
A ROBUST SPEAKER CLUSTERING ALGORITHM

J. Ajmera

IDIAP
P.O. Box 592

CH-1920 Martigny, Switzerland
jitendra@idiap.ch

C. Wooters

ICSI
1947 Center St., Suite 600
Berkeley, CA 94704, USA
wooters@icsi.berkeley.edu

ABSTRACT

In this paper, we present a novel speaker segmentation and
clustering algorithm. The algorithm automatically performs
both speaker segmentation and clustering without any prior
knowledge of the identities or the number of speakers. Our
algorithm uses “standard” speech processing components
and techniques such as HMMs, agglomerative clustering,
and the Bayesian Information Criterion. However, we have
combined and modi£ed these so as to produce an algorithm
with the following advantages:

• No threshold adjustment requirements

• No need for training/development data

• Robustness to different data conditions

This paper also reports the performance of this algo-
rithm on different datasets released by the U.S. National In-
stitute of Standards and Technology (NIST) with different
initial conditions and parameter settings. The consistently
low speaker-diarization error rate clearly indicates the ro-
bustness and utility of the algorithm.

1. INTRODUCTION

The goal of a speaker segmentation system is to divide a
speech signal into a sequence of speaker-homogeneous re-
gions. Thus, the output of such a system provides the an-
swer to the question, “Who spoke when?” Knowing when
each speaker is speaking is useful as a pre-processing step in
speech-to-text (STT) systems to improve the quality of the
output. Such pre-processing may include vocal tract length
normalization (VTLN) and/or speaker adaptation. Auto-
matic speaker segmentation may also be useful in informa-
tion retrieval and as part of the indexing information of au-
dio archives.

Dividing an audio recording into speaker-homogeneous
regions presents many challenges. One challenge is to iden-
tify the locations of the boundaries between speakers — the

“speaker segmentation” problem. Another challenge is to
identify which portions of the recording belong to which
speakers — the “speaker clustering” problem. Additonally,
the speaker clustering problem requires that we correctly
identify how many unique speakers occur in the recording.

Speech researchers have proposed many techniques for
solving the “Who spoke when?” problem. Most of these
methods £rst segment and then cluster the data. The seg-
mentation is either assumed to be knowna priori [1, 2, 3] or
is performed automatically prior to clustering [4, 5]. How-
ever, approaches such as these, in which the segmentation
and clustering are performed sequentially, have limitations.
In the former case, the correct segmentation is rarely known
a priori for practical applications. In the latter case, the
errors made in the segmentation step can degrade the per-
formance of the subsequent clustering step.

Sequential systems such as those mentioned above can
be improved by iterating the segmentation and clustering
steps. However, they still require some means of guessing
the appropriate number of clusters, or a threshold to decide
when the appropriate number of clusters has been attained.
The approach we are proposing also iterates the segmenta-
tion and clustering steps. However, we have developed a
fully automatic stopping criterion that produces the optimal
number of clusters and the optimal segmentation without
the use of thresholds.

The proposed algorithm for speaker segmentation de-
duces the number of clusters automatically while optimiz-
ing a likelihood-based objective function. The algorithm
runs iteratively, where the likelihood of the data along the
best segmentation path (Viterbi score) increases until it rea-
ches an optimal point, then begins decreasing. (See Fig. 1.)
We stop the process at the maximum value in the likelihood
function. An important property of this algorithm is that it
does not have a threshold term to adjust, for which a devel-
opment test set is generally required. The algorithm is quite
robust to different initial conditions and choice of acoustic
feature vectors. These properties are demonstrated with the
help of several experiments.

Fig. 1. Segmentation as a function of the number of clusters. The
likelihood function has a maximum at the correct number of clusters,
which in this case is three.

2. SPEAKER CLUSTERING ALGORITHM

As shown in Fig. 2, our algorithm is based on an ergodic
hidden Markov model (HMM) formalism where the num-
ber of states in the HMM is equal to the initial number of
clusters. Each state is composed of a set ofS sub-states.
These sub-states impose a minimum duration on the model.
Thus, each state of the HMM is a cluster and is expected
to represent a single speaker. The probability density func-
tion (PDF) of each state is assumed to be a Gaussian mix-
ture model (GMM) withM Gaussian components, which
are shared among all sub-states.

In the absence of anya priori information about the
number of speakers (and hence number of clusters), we start
by over-clustering the data. “Over-clustering” refers to the
process of segmenting the data into an initial number of
clustersK, whereK is greater than the expected number
of speakers in the audio £le. A result of over-clustering is
that data from a single speaker is likely to be assigned to
different clusters. Thus, our goal is to identify clusters that
have been assigned data from the same source and merge
them. It will be shown later that the algorithm is not sen-
sitive to the exact value ofK as long as that value is large
relative to the actual number of speakers.

The £rst step in the algorithm is to initialize the param-
eters of the HMM. We perform this initialization using a
uniform segmentation of the data in terms ofK clusters and
estimating the parameters of the cluster GMMs over these
segments. We also tested the K-means algorithm for initial-
ization. The results were not signi£cantly different, proba-
bly because of the large minimum duration that we impose
in our cluster models.

The next step is to train the initial HMMs using the stan-
dardExpectation-Maximization (EM) algorithm. In the E-
step, a segmentation of the data is obtained to maximize the

GMM

sub-states

states (clusters)

S1 S-1

1

2

k

k-1

2

Fig. 2. HMM Topology Used for Clustering

likelihood of the data, given the parameters of the GMMs.
This is followed by an M-step where the parameters of the
GMMs are re-estimated/updated based on this segmenta-
tion.

The £nal step in the algorithm is cluster merging. A
consequence of over-clustering is that data from a single
speaker may be assigned to different clusters. Thus, the
algorithm requires a component that identi£es clusters con-
taining data from the same speaker and merges them. The
details of cluster merging are explained in Section 2.1 be-
low.

Once we have merged a pair of clusters, we return to the
segmentation and training step. We repeat the process of
segmentation-training-merging until there are no more clus-
ters to be merged.

2.1. Cluster Merging

We begin with a high-level description of the overall prob-
lem: If X = {x1, x2,, xN}1 is the audio data to be seg-
mented, we want to £nd the optimal number of clusters (k∗)
and their acoustic models (Λ∗

k) that produce the “best” seg-
mentation of the data (X) according to:

1Generally this is a sequence of acoustic feature vectors extracted from
the audio waveform at a regular time intervale.g. every 10ms.

Λ∗

k, k∗ = arg max
Λk,k

p(X, qbest|Λk, k) (1)

whereqbest is the Viterbi segmentation path with the highest
likelihood. Thus, we want to £nd the set of clusters and their
acoustic models that maximize the likelihood of the data and
the associated segmentation based on this HMM topology.

Since we do not want to consider all possible values for
k, we begin by choosing a maximum value (k = K). Then,
through the process of cluster merging, we reduce the value
of k until we £nd an optimal number of clusters (k∗) and
their acoustic models (Λ∗

k) according to (1). However, when
two clusters are merged, the total number of parameters in
the HMM decreases. Modeling the same amount of data us-
ing fewer parameters yields a lower likelihood score. Given
that the merging process can only result in monotonically
decreasing likelihoods, we will not observe a maximum in
the likelihood function at any point other than the starting
point. Therefore we need to choose a likelihoodthreshold
to tell us when to stop merging.

Ideally, we would like to £nd a method of selecting clus-
ters for merging such that a correct merge (i.e. a merge in-
volving clusters of data from the same speaker) will produce
an increase in the objective function (1) and an incorrect
merge will result in a decrease. A common method of se-
lecting between competing models is to use the Bayesian
Information Criterion (BIC) [1]. BIC imposes a trade-off
between model quality and model complexity. Using BIC
as a merging criterion, two clusters would become a candi-
date for merging if the following is true:

log p(D|θ) −
1

2
λK logN ≥ log p(Da|θa) + log p(Db|θb)

(2)
where:

• Da andDb represent the data in two clusters andθa

andθb represent the parameters of the PDFs of these
two clusters respectively.

• D is the data fromDa ∪ Db andθ represents the pa-
rameters of PDF ofD.

• λ is a “tweakable” parameter that isideally set to1.0

• N is the number of data points in{D}

• K is the difference in the number of parameters be-
tweenθa andθb

BIC provides a simple way to decide when to stop merg-
ing. However, we found in our experiments that we had to
tuneλ to get the best results. Moreover, the optimal value
of λ changes depending on the data conditions and £nding
the optimal value requires the use of a development dataset

that closely resembles the test dataset. In general, the algo-
rithm would be more robust if thresholds such asλ could be
eliminated.

2.1.1. New Merging Criterion

If we use BIC, but keep the number of parameters constant,
we can eliminate the penalty term (− 1

2
λK logN) in (2).

Thus, when we merge two clusters, we simply model the
PDF of the new cluster using a model containing a number
of parameters equal to the sum of the number of parameters
of the two merged clusters. As with BIC, the objective func-
tion in (1) increases for correct merging (merging of two
clusters having data from the same source) and decreases
for incorrect merging. We de£ne our merging criterion as
follows:

• Let Ma andMb represent the number of parameters
(Gaussian components) inθa andθb respectively.

• Let us hypothesize a new cluster having dataD =
Da ∪Db with a PDF modeled by a GMM parameter-
ized byθ with Ma +Mb number of Gaussian compo-
nents.

Given these conditions, a pair of clusters (Da andDb)
becomes a candidate for merging if the following is true:

log p(D|θ) ≥ log p(Da|θa) + log p(Db|θb) (3)

This is similar to BIC, except that the number of param-
eters inθ is equal to the sum of the number of parameters
in θa andθb. By keeping the number of parameters con-
stant from one iteration to the next, we have eliminated the
need for the penalty term . We have veri£ed empirically that
selecting candidates for merging using this criterion does
indeed result in an increase in the objective function associ-
ated with (1).

After every new segmentation-training step, we look for
the best pair satisfying (3). In the case of many such candi-
date pairs, we choose the pair that maximizes the difference
of the terms of left hand side and right hand side of (3). The
merging is stopped when there are no suitable candidates
satisfying (3).

This method provides a fully automatic stopping crite-
rion that does not require the use of any tunable parameters.
However, there are a few “hyper-parameters” in this algo-
rithm, namely the initial number of clusters (K), the initial
number of Gaussian components in each cluster (M), the
type of initialization used to create the clusters, and the set
of acoustic features used to represent the signal. In Sec-
tion 3 we present the results of several experiments in which
we explore the effects of varying the hyper-parameters.

3. EXPERIMENTS AND RESULTS

3.1. Evaluation Criterion

Evaluation of the algorithm was done using NIST’s RT-03S
scoring script (SpkrSegEval-v21.pl). This calculates
a time-based score (error) that is the percentage of speaker
time not attributed correctly to a reference speaker. Thus,a
score of0.0 would represent a perfect segmentation. Also, it
is possible to have an error> 100.0 because of the inclusion
of false alarms. The error is:

S∑

s=1

{dur(s) ∗ (max(Nref (s), Nsys(s)) − Ncorrect(s))}

S∑

s=1

{dur(s) ∗ Nref (s)}

(4)
where the speech data is divided into contiguous segments
whose boundaries are de£ned by all speaker change points
(including both reference and hypothesized speakers) and
where, for each segments:

dur(s) = the duration ofs
Nref (s) = the # of reference speakers speaking ins

Nsys(s) = the # of system speakers speaking ins

Ncorrect(seg) = the # of reference speakers speaking
in s for whom their matching (mapped) system speak-
ers are also speaking ins.

3.2. Data

The algorithm was tested on three different datasets released
by NIST, namelydryrun data (data used for preliminary ex-
periments),devdata (data used as development data) and
evaldata (data used in the £nal RT-03S evaluation).2 The
dryrun data consists of six 10-minute excerpts from English
broadcast news shows, while thedevdata andevaldata each
consisted of three half-hour English broadcast news audio
segments. In theevaldata alone, there are 47 Male and 12
Female speakers.

3.3. Baseline System

We used default values shown in Table 1 for all the hyper-
parameters in each of the experiments listed below, unless
otherwise noted. The performance of the baseline system is
shown in Table 2.

The results onevaldata were submitted3 as part of the
2Not all the experiments were carried out on all three datasets. We ex-

perimented with different hyper-parameters at different stages on different
datasets. Also, all results are shown for complete datasets only (rather than
individual £les) to avoid presenting too many numbers.

3The results submitted to NIST also involved another postprocessing
stage of speech/non-speech discrimination. Since this module is not a focus
of this paper, the results shown here are without any speech/non-speech
discrimination, i.e. only based on speaker clustering.

Initialization Uniform
Initial number of Gaussians (M) 5
Initial number of clusters (K) 15(dryrun),

40(devdata),
40 (evaldata)

Minimum duration (S) 2 seconds
Feature type LPC Cepstrum

(LPCC)
Feature vector frequency 100 Hz

Table 1. Default values for the “hyper-parameters”

Dataset Error
dryrun 28.85%
devdata 26.11%
evaldata 21.40%

Table 2. Baseline results for the three datasets.

RT-03S4 evaluation and the performance of the system was
highly competitive compared to other submitted systems.
However, as seen in Table 1, there are a number of hyper-
parameters, which can be seen as “tunable” parameters. We
veri£ed with the help of a series of experiments that the
algorithm is not highly sensitive to any of these parame-
ters. This together with experiments on different datasets,
demonstrates the robustness of the algorithm. These exper-
iments are summarized in next subsections.

3.4. Initialization

As mentioned earlier, two different initializations were per-
formed on thedryrun dataset. Table 3 presents the results
for this experiment:

Initialization Error
Uniform 28.85%
K-means 29.56%

Table 3. Results for two different initialization schemes on dryrun
dataset

We observed that the type of initialization does not have
a signi£cant impact on the £nal results. We speculate that
this is due to the minimum duration constraint and the use
of an iterative EM algorithm. Thus, for the subsequent ex-
periments, we used only uniform initialization.

3.5. Experiments with different acoustic features

Table 4 presents the results of using different acoustic fea-
tures in the segmentation. In addition to the default 12-

4http://www.nist.gov/speech/tests/rt/rt2003/spring

LPCC features, we tried 19-Mel-frequency cepstral coef£-
cients (MFCC).

Dataset FeatureType Error

dryrun LPCC 28.85%
dryrun MFCC 29.22%
devdata LPCC 26.11%
devdata MFCC 25.13%
evaldata LPCC 21.40%
evaldata MFCC 20.79%

Table 4. Results obtained with alternate features.

As expected, the performance of LPCC and MFCC fea-
tures in all the cases are comparable. However, while ana-
lyzing the performance on individual £les of each dataset,
we noticed that MFCCs worked better in noisy conditions,
while LPCCs worked better during clean speech.

3.6. Experiments with minimum duration

Table 5 presents the results obtained by varying the mini-
mum duration of each cluster. These experiments were also
carried out ondevdata.

Minimum Duration (secs) Error
2 26.11%
3 26.55%
4 26.18%

Table 5. Results obtained with different minimum durations

Results in Table 5 show that the algorithm is not sen-
sitive to the minimum duration that we impose. However,
the sensitivity also depends on the average duration of the
speaker segments. If there are many short segments, a large
minimum duration may result in a higher error rate. Thus,
if we have anya priori information about average speaker
durations, it can be used in the algorithm.

3.7. Experiments with the number of initial clusters

Table 6 presents results for varying the number of initial
clusters (K). These results show that the performance of the
algorithm improves as we increase the value ofK. Since the
algorithm is based on agglomerative clustering,K should
be larger than the expected number of speakers. We have
found that a good “rule of thumb” (for English broadcast
news) is to chooseK equal to or greater than the number of
minutes of audio data. However, it should be noted that as
the value ofK increases, so does the computational com-
plexity of the algorithm. This is due to the number of pair-
wise cluster comparisons that must be made during merg-
ing.

dataset K Error
dryrun 15 28.85%
dryrun 30 28.35%
devdata 30 29.28%
devdata 40 26.11%
devdata 50 25.80%

Table 6. Results obtained by varying the number of initial clusters.

3.8. Experiments with the number of initial Gaussians

Table 7 presents the results of experiments on thedevdata
in which we varied the number of Gaussian components in
each initial cluster (M). Note that we use a small number of
Gaussians relative to those used in the speaker recognition
framework. In the speaker recognition framework, the goal
is to make a robust model for each speaker, and hence thou-
sands of Gaussians per speaker are employed. However, the
goal here is to make discriminative models for the speakers
in a single audio stream. Thus, we need far fewer Gaussian
components to estimate the PDFs of each cluster.

M Error
5 26.11%
10 27.44%

Table 7. Results obtained for different number of Gaussians (M) for
devdata

In the majority of our experiments (including those sub-
mitted to NIST), we used £ve gaussians per initial cluster
(M = 5). We determined that the performance of the al-
gorithm does not vary signi£cantly depending on the choice
of M . In fact, the performance degrades slightly for larger
values as can be seen in Table 7.

4. CONCLUSION

In this paper, we have presented a novel speaker clustering
algorithm and demonstrated its robustness to different data
conditions. The algorithm uses an iterative, agglomerative
clustering technique based on an HMM framework. Pairs
of clusters are merged in successive iterations and merging
stops automatically when the optimal number of clusters has
been determined. We de£ned a BIC-like merging criterion
that we use to choose which clusters to merge and when to
stop merging. This merging criterion produces an increase
in a likelihood-based objective function for correct merges
and a decrease for incorrect merges. An important property
of our merging criterion is that it does not use an adjustable
threshold. The absence of such “tweakable” parameters not
only inproves the algorithm’s robustness but also eliminates
the need for a development dataset.

Acknowledgements

This work was supported by project MULTI (Swiss NSF
project no. 2000-068231.02/1), project M4 (EC-IST project
no. 2001-34485) and the Swiss National Center of Compe-
tence in Research (NCCR) on Interactive Multimodal Infor-
mation Management (IM)2. The NCCR is managed by the
Swiss NSF on behalf of the federal authorities. This Mate-
rial is also based upon work supported by the Defense Ad-
vanced Research Projects Agency Information Awareness
Of£ce EARS program. ARPA Order No. N614, Program
Code No. 2E20, issued by DARPA/CMO under Contract
No. MDA972-02-C-0038 as part of a subcontract to ICSI
by SRI International.

5. REFERENCES

[1] S. S. Chen and P. S. Gopalakrishnan, “Speaker, environ-
ment and channel change detection and clustering via
the Bayesian information criterion,” Tech. Rep., IBM
T.J. Watson Research Center, 1998.

[2] M. Sugiyama, J. Murakami, and H. Watanabe, “Speech
segmentation and clustering based on speaker features,”
IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 2, pp. 395–398, 1993.

[3] A. Solomonoff, A. Mielke, M. Schmidt, and H. Gish,
“Clustering speakers by their voices,”IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, pp. 757–760, 1998.

[4] M . A. Siegler, U. Jain, B. Raj, and R. M. Stern, “Au-
tomatic segmentation, classi£cation and clustering of
broadcast news audio,”DARPA Speech Recognition
Workshop, Chantilly, pp. 97–99, Feb 1997.

[5] T Hain, S. E. Johnson, A. Turek, P. C. Woodland,
and S. J. Young, “Segment generation and cluster-
ing in the HTK broadcast news transcription system,”
Proc. DARPA Broadcast News Transcription and Un-
derstanding Workshop, pp. 133–137, 1998.

