lters) that is bestfor the lassi�ation of phones.Toward the end of Chapter 5, we investigated what phone ategories the tem-poral systems onsistently performed better on ompared with the intermediate-term 9Frame PLP MLP. 15 x 51 MLP4, HAT and TMLP onsistently lassi�ed diphthongs,�lled pauses, laughter, and a few other phones (/ae/, /hh/, /th/, /z/, /ax/, and /dx/)better than 9 Frame PLP MLP. The very best ASR system developed, the TMLP inombined-augmented Tandem on�guration, ahieved an impressive 8.9% relative redu-tion in word error rate on CTS ompared with only using the short-term state-of-the-artfront-end feature vetor alone. The sale of this relative redution in word error rate alsoarried over when using the full state-of-the-art speeh reognition system on the CTSevaluations in 2004 [135℄.In Chapter 6 we further explored the settings for TMLP. We found that the



128 CHAPTER 7. CONCLUSIONoptimal number of ritial-band hidden units in TMLP does not inrease with more trainingdata. The optimal ratio of training frames to trainable parameters in the TMLP wasgreater than 40. Finally, we showed that sine many ritial-band mathed �lters learned byTMLP and HAT looked similar aross di�erent ritial-bands, it was possible to maintainomparable performane by sharing the ritial-band hidden units aross all ritial-bandsin the TMLP, thereby reduing the total number of parameters by 30,000.As mentioned in Chapters 3, 5, and 6, the temporal patterns learned by HATand TMLP systems as well as PCA and LDA systems are displayed in Appendies C, D,and E. Almost all of the patterns learned by HAT and TMLP systems preserve the lowmodulation frequenies of speeh (0 to between 16 and 20 Hz) whih are important forspeeh reognition. The patterns learned by PCA and LDA also pass higher modulationfrequenies. Also, patterns learned by PCA resemble sinusoidal basis funtions.7.2 ContributionThe work in this thesis further developed the tehniques of extrating informationfrom speeh over long time spans within narrow-frequeny hannels. Previously, all suhapproahes (the original Neural TRAP and its variants) were designed and tested onlyon smaller tasks of limited omplexity like numbers, digits, and read speeh. One ofthe major ontributions of this thesis was to integrate these long-term approahes withinthe framework of a state-of-the-art large voabulary ontinuous speeh reognizer for thereognition of onversational telephone speeh. We have also developed two new NeuralTRAP-like lassi�ers that outperform Neural TRAP and use fewer parameters. Using HATand TMLP, we were able to ahieve signi�ant word error rate redutions on the hallengingtask of reognizing onversational telephone speeh. In fat, ombined-augmented Tandemfeatures derived with HAT were used in SRI's state-of-the-art 2004 reognition system [135℄.With these features, system performane was improved by about 10% relative omparedto a system without HAT-based features.In addition to reduing word error rates on a hallenging ASR task, we havegained some understanding from omparing various methods of extrating informationfrom long-term narrow-band speeh. We have seen in many ases that extrating informa-tion in this way leads to systems that ombine well with more traditional methods that



7.3. FUTURE WORK 129extrat information from shorter time ontexts over the entire spetrum. By omparingvarious temporal systems, we learned that it is important to extrat probabilities of ertainsub-phonemi ategories of speeh from the long-term energy trajetories. These ategoriesorrespond to temporal patterns that are useful in disriminating between speeh sounds.Using phone posteriors at the ritial-band level was onsistently worse than using prob-abilities of these temporal patterns. This work also examined what phones are betterlassi�ed by temporal systems.Finally, this work began exploring the reuse of ertain disriminant ritial-bandtemporal patterns for ASR. By sharing all ritial-band hidden units in TMLP aross allritial-bands, we were able to show that disriminant temporal patterns an indeed betrained and applied on di�erent ritial-bands without a gross redution in performane.Further studies are required, however, to determine whih spei� patterns an be sharedaross whih ritial-bands. The disriminant temporal patterns learned in this thesisfurther support previous studies on the importane of modulation frequenies between 0-20Hz for ASR. The patterns learned by TMLP and HAT (displayed in Appendies C and D)mostly have modulation frequeny responses that emphasize these important frequenies.7.3 Future WorkThe work on HAT and TMLP has shown the basi e�etiveness of using ritial-band hidden units to derive disriminant temporal �lters. Throughout, we have been usinga onstant number of hidden units per ritial-band. It is likely that improvements inperformane as well as redutions in total parameters an be ahieved by ustomizing eahritial-band with its own optimal number of hidden units. For example, high frequenyritial-bands probably do not need as many hidden units as ritial-bands around 500 Hzwhere a lot of phoneti information exists.Further redutions in model size an also be ahieved by exploring more weightsharing shemes in TMLP. We tried the simplest sheme of sharing all ritial-band hid-den units aross all ritial-bands. Some of the �lters learned by the hidden units maynot be useful for ertain bands. It is also likely that only some ritial-bands share ertaindisriminant temporal �lters. For example, adjaent ritial-bands are more likely to on-tain similar disriminant temporal �lters than ritial-bands separated by 2,000 Hz. An



130 CHAPTER 7. CONCLUSIONexhaustive study of various sharing shemes would be able to disover whih bands sharewhih kind of temporal �lters. Another useful byprodut of suh a study would be thatthe learned disriminant temporal �lters ould be �xed and reused over and over againas a part of a preproessing step for front-end feature extration. This is beoming moreattrative eah year as we ontinue to gain aess to more training data, whih requireslonger training times for our methods.All of the omparisons in Chapter 5 were tested on CTS, whih is a very diÆulttask but has relatively little noise oming from outside soures like ars, sirens, fans, otherpeople, et., so given a lot of training data, narrow-band onstraints may make less ofa di�erene than you might see in other tasks. Therefore, it would be a great interestto repeat some of the omparisons between the unonstrained temporal systems and thenarrow-band onstrained temporal systems in Chapter 5 on a large voabulary ontinuousspeeh task ontaining more naturally ourring noises (e.g., reordings of meetings). It islikely that the narrow-band onstraints will show more of a bene�t on suh a task.Finally, in all of the HAT and TMLP experiments in this thesis, we used logritial-band speeh energy trajetories lasting 51 frames or about 500 milliseonds. Fur-ther explorations of HAT and TMLP by varying the input time ontext as well as wideningthe frequeny band (i.e., using more than one ritial-band) of the inputs to the band spe-i� hidden units may lead to additional performane improvements. HAT and TMLPlassi�ers of varying time ontext and bandwidth an o�er separate and omplementarysnapshots of the speeh signal leading to inreased robustness. The ASR system frame-work is already in plae beause we an ombine any number of HAT and TMLP lassi�ersusing the simple posterior ombination tehniques explored in Chapter 4. One ombined,these MLP-based features an augment the onventional short-term features o�ering analmost limitless number of di�erent snapshots extrating the redundant information foundin speeh.
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Appendix A
Critial-Band Cutto� Frequeniesfor TIMIT

This appendix lists for referene the half power ut-o� frequenies for the ritial-band �lters on the TIMIT database whih is sampled at 16 kHz.



132 APPENDIX A. CRITICAL-BAND CUTTOFF FREQUENCIES FOR TIMIT

Critial-Band Frequeny Range (Hz)1 18-1632 118-2673 220-3794 329-5025 446-6376 575-7907 720-9658 885-11659 1073-139710 1290-166711 1542-198212 1836-235013 2180-278214 2582-328915 3055-388516 3609-458717 4262-541218 5030-638319 5933-7527Table A.1: The half power ut-o� frequenies of eah ritial-band for speeh data sampledat 16 kHz.
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Appendix B
Critial-Band Cutto� Frequeniesfor CTS

This appendix lists for referene the half power ut-o� frequenies for the ritial-band �lters on the CTS data whih is sampled at 8 kHz.



134 APPENDIX B. CRITICAL-BAND CUTTOFF FREQUENCIES FOR CTS

Critial-Band Frequeny Range (Hz)1 17-1612 115-2653 216-3754 323-4955 439-6296 565-7797 707-9498 868-11449 1051-137010 1262-163211 1506-193712 1790-229313 2122-270914 2509-319715 2963-3769Table B.1: The half power ut-o� frequenies of eah ritial-band for speeh data sampledat 8 kHz.
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Appendix C
HAT and TMLP Critial-BandPatterns for TIMIT

In Appendies C, D, and E, we display plots of ritial-band temporal patternsthat our methods have learned. In the HAT and TMLP networks, these patterns ome fromthe input-to-hidden weights of ritial-band hidden units. As desribed in Chapter 3, theseinput-to-hidden weights are mathed �lters ating on the long-term, narrow-frequeny logenergy input trajetories of speeh. As suh, eah �lter has a orresponding modulationfrequeny response. For speeh reognition, it has been shown that modulation frequeniesbetween 0-16 Hz are important (see Chapter 2 for a detailed disussion about modulationfrequenies and speeh reognition).In this appendix, we display pitures of ritial-band disriminant temporal pat-terns learned by the HAT and TMLP networks from Chapter 3 trained on TIMIT data.There are a total of 380 disriminant temporal patterns (19 ritial-bands times 20 hiddenunits per ritial-band), whih is too many to plot. Sine many of these disriminant tem-poral patterns look similar, we have lustered all of them using agglomerative lusteringwith the orrelation based similarity measure desribed in Chapter 2 (Eq.2.5). We stoplustering at 20 lusters and average all patterns belonging to a partiular luster. We allthis average pattern a entroid, and we display the tables showing whih ritial-bandsontain hidden unit patterns that make up a partiular entroid in Table C.1 for HAT andTable C.2 for TMLP. We also plot the entroid patterns with their orresponding modu-



136 APPENDIX C. HAT AND TMLP CRITICAL-BAND PATTERNS FOR TIMITCentroid Critial-Band(s)Centroid 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19Centroid 3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 5 19Centroid 6 6, 11, 15, 17Centroid 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19Centroid 8 2, 17, 19Centroid 9 2Centroid 10 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19Centroid 11 12, 14Centroid 12 4, 5, 10, 11, 14Centroid 13 1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18Centroid 14 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19Centroid 15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 16 16, 17Centroid 17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 18 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 19Centroid 19 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18Centroid 20 19Table C.1: Centroid omposition table for ritial-band hidden units of HAT trained onTIMIT. The originating ritial-bands of all the hidden units lustered within a partiularentroid are listed.lation frequeny responses in Figures C.1 and C.2 for HAT and in Figures C.3 and C.3 forTMLP.
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Figure C.1: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from HAT trained on TIMIT (Centroids 1-10). Thex-axes orrespond to the frame index and modulation frequeny respetively, and the y-axes orrespond to the weight magnitude and gain in deibels respetively. The horizontalline in the modulation frequeny response is the -3 dB half power point.
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Figure C.2: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from HAT trained on TIMIT (Centroids 11-20). Thex-axes orrespond to the frame index and modulation frequeny respetively, and the y-axes orrespond to the weight magnitude and gain in deibels respetively. The horizontalline in the modulation frequeny response is the -3 dB half power point.
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Centroid Critial-Band(s)Centroid 1 1, 2, 3, 5, 7, 10, 11, 12, 14, 15, 18, 19Centroid 2 1, 5, 7, 9, 10, 12, 13, 17, 18Centroid 3 2, 4, 5, 6, 7, 10, 14, 15, 17, 19Centroid 4 2, 3, 4, 7, 8, 10, 12, 13, 14, 15, 16, 17, 19Centroid 5 5, 16, 17Centroid 6 2, 4, 7, 8, 10, 13, 14Centroid 7 1, 4, 5, 6, 12, 13, 16, 18Centroid 8 4, 17Centroid 9 2, 3, 5, 6, 7, 10, 11, 16, 18Centroid 10 1, 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 18, 19Centroid 11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 12 1, 2, 3, 4, 7, 8, 12, 13, 14, 15, 16, 18, 19Centroid 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 14 3, 6, 10, 11, 13, 15Centroid 15 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19Centroid 16 1, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17Centroid 17 1, 4, 6, 7, 9, 11, 12, 13, 14, 16, 17, 19Centroid 18 2, 3, 6, 7, 8, 9, 11, 12, 13, 16, 18, 19Centroid 19 3, 4, 6, 7, 8, 9, 19Centroid 20 3, 4, 5, 6, 9, 11, 12, 13, 16, 17, 19Table C.2: Centroid omposition table for ritial-band hidden units of TMLP trained onTIMIT. The originating ritial-bands of all the hidden units lustered within a partiularentroid are listed.
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Figure C.3: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from TMLP trained on TIMIT (Centroids 1-10).The x-axes orrespond to the frame index and modulation frequeny respetively, andthe y-axes orrespond to the weight magnitude and gain in deibels respetively. Thehorizontal line in the modulation frequeny response is the -3 dB half power point.
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Figure C.4: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from TMLP trained on TIMIT (Centroids 11-20).Thex-axes orrespond to the frame index and modulation frequeny respetively, and the y-axes orrespond to the weight magnitude and gain in deibels respetively. The horizontalline in the modulation frequeny response is the -3 dB half power point.
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Appendix D
HAT and TMLP Critial-BandPatterns for CTS

In this appendix, we display pitures of ritial-band disriminant temporal pat-terns learned by HAT and TMLP networks from Chapter 5 trained on 34 hours of femaleCTS data. These patterns are found in the input-to-hidden unit weights of the ritial-bandhidden units. There are a total of 600 disriminant temporal patterns (15 ritial-bandstimes 40 hidden units per ritial-band), whih is too many to plot. Sine many of thesedisriminant temporal patterns look similar, we have lustered all of them using agglom-erative lustering with the orrelation based similarity measure desribed in Chapter 2(Eq.2.5). We stop lustering at 40 lusters and average all patterns belonging to a parti-ular luster. We all this average pattern a entroid, and we display the tables showingwhih ritial-bands ontain hidden unit patterns that make up a partiular entroid inTables D.1 and D.2 for HAT and Tables D.3 and D.4 for TMLP. We also plot the entroidpatterns with their orresponding modulation frequeny responses in Figures D.1, D.2,D.3, and D.4 for HAT and in Figures D.5, D.6, D.7, and D.8 for TMLP.In addition to the HAT and TMLP networks trained on female CTS data fromChapter 5, we also display plots from the weight-sharing TMLP S40 in Chapter 6. Thereare a total of 40 shared ritial-band hidden units for TMLP S40. We plot the input-to-hidden weights of these 40 shared ritial-band hidden units (disriminant ritial-bandmathed �lters) as well as their orresponding modulation frequeny responses in Fig-



143Centroid Critial-Band(s)Centroid 1 2, 6Centroid 2 1, 3, 4, 5, 10, 12, 13, 14, 15Centroid 3 8, 9, 14Centroid 4 1, 2, 3Centroid 5 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15Centroid 6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15Centroid 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 8 4, 5, 6, 7, 8, 9, 10, 11, 12, 14Centroid 9 1, 2, 3, 4, 13, 15Centroid 10 1, 6Centroid 11 1, 3, 4, 8, 9, 10, 11, 12, 14, 15Centroid 12 1, 2, 5Centroid 13 4, 6, 10, 11, 13, 15Centroid 14 3Centroid 15 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15Centroid 16 3, 4, 5, 6, 7, 8, 9, 10, 15Centroid 17 1, 2, 8, 11, 12, 13, 14Centroid 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 19 12Centroid 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Table D.1: Centroid omposition table (Centroids 1-20) for ritial-band hidden units ofHAT trained on 34 hours of female CTS. The originating ritial-bands of all the hiddenunits lustered within a partiular entroid are listed.ures D.9, D.10, D.11, and D.12.
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Centroid Critial-Band(s)Centroid 21 3, 6, 7, 8, 9, 10, 12, 13, 14, 15Centroid 22 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 23 6, 8, 9, 11, 12, 14, 15Centroid 24 7, 8, 9, 12, 14Centroid 25 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 26 1, 2, 3, 4, 5Centroid 27 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 28 7Centroid 29 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 30 1, 2, 3, 4, 5, 6, 11, 13, 14, 15Centroid 31 2, 3, 6, 7, 9, 10, 11, 12, 14, 15Centroid 32 1, 2, 4, 5, 11, 12, 13, 15Centroid 33 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 34 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 35 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14Centroid 36 2, 5, 6, 7, 13, 15Centroid 37 3, 8, 9, 10, 11, 14Centroid 38 3, 4, 5, 6, 7, 8, 9, 10, 15Centroid 39 2, 3, 6, 8, 9, 10, 11, 12, 13, 14Centroid 40 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Table D.2: Centroid omposition table (Centroids 21-40) for ritial-band hidden units ofHAT trained on 34 hours of female CTS. The originating ritial-bands of all the hiddenunits lustered within a partiular entroid are listed.



145
−25−15 −5 5 15 25

−0.2

0

0.2

0.4

Centroid1

0 20 40

−40

−20

0
F. Resp.1

−25−15 −5 5 15 25

−0.6

−0.4

−0.2

0

0.2

0.4

Centroid2

0 20 40

−40

−30

−20

−10

0
F. Resp.2

−25−15 −5 5 15 25
−4

−2

0

2

4

Centroid3

0 20 40

−30

−20

−10

0
F. Resp.3

−25−15 −5 5 15 25

−1.5

−1

−0.5

0

0.5

Centroid4

0 20 40

−30

−20

−10

0
F. Resp.4

−25−15 −5 5 15 25
−0.2

0

0.2

0.4

0.6

0.8

Centroid5

0 20 40

−20

−10

0

F. Resp.5

−25−15 −5 5 15 25

0

1

2

3
Centroid6

0 20 40

−30

−20

−10

0
F. Resp.6

−25−15 −5 5 15 25

−0.5

0

0.5

1

1.5

Centroid7

0 20 40

−30

−20

−10

0
F. Resp.7

−25−15 −5 5 15 25

0

0.5

1

1.5

Centroid8

0 20 40

−20

−10

0

F. Resp.8

−25−15 −5 5 15 25

0

1

2

3

Centroid9

0 20 40

−15

−10

−5

0

F. Resp.9

−25−15 −5 5 15 25
−2

−1

0

1

Centroid10

0 20 40

−20

−10

0

F. Resp.10

Figure D.1: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 1-10). The x-axes orrespond to the frame index and modulation frequeny respe-tively, and the y-axes orrespond to the weight magnitude and gain in deibels respetively.The horizontal line in the modulation frequeny response is the -3 dB half power point.
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Figure D.2: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 11-20). The x-axes orrespond to the frame index and modulation frequeny respe-tively, and the y-axes orrespond to the weight magnitude and gain in deibels respetively.The horizontal line in the modulation frequeny response is the -3 dB half power point.
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Figure D.3: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 21-30). The x-axes orrespond to the frame index and modulation frequeny respe-tively, and the y-axes orrespond to the weight magnitude and gain in deibels respetively.The horizontal line in the modulation frequeny response is the -3 dB half power point.
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Figure D.4: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from HAT trained on 34 hours of female CTS (Cen-troids 31-40). The x-axes orrespond to the frame index and modulation frequeny respe-tively, and the y-axes orrespond to the weight magnitude and gain in deibels respetively.The horizontal line in the modulation frequeny response is the -3 dB half power point.
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Centroid Critial-Band(s)Centroid 1 2, 4, 5, 6, 7, 9, 11, 12, 13, 15Centroid 2 1, 2, 3, 6, 7, 8, 10, 12, 13Centroid 3 1, 3, 4, 5, 12, 13, 14Centroid 4 1, 2, 7Centroid 5 1, 2, 3, 4, 6, 7, 13Centroid 6 8Centroid 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15Centroid 8 3, 4Centroid 9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 10 1, 5, 6, 8, 10, 11, 12, 13, 15Centroid 11 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15Centroid 12 4, 11, 15Centroid 13 1, 3, 6, 7, 8, 9, 11, 15Centroid 14 1, 3Centroid 15 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 16 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15Centroid 17 1, 3, 6, 9, 12, 14Centroid 18 1, 2, 4, 7, 8, 10, 12, 14Centroid 19 2, 3, 6, 7, 14, 15Centroid 20 2, 3, 8, 12Table D.3: Centroid omposition table (Centroids 1-20) for ritial-band hidden units ofTMLP trained on 34 hours of female CTS. The originating ritial-bands of all the hiddenunits lustered within a partiular entroid are listed.
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Centroid Critial-Band(s)Centroid 21 2, 5, 10Centroid 22 1, 6, 7, 9, 10, 11, 13, 14, 15Centroid 23 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 24 3, 4, 6, 13, 15Centroid 25 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14Centroid 26 4, 6, 15Centroid 27 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 28 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15Centroid 29 2, 5, 8, 9, 14, 15Centroid 30 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15Centroid 31 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 32 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15Centroid 33 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15Centroid 34 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14Centroid 35 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15Centroid 36 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15Centroid 37 14, 15Centroid 38 4, 8, 9, 14Centroid 39 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15Centroid 40 2, 3, 4, 6, 7, 10, 12, 14Table D.4: Centroid omposition table (Centroids 21-40) for ritial-band hidden units ofTMLP trained on 34 hours of female CTS. The originating ritial-bands of all the hiddenunits lustered within a partiular entroid are listed.
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Figure D.5: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 1-10). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the weight magnitude and gain in deibels re-spetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure D.6: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 11-20). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the weight magnitude and gain in deibels re-spetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure D.7: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 21-30). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the weight magnitude and gain in deibels re-spetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure D.8: The input-to-hidden weights and orresponding modulation frequeny re-sponses of ritial-band hidden units from TMLP trained on 34 hours of female CTS(Centroids 31-40). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the weight magnitude and gain in deibels re-spetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure D.9: The input-to-hidden weights and orresponding modulation frequeny re-sponses of shared ritial-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 1-10). The x-axes orrespond to theframe index and modulation frequeny respetively, and the y-axes orrespond to theweight magnitude and gain in deibels respetively. The horizontal line in the modulationfrequeny response is the -3 dB half power point.
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Figure D.10: The input-to-hidden weights and orresponding modulation frequeny re-sponses of shared ritial-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 11-20). The x-axes orrespond tothe frame index and modulation frequeny respetively, and the y-axes orrespond to theweight magnitude and gain in deibels respetively. The horizontal line in the modulationfrequeny response is the -3 dB half power point.
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Figure D.11: The input-to-hidden weights and orresponding modulation frequeny re-sponses of shared ritial-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 21-30). The x-axes orrespond tothe frame index and modulation frequeny respetively, and the y-axes orrespond to theweight magnitude and gain in deibels respetively. The horizontal line in the modulationfrequeny response is the -3 dB half power point.
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Figure D.12: The input-to-hidden weights and orresponding modulation frequeny re-sponses of shared ritial-band hidden units from the weight-sharing TMLP (TMLP S40)trained on 34 hours of female CTS (shared weights 31-40). The x-axes orrespond tothe frame index and modulation frequeny respetively, and the y-axes orrespond to theweight magnitude and gain in deibels respetively. The horizontal line in the modulationfrequeny response is the -3 dB half power point.
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Appendix E
PCA and LDA Critial-BandPatterns for CTS

In this appendix, we display pitures of ritial-band temporal patterns learned byPCA and LDA methods from Chapter 5 omputed on 34 hours of female CTS data. Thesepatterns are the ones used to transform the input log ritial-band energy trajetories.There are a total of 765 temporal patterns (15 ritial-bands times 51 dimensions perritial-band), whih is too many to plot. Sine many of these temporal patterns looksimilar, we have lustered all of them using agglomerative lustering with the orrelationbased similarity measure desribed in Chapter 2 (Eq.2.5). We stop lustering at 40 lustersand average all patterns belonging to a partiular luster. We all this average patterna entroid and plot the entroid patterns with their orresponding modulation frequenyresponses in Figures E.1, E.2, E.3, and E.4 for PCA and in Figures E.5, E.6, E.7, and E.8for LDA.
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Figure E.1: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of PCA omputed over 34 hours of female CTS(Centroids 1-10). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure E.2: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of PCA omputed over 34 hours of female CTS(Centroids 11-20). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure E.3: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of PCA omputed over 34 hours of female CTS(Centroids 21-30). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure E.4: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of PCA omputed over 34 hours of female CTS(Centroids 31-40). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure E.5: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of LDA omputed over 34 hours of female CTS(Centroids 1-10). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure E.6: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of LDA omputed over 34 hours of female CTS(Centroids 11-20). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure E.7: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of LDA omputed over 34 hours of female CTS(Centroids 21-30). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.
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Figure E.8: The ritial-band log energy trajetory transformation vetors and orre-sponding modulation frequeny responses of LDA omputed over 34 hours of female CTS(Centroids 31-40). The x-axes orrespond to the frame index and modulation frequenyrespetively, and the y-axes orrespond to the tranform magnitude and gain in deibelsrespetively. The horizontal line in the modulation frequeny response is the -3 dB halfpower point.



168
Bibliography
[1℄ A. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl, H. Hermansky, P. Jain,S. Kajarekar, N. Morgan, and S. Sivadas. Qualomm-ICSI-OGI features for ASR. InProeedings of the International Conferene on Spoken Language Proessing, Denver,Colorado, USA, September 2002.[2℄ J. B. Allen. How do humans proess and reognize speeh? IEEE Transations onSpeeh and Audio Proessing, 2(4):567{577, Otober 1994.[3℄ C. Antoniou. Modular neural networks exploit large aousti ontext through broad-lass posteriors for ontinuous speeh reogition. In Proeedings of the InternationalConferene on Aoustis Speeh and Signal Proessing, 2001.[4℄ C. A. Antoniou and T. J. Reynolds. Aousti modelling using modular/ensemble ofombinations of heterogeneous neural networks. In Proeedings of the InternationalConferene on Spoken Language Proessing, Beijing, China, 2000.[5℄ T. Arai, M. Pavel, H. Hermansky, and C. Avendano. Intelligibility of speeh with�ltered time trajetories of spetral envelopes. In Proeedings of the InternationalConferene on Spoken Language Proessing, Philedelphia, 1996.[6℄ B. S. Atal. E�etiveness of linear predition harateristis of speeh wave for au-tomati speaker identiation and veriation. Journal of the Aoustial Soiety ofAmeria, (55):1304{12, 1974.[7℄ M. Athineos, H. Hermansky, and D. P. W. Ellis. LP-TRAP: Linear preditive tem-poral patterns. In Proeedings of the International Conferene on Spoken LanguageProessing, Jeju, Korea, 2004.



BIBLIOGRAPHY 169[8℄ L. Atlas. Modulation spetral �ltering of speeh. In Proeedings of Eurospeeh,Geneva, Switzerland, 2003.[9℄ C. Avendano. Temporal Proessing of Speeh in a Time-Feature Spae. PhD thesis,Oregon Graduate Institute of Siene and Tehnology, 1997.[10℄ C. Avendano, S. van Vuuren, and H. Hermansky. Data based �lter design for RASTA-like hannel normalization in ASR. In International Conferene on Spoken LanguageProessing, volume 3, pages 2087{90, Philadephia, Pennsylvania, Otober 1996.[11℄ L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization tehnique ourringin the statistial analysis of probabilisti funtions of Markov hains. Annals ofMathematial Statistis, 41(1):164{171, 1970.[12℄ C. Benitez, L. Burget, B. Chen, S. Dupont, H. Garudadri, H. Hermansky, P. Jain,S. Kajarekar, and S. Sivadas. Robust ASR front-end using spetral-based and dis-riminant features: experiments on the aurora tasks. In Proeedings of Eurospeeh,Aalborg, Denmark, September 2001.[13℄ J. Bernstein, K. Taussig, and J. J. Godfrey. MACROPHONE.http://www.ld.upenn.edu/Catalog/CatalogEntry.jsp?atalogId=LDC94S21, 1994.[14℄ J. Bilmes. Maximum mutual information based redution strategies for ross-orrelation based joint distributional modeling. In Proeedings of the InternationalConferene on Aoustis Speeh and Signal Proessing, pages 469{472, Seattle, 1998.[15℄ C. M. Bishop. Neural Networks for Pattern Reognition. Oxford University Press,New York, 1995.[16℄ H. Bourlard and S. Dupont. A new ASR approah based on independent proessingand reombination of partial frequeny bands. In Proeedings of the InternationalConferene on Spoken Language Proessing, Philadelphia, 1996.[17℄ H. Bourlard and S. Dupont. Sub-band based speeh reognition. In Proeedings ofthe International Conferene on Aoustis Speeh and Signal Proessing, volume 2,pages 1251{1254, Munih, Germany, April 1997. IEEE.[18℄ H. Bourlard and N. Morgan. Connetionist Speeh Reognition: A Hybrid Approah.Kluwer Aademi Publishers, 1994.



170 BIBLIOGRAPHY[19℄ A. Canavan, D. Gra�, and G. Zipperlen. CALLHOME amerian english speeh.http://www.ld.upenn.edu/Catalog/CatalogEntry.jsp?atalogId=LDC97S42, 1997.[20℄ Center for Spoken Language Understanding, Department of Computer Siene andEngineering, Oregon Graduate Institute. Numbers orpus, release 1.0, 1995.[21℄ C. Cerisara, J.-P. Haton, and D. Fohr. Towards a global optimization sheme formulti-band speeh reognition. In Proeedings of Eurospeeh, 1999.[22℄ C. Cerisara, J.-P. Haton, J.-F. Mari, and D. Fohr. Multi-band ontinuous speehreognition. In Proeedings of Eurospeeh, Rhodes, Greee, 1997.[23℄ C. Cerisara, J.-P. Haton, J.-F. Mari, and D. Fohr. A reombination model for multi-band speeh reognition. In Proeedings of the International Conferene on AoustisSpeeh and Signal Proessing, Seattle, 1998.[24℄ B. Y. Chen, S. Chang, and S. Sivadas. Learning disriminative temporal patterns inspeeh: Development of novel TRAPS-like lassi�ers. In Proeedings of Eurospeeh,Geneva, Switzerland, September 2003.[25℄ K. Daoudi, D. Fohr, and C. Antoine. A new approah for multi-band speeh reog-nition based on probabilisti graphial models. In Proeedings of the InternationalConferene on Spoken Language Proessing, volume 1, pages 329{332, Otober 2000.[26℄ A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from inomplete datavia the EM algorithm. Journal of the Royal Statistial Soiety, 39:1{38, 1977.[27℄ L. Deng and D. X. Sun. Phoneti lassi�ation and reognition using HMM rep-resentation of overlapping artiulatory features for all lasses of english sounds. InProeedings of the International Conferene on Aoustis Speeh and Signal Proess-ing, volume 1, pages 45{48. IEEE, 1994.[28℄ N. Deshmukh, A. Ganapathiraju, A. Gleeson, J. Hamaker, and J. Pione. Reseg-mentation of Swithboard. In Proeedings of the International Conferene on SpokenLanguage Proessing, pages 1543{1546, Sydney, Australia, November 1998.[29℄ R. Drullman, J. M. Festen, and R. Plomp. E�et of temporal envelope smearingon speeh reeption. Journal of the Aoustial Soiety of Ameria, 95(2):1053{1064,1994.



BIBLIOGRAPHY 171[30℄ R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi�ation. John Wiley & Sons,In., New York, NY, 2 edition, 2001.[31℄ D. Ellis and J. Bilmes. Using mutual information to design feature ombinations. InProeedings of the International Conferene on Spoken Language Proessing, Beijing,Otober 2000.[32℄ D. Ellis and M. R. Gomez. Investigations into Tandem aousti modeling for the Au-rora task. In Proeedings of Eurospeeh, Speial Event on Noise Robust Reognition,Denmark, September 2001.[33℄ D. Ellis and N. Morgan. Size matters: An empirial study of neural network trainingfor large voabulary ontinuous speeh reognition. In Proeedings of the Interna-tional Conferene on Aoustis Speeh and Signal Proessing, 1999.[34℄ D. Ellis, R. Singh, and S. Sivadas. Tandem aousti modeling in large-voabularyreognition. In Proeedings of the International Conferene on Aoustis Speeh andSignal Proessing, Salt Lake City, May 2001.[35℄ G. Evermann, H. Y. Chan, M. J. F. Gales, B. Jia, X. Liu, D. Mrva, K. C. Sim,L. Wang, P. C. Woodland, and K. Yu. Development of the 2004 CU-HTK EnglishCTS systems using more than two thousand hours of data. In Proeedings of theEARS RT-04F Workshop, Palisades, New York, November 2004.[36℄ J. G. Fisus, J. S. Garofolo, A. Le, A. F. Martin, D. S. Pallet, M. A. Przyboki, andG. Sanders. Results of the fall 2004 STT and MDE evaluation. In Proeedings of theEARS RT-04F Workshop, Palisades, New York, November 2004.[37℄ H. Flether. Speeh and Hearing in Communiation. D. Van Nostrand Company,In., 120 Alexander St., Prineton, New Jersey, 1953.[38℄ S. Furui. Speaker independent isolated word reognition using dynami featuresof speeh spetrum. IEEE Transation on Aoustis Speeh and Signal Proessing,(ASSP-34):52, 1986.[39℄ M. J. F. Gales. Maximum likelihood linear transformations for HMM-based speehreognition. Computer Speeh and Language, 12:75{98, 1998.



172 BIBLIOGRAPHY[40℄ J. S. Garofolo. Getting started with the DARPA TIMIT CD-ROM, 1988. NationalInstitute of Standards and Tehnology (NIST).[41℄ J. Godfrey, E. Holliman, and J. MDaniel. Swithboard: Telephone speeh orpusfor researh and development, 1992.[42℄ J. J. Godfrey and E. Holliman. SWITCHBOARD redit ard.http://www.ld.upenn.edu/Catalog/CatalogEntry.jsp?atalogId=LDC93S8, 1993.[43℄ D. Gra�, K. Walker, and D. Miller. Swithboard Cellular part 1 au-dio. http://www.ld.upenn.edu/Catalog/CatalogEntry.jsp?atalogId=LDC2001S13,2001.[44℄ S. Greenberg, T. Arai, and R. Silipo. Speeh intelligibility derived from exeed-ingly sparse information. In Proeedings of the International Conferene on SpokenLanguage Proessing, volume 6, pages 2803{2806, Deember 1998.[45℄ S. Greenberg, S. Chang, and J. Hollenbek. An introdution to the diagnosti evalu-ation of Swithboard orpus automati speeh reognition systems. In NIST SpeehTransription Workshop, 2000.[46℄ F. Gr�ezl and H. Hermansky. Loal averaging and di�erentiating of spetral plane forTRAP-based ASR. In Proeedings of Eurospeeh, Geneva, Switzerland, 2003.[47℄ D. B. Guralnik, editor. Webster's New World Ditionary of the Amerian Language:Seond College Edition. Simon and Shuster, 1982.[48℄ H. Hermansky. Pereptual linear preditive (PLP) analysis of speeh. Journal of theAoustial Soiety of Ameria, 87(4):1738{1752, April 1990.[49℄ H. Hermansky, D. Ellis, and S. Sharma. Tandem onnetionist feature stream extra-tion for onventional HMM systems. In Proeedings of the International Confereneon Aoustis Speeh and Signal Proessing, volume III, pages 1635{1638, Istanbul,2000.[50℄ H. Hermansky and P. Jain. Band-independent speeh-event ategories for TRAPbased ASR. In Proeedings of Eurospeeh, Geneva, Switzerland, 2003.



BIBLIOGRAPHY 173[51℄ H. Hermansky and N. Morgan. RASTA proessing of speeh. IEEE Transations onSpeeh and Audio Proessing, 2(4):578{589, Otober 1994.[52℄ H. Hermansky and S. Sharma. TRAPs: Classi�ers of TempoRAl Patterns. InProeedings of the International Conferene on Spoken Language Proessing, Sydney,1998.[53℄ H. Hermansky and S. Sharma. Temporal patterns (TRAPS) in ASR of noisy speeh.In Proeedings of the International Conferene on Aoustis Speeh and Signal Pro-essing, Phoenix, Arizona, 1999.[54℄ H. Hermansky, S. Sharma, and P. Jain. Data-derived nonlinear mapping for fea-ture extration in HMM. In Proeedings of the Automati Speeh Reognition andUnderstanding Workshop, Keystone, Colorado, 1999.[55℄ H. Hermansky, S. Tibrewala, and M. Pavel. Towards ASR on partially orruptedspeeh. In International Conferene on Spoken Language Proessing, volume 1, pages462{5, Philadephia, Pennsylvania, Otober 1996.[56℄ G. Hirsh. Experimental framework for the performane evaluation of speeh reog-nition front-ends on a large voabulary task. In ETSI STQ Aurora DSR WorkingGroup, June 2001.[57℄ M. Hohberg. y0 { Y0 reognizer from ICSI. manpage, August 1993. WERNICKEdistribution.[58℄ T. Houtgast and H. J. M. Steeneken. The modulation transfer funtion in roomaoustis as a preditor of speeh intelligibility. Austia, 28:66{73, 1973.[59℄ T. Houtgast and H. J. M. Steeneken. A review of the MTF onept in room aoustisand its use for estimating speeh intelligibility. Journal of the Aoustial Soiety ofAmeria, 77(3):1069{1077, 1985.[60℄ J.-W. Hung and L.-S. Lee. Data-driven temporal �lters obtained via di�erent opti-mization riteria evaluated on AURORA2 database. In Proeedings of the Interna-tional Conferene on Spoken Language Proessing, Denver, Colorado, USA, 2002.



174 BIBLIOGRAPHY[61℄ J.-W. Hung, H.-M. Wang, and L.-S. Lee. Comparative analysis for data-driven tem-poral �lters obtained via prinipal omponent analysis (PCA) and linear disriminantanalysis (LDA) in speeh reognition. In Proeedings of Eurospeeh, Aalborg, 2001.[62℄ P. Jain. Temporal Patterns of Frequeny-Loalized Features in ASR. PhD thesis,OGI Shool of Siene and Engineering, 2003.[63℄ P. Jain and H. Hermansky. Beyond a single ritial-band in TRAP based ASR. InProeedings of Eurospeeh, Geneva, Switzerland, 2003.[64℄ P. Jain, H. Hermansky, and B. Kingsbury. Distributed speeh reognition usingnoise-robust MFCC and TRAPS-estimated manner features. In Proeedings of theInternational Conferene on Spoken Language Proessing, Denver, Colorado, 2002.[65℄ A. Janin, D. Ellis, and N. Morgan. Multi-stream speeh reognition: Ready for primetime? In Proeedings of Eurospeeh, Budapest, 1999.[66℄ B.-H. Juang, W. Chou, and C.-H. Lee. Minimum lassi�ation error rate methodsfor speeh reognition. IEEE Transations on Speeh and Audio Proessing, 5(3),May 1997.[67℄ S. S. Kajarekar, B. Yegnanarayana, and H. Hermansky. A study of two dimen-sional linear diriminants for ASR. In Proeedings of the International Confereneon Aoustis Speeh and Signal Proessing, Salt Lake City, May 2001.[68℄ N. Kanedera, T. Arai, H. Hermansky, and M. Pavel. On the importane of variousmodulation frequenies for speeh reognition. In Proeedings of Eurospeeh, Rhodes,Greee, 1997.[69℄ M. Kara��at, F. Gr�ezl, and J. �Cernok�y. TRAP based features for LVCSR of meetingdata. In Proeedings of the International Conferene on Spoken Language Proessing,Jeju, Korea, 2004.[70℄ B. Kingsbury, P. Jain, and A. Adami. A hybrid HMM/TRAPS model for robustvoie ativity detetion. In Proeedings of the International Conferene on SpokenLanguage Proessing, Denver, Colorado, 2002.[71℄ B. Kingsbury, N. Morgan, and S. Greenberg. Robust speeh reognition using themodulation spetrogram. Speeh Communiation, 25:117{132, 1998.



BIBLIOGRAPHY 175[72℄ M. Kleinshmidt. Loalized spetro-temporal features for automati speeh reogni-tion. In Proeedings of Eurospeeh, Geneva, Switzerland, 2003.[73℄ M. Kleinshmidt and D. Gelbart. Improving word auray with Gabor featureextration. In Proeedings of the International Conferene on Spoken Language Pro-essing, Denver, Colorado, USA, September 2002.[74℄ A. N. Kolmogorov. On the representation of ontinuos funtions of several vari-ables by superposition of ontinuous funtions of one variable and addition. DokladyAkademiia Nauk SSSR, 114(5):953{956, 1957.[75℄ V. K _urkov�a. Kolmogorov's theorem and multilayer neural networks. Neural Compu-tation, 5(3):501{506, 1992.[76℄ L. Lamel, F. Lefevre, J.-L. Gauvain, and G. Adda. Portability issues for speehreognition tehnologies. In Proeedings of the First International Conferene onHuman Language Tehnology Researh, 2001.[77℄ K. F. Lee and H. W. Hon. Speaker-independent phoneme reognition using hid-den markov models. IEEE Transations on Aousti Speeh, and Signal Proessing,37(12):1641{1648, November 1989.[78℄ S. Lee and J. Glass. Real-time probabilisti segmentation for segment-based speehreognition. In Proeedings of the International Conferene on Spoken LanguageProessing, Sydney, 1998.[79℄ T. W. Lee. Independent Component Analysis - Theory and Appliations. KluwerAademi Publishers, 1998.[80℄ C. J. Legetter and P. C. Woodland. Maximum likelihood linear regression for speakeradaptation of ontinuous density HMMs. Computer Speeh and Language, 9(2):171{186, April 1995.[81℄ M. Lieb and R. Haeb-Umbah. LDA derived epstral trajetory �lters in adverse en-vironmental onditions. In Proeedings International Conferene on Aoustis Speehand Signal Proessing, volume 2, pages 1105{8, Istanbul, Turkey, June 2000. IEEE.



176 BIBLIOGRAPHY[82℄ J. lin Shen and W. L. Hwang. New temporal features for robust speeh reognitionwith emphasis on mirophone variations. Computer Speeh and Language, 13:65{78,1999.[83℄ R. P. Lippmann. Aurate onsonant pereption without mid-frequeny speeh en-ergy. IEEE Transations on speeh and audio proessing, 4(1):66{69, January 1996.[84℄ R. P. Lippmann. Speeh pereption by humans and mahines. Speeh Communia-tion, 22(1):1{15, 1997.[85℄ N. Malayath and H. Hermansky. Data-driven spetral basis funtions for automatispeeh reognition. Speeh Communiation, 40:449{466, 2003.[86℄ L. Mangu, E. Brill, and A. Stolke. Finding onsensus in speeh reognition: worderror minimization and other appliations of onfusion networks. Computer Speehand Language, 14(4):373{400, 2000.[87℄ P. Mermelstein and S. Davis. Comparison of parametri representations of mono-syllabi word reognition in ontinuously spoeken sentenes. IEEE Transations onAoustis and Speeh Signal Proessing, 28:357{366, 1980.[88℄ G. A. Miller and P. E. Niely. An analysis of pereptual onfusions among someenglish onsonants. The Journal of the Aoustial Soiety of Ameria, 27(2):338{352, Marh 1955.[89℄ B. Milner. Inlusion of temporal information into features for speeh reognition.In Proeedings of the International Conferene on Spoken Language Proessing,Philadelphia, 1996.[90℄ B. Milner. Cepstral-time matries and LDA for improved onneted digit and sub-word reognition auray. In Proeedings of Eurospeeh, Rhodes, Greee, 1997.[91℄ N. Mirghafori. A Multi-Band Approah to Automati Speeh Reognition. PhD thesis,University of California at Berkeley, November 1998.[92℄ N. Mirghafori and N. Morgan. Combining onnetionist multi-band and full-bandprobability streams for speeh reognition of natural numbers. In Proeedings of theInternational Conferene on Spoken Language Proessing, Sydney, Australia, 1998.



BIBLIOGRAPHY 177[93℄ N. Mirghafori and N. Morgan. Transmissions and transitions: A study of two ommonassumptions in multi-band ASR. In International Conferene on Aoustis Speehand Signal Proessing, volume 2, pages 713{16, Seattle, Washington, May 1998.IEEE.[94℄ H. Misra, H. Bourlard, and V. Tyagi. New entropy based ombination rules inHMM/ANN multi-stream ASR. In Proeedings of the International Conferene onAoustis Speeh and Signal Proessing, Hong Kong, 2003.[95℄ R. K. Moore. Modeling data entry rates for ASR and alternative input methods. InProeedings of Interspeeh-2004, pages 2285{2288, 2004.[96℄ N. Morgan and H. Bourlard. Continuous speeh reognition. IEEE Signal ProessingMagazine, 12(3):25{42, May 1995.[97℄ N. Morgan, B. Chen, Q. Zhu, and A. Stolke. TRAPping onversational speeh:Extending TRAP/Tandem approahes to onversational telephone speeh reogni-tion. In Proeedings of the International Conferene on Aoustis Speeh and SignalProessing, Montreal, May 2004.[98℄ A. C. Morris, A. Hagen, and H. Bourlard. The full ombination sub-bands approahto noise robust HMM/ANN based ASR. In Proeedings of Eurospeeh '99, pages599{602, 1999.[99℄ P. Motl���ek and J. �Cernok�y. Time-domain based temporal proessing with apliationof orthogonal transformations. In Proeedings of Eurospeeh, Geneva, Switzerland,2003.[100℄ C. Nadeu, D. Maho, and J. Hernando. Time and frequeny �ltering of �lter-bankenergies for robust HMM speeh reognition. Speeh Communiation, 34:93{114,2001.[101℄ C. Nadeu, P. Pah�es-Leal, and B.-H. Juang. Filtering the time sequenes of spetralparameters for speeh reognition. Speeh Communiation, 22:315{332, 1997.[102℄ S. Okawa, E. Bohieri, and A. Potamianos. Multi-band speeh reognition in noisyenvironments. In Proeedings of the International Conferene on Aoustis Speehand Signal Proessing, Seattle, 1998.



178 BIBLIOGRAPHY[103℄ S. Okawa, T. Nakajima, and K. Shirai. A reombination strategy for multi-bandspeeh reognition based on mutual information riterion. In Proeedings of Eu-rospeeh, Budapest, 1999.[104℄ D. S. Pallett. A look at NIST's benhmark ASR tests: Past, present, and future.http://www.nist.gov/speeh/history/pdf/NIST benhmark ASRtests 2003.pdf,2003.[105℄ S. Renals and M. Hohberg. EÆient evaluation of the LVCSR searh spae usingthe Noway deoder. In International Conferene on Aoustis Speeh and SignalProessing, volume 1, pages 149{152, Atlanta, Georgia, May 1996. IEEE.[106℄ A. Robinson, M. Hohber, and S. Renals. IPA: Improved modelling with reurrentneural networks. In Proeedings of the International Conferene on Aoustis Speehand Signal Proessing, pages 37{40, 1994.[107℄ T. Robinson and J. Christie. Time-�rst searh for large voabulary speeh reogni-tion. In International Conferene on Aoustis Speeh and Signal Proessing, vol-ume 2, pages 829{32, Seattle, Washington, May 1998. IEEE.[108℄ D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations bybak-propagating errors. Nature, 323:533{536, 1986.[109℄ L. K. Saul, M. G. Rahim, and J. B. Allen. Learning from examples in ritial bandsof speeh. In Proeedings of the Automati Speeh Reognition and UnderstandingWorkshop, Keystone, Colorado, USA, Deember 1999. IEEE.[110℄ L. K. Saul, M. G. Rahim, and J. B. Allen. A statistial model for robust integrationof narrowband ues in speeh. Computer Speeh and Language, 2001.[111℄ P. Shwarz, P. Mat�ejka, and J. �Cernok�y. Reognition of phoneme strings usingTRAP tehnique. In Proeedings of Eurospeeh, Geneva, Switzerland, 2003.[112℄ S. Sharma. Multi-Stream Approah to Robust Speeh Reognition. PhD thesis, OregonGraduate Institute of Siene and Tehnology, 1999.[113℄ S. Sharma, D. Ellis, S. Kajarekar, P. Jain, and H. Hermansky. Feature extration us-ing non-linear transformations for robust speeh reognition on the Aurora database.



BIBLIOGRAPHY 179In International Conferene on Aoustis Speeh and Signal Proessing, volume 2,pages 1117{20, Istanbul, Turkey, June 2000. IEEE.[114℄ M. Shire. Disriminant Training of Front-End and Aousti Modeling Stages to Het-erogeneous Aousti Environments for Multi-Stream Automati Speeh Reognition.PhD thesis, University of California, Berkeley, 2000.[115℄ M. L. Shire. Data-driven modulation �lter design under adverse aousti onditionsand using phoneti and syllabi targets. In EUROSPEECH, pages 1123{6, Budapest,Hungary, September 1999. ESCA.[116℄ M. L. Shire and B. Y. Chen. Data-driven RASTA �lters in reverberation. In In-ternational Conferene on Aoustis Speeh and Signal Proessing, volume 3, pages1627{30, Istanbul, Turkey, June 2000. IEEE.[117℄ M. L. Shire and B. Y. Chen. On data-derived temporal proessing in speeh featureextration. In International Conferene on Spoken Language Proessing, volume 3,pages 71{4, Beijing, China, Otober 2000.[118℄ R. Silipo, S. Greenberg, and T. Arai. Temporal onstraints on speeh intelligibil-ity as dedued from exeedingly sparse spetral representations. In Proeedings ofEurospeeh, volume 6, pages 2687{2690, September 1999.[119℄ P. Somervuo. Experiments with linear and nonlinear feature transformations inHMM based phone reognition. In Proeedings of the International Conferene onAoustis Speeh and Signal Proessing, Hong Kong, 2003.[120℄ P. Somervuo, B. Chen, and Q. Zhu. Feature transformations and ombinations forimproving ASR performane. In Proeedings of Eurospeeh, Geneva, Switzerland,2003.[121℄ A. Stolke. STT researh and development at SRI-ICSI-UW. In EARS RT-04FWorkshop, Palisades, New York, November 2004.[122℄ A. Stolke, H. Bratt, J. Butzberger, H. Frano, V. R. R. Gadde, M. Plauhe,C. Rihey, E. Shriberg, K. Sonmez, F. Weng, and J. Zheng. The SRI Marh 2000Hub-5 onversational speeh transription system. In Proeedings of NIST SpeehTransription Workshop, College Park, MD, 2000.



180 BIBLIOGRAPHY[123℄ S. Tibrewala and H. Hermansky. Sub-band based reognition of noisy speeh. In Pro-eedings of the International Conferene on Aoustis Speeh and Signal Proessing,volume 11, pages 1255{1258, Munih, Germany, April 1997. IEEE.[124℄ S. van Vuuren and H. Hermansky. Data-driven design of RASTA-like �lters. In EU-ROSPEECH, volume 1, pages 1607{1610, Rhodes, Greee, September 1997. ESCA.[125℄ A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme reog-nition using time-delay neural networks. IEEE Transations on Aoustis, Speeh,and Signal Proessing, 37(3):328{339, 1989.[126℄ W. C. Ward, G. W. Elko, R. A. Kubli, and W. C. MDougald. The new varehoihaber at AT&T Bell Labs. In Proeedings of the Wallae Clement Sabine Centen-nial Symposium, pages 343{346, Woodbury, NY, USA, 1994. Aoustial Soiety ofAmeria.[127℄ R. M. Warren and J. A. Bashford, Jr. Intelligibility of 1/3-otave speeh: Greaterontribution of frequenies oustide than inside the nominal passband. Journal of theAoustial Soiety of Ameria, 106:L47{L52, 1999.[128℄ R. M. Warren, K. R. Reiner, J. A. Bashford, Jr, and B. S. Brubaker. Spetral re-dundany: Intelligibility of sentenes heard through narrow spetral slits. Pereptionand Psyhophysis, 57(2):175{182, 1995.[129℄ A. R. Webb and D. Lowe. The optimised internal representation of multilayer lassi-�er networks performs nonlinear disriminant analysis. Neural Networks, 3:367{375,1990.[130℄ H. Yang, S. V. Vuuren, S. Sharma, and H. Hermansky. Relevane of time-frequenyfeatures for phoneti and speaker-hannel lassi�ation. Speeh Communiation,31:35{50, 2000.[131℄ S. J. Young, J. J. Odell, and P. C. Woodland. Tree-based state tying for highauray aousti modelling. In Proeedings of ARPA Human Language TehnologyWorkshop, 1994.



BIBLIOGRAPHY 181[132℄ K.-H. Yuo and H.-C. Wang. Robust features for noisy speeh reognition based ontemporal trajetory �ltering of short-time autoorrelation sequenes. Speeh Com-muniation, 28:13{24, 1999.[133℄ F. Zheng and J. Pione. Robust low perplexity voie interfaes.www.isip.msstate.edu/projets/robust low perplexity/html/performane.html,2001.[134℄ Q. Zhu, B. Chen, N. Morgan, and A. Stolke. On using MLP features in LVCSR. InProeedings of the International Conferene on Spoken Language Proessing, Jeju,Korea, 2004.[135℄ Q. Zhu, A. Stolke, B. Y. Chen, and N. Morgan. Inorporating Tandem/HATS MLPfeatures into SRI's onversational speeh reognition system. In Proeedings of theEARS RT-04F Workshop, Palisades, New York, November 2004.


