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ABSTRACT

This work focuses on the evaluation of models of syllable and
word pronunciations constructed automatically using the Broad-
cast News corpus of radio and television news reports. Previous
work [4] introduced the concept of extended-length decision tree
models; here I report on ASR-independent assessment of these
models. This study also discusses integration of static and dy-
namic pronunciation evaluation using theROVER algorithm for
combining hypotheses, and details the improvements of dynamic
pronunciation evaluation on the 1998 DARPA Broadcast News test
set. The new pronunciation models improve system robustness for
speech that is not pre-planned and recorded under studio condi-
tions; these models appear to represent both linguistic variation
(as in spontaneous speech) and variation due to channel effects in
telephone-bandwidth speech.

1. INTRODUCTION

Recent studies have shown that appropriate pronunciation models
for speech recognition systems are critical for good performance
in large-vocabulary tasks, particularly when the speaking style is
spontaneous [5]. One popular approach to pronunciation modeling
is to use decision trees to automatically learn patterns of variation
within automatically- or hand-generated transcriptions.

Most decision tree based systems model pronunciations on a
phone-by-phone basis. Each baseform phone is associated with
a decision tree that predicts how the phone is realized in context.
During recognition, the appropriate decision tree leaf for a given
context determines a small piece of a finite state grammar (FSG),
which is concatenated with other phone grammar fragments into
an FSG for the entire utterance.

One problem with this technique of na¨ıve concatenation is that
the choice of pronunciations for each phone is independent of all
other phones. For example, in the wordbaseball, the final vowel
[ah] can be realized as[el] if the final [l] is deleted; if phone
realizations are considered independently, the unlikely pronunci-
ation [b el l] may result for the final syllable. One solution
is to include a dependence on the previous decision tree output, as
suggested by Riley [6], which improves the predictive power of the
trees. Weintraub et al. [8] added phonen-gram constraints to the
FSGs using a maximum entropy model; this extra information de-
graded recognizer performance significantly in initial experiments,
although these results were not conclusive.

This work continues a strategy of modeling the distributions
of phone pronunciations jointly at the syllable and word levels
[4]. This longer-term modeling captures many of the coordinated
phone pronunciation variations not handled by independent phone
trees. Since phones at syllable boundaries still vary with context,
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Figure 1: Word decision tree forthem.

pronunciations in these models include dependencies on the neigh-
boring baseform phone. Other forms of context, such as word
identity, speaking rate, and word predictability, are also included
in the model. These models are employed in the rescoring ofn-
best lists, dynamically choosing appropriate pronunciations based
on hypothesis context. The work described here extends previous
studies by including independent evaluation of word and syllable
decision trees, as well as integrating hypotheses from static and
dynamic dictionaries usingROVER[3].

2. DECISION TREE MODELS

To train decision trees to predict word pronunciations, a pronunci-
ation training set is needed, consisting of a phone recognition tran-
script aligned to canonical dictionary pronunciation models [4];
each instance of a word in the corpus is therefore annotated with
its pronunciation suggested by the phone recognizer. One tree is
constructed for each word, using context cues such as neighboring
word or phone identity to predict pronunciations. For example,
the pronunciations[dh eh m] , [dh ax m] , and[dh ax n]
were often suggested for the wordthemby the phone recognizer.
Since the pronunciation[dh ax n] can be confused with the
word than, perhaps ASR performance will improve if the dictio-
nary dynamically restricts the contexts in which this pronunciation
can representthem; as the top decision in Figure 1 shows, this pro-
nunciation is favored when the next word starts with dental conso-
nants.

Building separate decision tree models for each word has the
drawback that only words with enough training data can be mod-
eled, whereas with phone trees one can model every phone in the
corpus. A way to increase coverage is to use syllable models,
so that words likebaseballand football can share pronunciation



ao   t  ow   m ae   t ih   k l    iy

ao + t  ow + m ae + t ih + k el + iy

ao  dx/t_ow  m_ae   t_ih   k_el/l iy

ao   dx ax   m ae   t ih   k el   iy
ao   dx ax   m ae   t ih   k l    iy

  (syl divisions discarded)

Resulting syllable models

Longest pronunciation

Alternate pronunciations 

(with syl divisions)

  aligned to longest
  pronunciation

Figure 2: Selection of syllable models for the wordautomatically.
Alternative pronunciations are aligned to the longest pronuncia-
tion. Reduced phones ([ax] ) and phone deletions are eliminated
if unreduced variants exist across variants; similar phones are clus-
tered together.

models for their shared syllable. Determining appropriate sylla-
ble models for each word is non-trivial, however. Ideally, multiple
pronunciations of a syllable should be incorporated into the sylla-
ble model. For instance, the wordsomehas two pronunciations in
the baseline dictionary,[s ah m] and[s ax m] , but the vari-
ation between these alternatives should be provided by one sylla-
ble model[s ah m] . An algorithm to determine syllable models
from a baseline dictionary is shown operating on the wordauto-
matically (which can be pronounced with five or six syllables) in
Figure 2.

Initial experiments used the 1997 Broadcast News training set
as the source of pronunciations for the word and syllable trees. The
training set was phonetically transcribed automatically by means
of smoothed phone recognition [4] using a combination of neural
network acoustic models.

550 word models were constructed from the the 1997 training
set (BN97 word trees). The word d-trees included phonetic, word
identity, speaking rate, and predictability features to select appro-
priate pronunciation distributions. 800 d-trees based on syllable
distributions were also trained (BN97 syllable trees). In addition
to the features found in the word trees, syllabic tree context fea-
tures included the lexical stress of the syllable, its position within
the word, and the word’s identity.

3. EVALUATING D-TREES

In order to judge the quality of trees constructed with different
subsets of context features, I extended the measurement paradigm
of Riley et al. [7], in which the average log (base 2) probability
of a held-out test set is calculated, giving a measurement related
to the perplexity. This score can be obtained by filtering the test
set down through the trees to the leaves; as each sample reaches a
leaf, its probability according to the leaf distribution is recorded.

The average log probability is problematic as a metric for eval-
uating pronunciation models. Some test examples receive zero
probability from the pronunciation model; this makes the mea-
sure unusable, aslog

2
(0) = 1. In pronunciation modeling, test

transcriptions can occur that are not covered by the model due to
both the nature of statistical modeling and pronunciation pruning
at decision tree leaves; also, in syllable and word d-trees (unlike
phone trees) not every syllable or word is modeled due to lack of
training data. Disallowing zero probabilities by assigning a mini-
mum probability does not match the way models are used within
an ASR system, as each word has a finite number of baseforms.
One can ignore “out-of-vocabulary” pronunciations and compute
the log probability, but this metric does not penalize OOV test set
errors made by systems that heavily prune pronunciation dictio-
naries.
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Features Prob. CoverageProb. Coverage
Word trees (550 trees, 58.9% word coverage):

1. None (baseline) -0.70 92.6% -0.53 89.4%
2. Word context only -0.65 92.6% -0.47 89.6%
3. Word and phone

context
-0.55 92.6% -0.33 88.7%

4. All -0.45 92.6% -0.26 89.4%
Syllable trees (800 trees, 78.5% syllable coverage):

5. None (baseline) -0.70 96.0% -0.46 91.7%
6. Word/syllable/phone

context
-0.49 96.0% -0.26 92.2%

7. All -0.44 96.0% -0.21 92.1%
Phone trees (89 trees, 78.5% syllable coverage):

8. None -1.45 95.0% -0.96 84.5%
9. Phone context -0.60 95.0% -0.33 90.4%

10. All -0.54 95.0% -0.25 90.4%

Table 1: Word and syllable test set probabilities. Unmodeled seg-
ments are not included in totals. Phone tree probabilities were
combined to form syllable pronunciations, and were scored on the
same subset of syllables used to score syllable trees.

To address these issues, three statistics were compiled: the av-
erage log probability for baseform pronunciations receiving non-
zero probabilities, the percentage of evaluated baseforms included
in the scoring (labeled “pron. coverage”)1, and the percentages of
words or syllables in the test set that are actually modeled. This
paradigm allowed testing of pronunciation models under the as-
sumption of pruning within the ASR system. In unpruned models,
pronunciation coverage remains the same no matter what features
are used, but when pruning is invoked, the coverage varies depend-
ing on which pronunciations are eliminated at each tree leaf.

3.1. Word trees

Table 1 (lines 1–4) shows thelog
2

probability of a held-out part
of the BN97 training set determined by word d-trees with different
context features. In the baseline model (1), the pronunciation prob-
abilities were set to the prior training set distributions. This model
corresponds to a (simple) automatic baseform learning scheme.
Comparing the unpruned to the pruned coverage numbers, roughly
3% of pronunciations in the test corpus had probabilities of 0.1 or
less according to the prior model. Two metrics exist for calibrating
improvement from this baseline model: increase in the log proba-
bility and in the pronunciation coverage for the pruned model.

Including just the word context (corresponding to a multi-word
model, line 2) only increases average log-likelihood by 0.05. A
bigger gain comes from adding in the surrounding phone context
(3); using all of the features (4), including speaking rate, trigram
probabilities, and durations, gives the best gain (35% improve-
ment). The percentage gain is remarkably similar to that of Riley
et al.[7]; they found relative gains of 20% to 32% depending on
the training data. Yet one must be careful in comparing these re-
sults: Riley’s team was testing phone models on hand-transcribed
data, whereas I am working with word models on automatically
transcribed data.

When pruning is invoked, larger percentage gains result; the
trees using all features show a 51% improvement. This means

1Infrequent pronunciations are removed during d-tree construction.



that, on average, it is the pronunciations with higher probabilities
(p > 0:1) in the baseline model that are increasing in likelihood
due to the contextual modeling. The actual percentage of test pro-
nunciations that have a probability above 0.1 does not change sig-
nificantly with the increased context.

3.2. Syllable trees

The 800 BN97 syllable trees covered the test set more completely
(79% compared to 59% word coverage for the word trees). The
relative gains of the syllable models were a little higher than those
for the word d-trees2 (cf. line 5 and 7), reaching 37% for unpruned
and 54% for pruned models. The real gain, however, was in pro-
nunciation coverage: 9% of the pronunciations lost in pruning the
baseline model were recovered under the d-tree models. The non-
segmental features did not improve the model as much as in the
word trees (cf. line 6 and 7). The increase inlog

2
probability is

only about half of that seen when these features are included in
word tree construction.

To compare syllable models with the more conventional phone-
based methods, the syllable training set was broken into phones,
from which phone models were trained (8–10). Since the syllable
models contained variants (e.g.,the syllable[k l ow s/z] has
encoded the fact that the final phone can alternate as[s] or [z] ),
this would give them an advantage over regular phone models.
Therefore, separate trees were built for the phone variants listed in
the syllable models,e.g.,the final segment of[k l ow s/z] was
modeled by the phone[s/z] . The phone trees were then scored
only on the syllable level, where pronunciations for the syllable
were determined by concatenating the individual phone pronun-
ciations from each tree; syllable pronunciation probabilities were
obtained by multiplying together the phone probabilities. The sub-
set of test syllables modeled by the syllable trees were used for
scoring these models.

Without context (8), phone trees exhibit a large decrease in
log likelihood compared to the syllable baseline (a relative differ-
ence of -107%). Adding contextual elements (9–10), the phone
trees perform only a little bit worse than syllable trees, although
the pronunciation coverage is significantly worse for both the un-
pruned and pruned cases. Syllable trees utilizing only segmental
features outperform the phone d-trees with all features at their dis-
posal. Thus, it seems that syllable models are as good, if not better,
than phone models as an organizational structure for modeling the
variation in pronunciations, although this is not a completely fair
comparison because the previous output context is not used as a d-
tree feature (cf. Riley [6]). Syllable models have the drawback of
less coverage overall; one can model the entire corpus with phone
models, but with syllable models, coverage will be incomplete.

4. IMPLEMENTATION IN THE ASR SYSTEM

In another set of experiments, I trained 920 word and 1300 syllable
trees on the 1997 and 1998 Broadcast News training sets. For com-
parative purposes, the baseline static dictionary was taken from
the 1996ABBOT system [1]; a new static dictionary was also re-
estimated from the same training set used for the word and syllable
tree building (BN97+98 Static Dictionary) [4]. Several parameters
for the dynamic trees were tuned on a 173-utterance subset of the
1997 Broadcast News Evaluation Set. A search was conducted

2It is important to compare relative increases inlog
2

probability, and
not actual probabilities, as the test sets have different coverages.
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Figure 3: Results of tuning the combination of word-based dy-
namic pronunciation models with static dictionary components for
1997 Hub4E Subset.

for both syllable and word trees over the factors included in the
tree learning algorithm, the pruning threshold at d-tree leaves, and
the interpolation parameter� between acoustic scores provided by
evaluation of static and dynamic dictionaries onn-best lists.

Figure 3 shows the entire processing chain for word d-trees.
Lattices were constructed by theNOWAY recognizer provided by
Sheffield University, using the BN97+98 Static Dictionary. From
these lattices, the 100 best hypotheses were derived with a 1-best
hypothesis error rate of 23.6%. The best word d-trees from the op-
timization process proved to be the word and phone context trees,
in contrast to thelog

2
metric results, where extra-segmental fea-

tures such as speaking rate and duration improved modeling. With-
out interpolation, the dynamic pronunciation model had the same
error rate as the static 1-best hypothesis. However, interpolating
the two scores brought a 0.5% absolute error reduction.

Even though the word trees had the same baseline error rate
as the 1-best hypothesis, an examination of the actual word se-
quences produced by each system found that the word hypotheses
were often different. In these cases, it is often advantageous to
combine hypotheses at the word level. TheROVER system from
NIST [3] blends hypotheses annotated with confidence scores. I
integrated the first-best hypothesis, the best hypothesis from the
word d-trees without acoustic score interpolation, and the best
post-interpolation hypothesis; each word in all three hypotheses
was annotated with a posterior acoustic confidence score. The re-
sulting word error rate was very similar to the interpolated acoustic
score result (23.0%). Despite the small gain, I suspected that us-
ing ROVER in this way would provide robustness in recognition
on independent test sets. Similar results were obtained using the
syllable trees (23.1% WER).

4.1. Evaluation on 1998 Broadcast News test set

The best word and syllable d-tree system, as well as theABBOT96
and BN97+98 static dictionaries, were evaluated on the 1998 Broad-
cast News (Hub4E-98) test set (Table 2). The static dictionary pro-
vides most of the improvement (0.6% overall,�=0.031); includ-
ing the word d-trees increases the improvement to 0.9% (�=0.014
compared toABBOT96). Compared to the BN97+98 dictionary,
word d-trees give a small improvement, whereas syllable d-trees
show no improvement. As hypothesized,ROVER does improve
performance; when the word d-trees are evaluated independent of
the ROVER combination, the word error rate is 21.7% in the unin-



Overall Focus condition WER (%) Gender WER (%)
Dictionary WER (%) F0 F1 F2 F3 F4 F5 FX Female Male

[Word Count] [32435] [9944] [6246] [1095] [1385] [9142] [235] [4388] [13160] [19247]
ABBOT96 22.0 13.9 25.5 35.4 27.2 20.7 27.7 32.4 22.0 21.8
Static BN97+98 21.4 14.0 24.9 32.1 26.3 19.8 26.8 32.2 21.4 21.3
Dynamic word trees 21.1 14.1 24.5 31.1 25.8 19.7 24.3 31.2 21.0 21.1
Dynamic syllable trees 21.4 14.2 24.9 31.1 26.0 19.8 25.1 31.4 21.3 21.2

Focus conditions: Planned Studio Speech (F0), Spontaneous Studio Speech (F1), Speech Over Telephone Channels (F2), Speech in the Presence of Back-
ground Music (F3), Speech Under Degraded Acoustic Conditions (F4), Speech from Non-Native Speakers (F5), All Other Speech (FX)

Table 2: Categorical word error rate for Hub4E-98

terpolated case, and 21.4% in the interpolated case.
Table 2 also shows the word error rates for the focus condi-

tions defined in the Broadcast News corpus, as well as separate
error rates for female and male speech. The new static and dy-
namic pronunciation models never help in the planned speech con-
dition (F0). For studio spontaneous speech (F1), word trees almost
double the static dictionary’s performance increase overABBOT96
(0.6% to 1.0%). For the other focus conditions, the dynamic word
trees almost always seem to improve performance, the only excep-
tion being in the degraded acoustics condition (F4). The biggest
absolute performance increases for the word trees were in the dif-
ficult F5 and FX conditions, although neither gain is significant.

The most impressive combined static/dynamic performance,
though, is for the telephone speech condition (F2): the automati-
cally derived dictionaries were 12% better (relative) in this condi-
tion. Even with the smaller test set size this is a significant differ-
ence (�=0.016). This may be due to to an interaction of the auto-
matically derived pronunciation models with the acoustic model:
one of the three neural net models was trained on 8kHz (telephone)
bandwidth speech using modulation-filtered spectrogram (MSG)
features. The automatically-learned dictionaries may reflect the
improved acoustic modeling for this focus condition. There are
no significant patterns in word error rate due to gender. Dynamic
rescoring with syllable trees was almost always worse than rescor-
ing with word trees when compared across focus conditions; this is
surprising since evaluation of earlier models with thelog

2
metric

suggested the opposite. This may be due to the doubling of train-
ing data between the two experiments, but other experiments not
reported here have suggested that word error rate and log proba-
bility improvements do not always go hand-in-hand.

5. CONCLUSIONS

This work describes advances in decision tree models of sylla-
ble and word pronunciations. Perplexity-like evaluations of d-tree
models indicate that incorporation of context, both segmental and
extra-segmental (e.g.,speaking rate), does improve model qual-
ity; syllable models appear to have the best coverage and perfor-
mance under this metric. However, not all of these gains transfer to
word error rate improvements: for example, syllable d-tree mod-
els performed worse than word models in the ASR system, and
speaking rate and word predictability measures were found to de-
crease recognition performance in these experiments. This latter
fact contrasts with the work of Finke and Waibel [2], who found
that speaking-mode related factors did improve their phonologi-
cal rule based models. The relationship of these factors to top-
down (phonological rule) versus bottom-up (automatic decision
tree) systems is an interesting direction for future study.

The automatically learned pronunciation model presented here
appears to be capturing some linguistic variation in spontaneous
speech (as shown by improvements in the F1 focus condition) as
well as non-linguistic variation in the acoustic models due to chan-
nel conditions (demonstrated by improvements in the telephone
condition). Since the pronunciation model is the interface be-
tween the acoustic and language models, the best improvements
may result from modeling both top-down linguistic variability and
bottom-up acoustic variability.
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