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ABSTRACT “speaker segmentation” problem. Another challenge is to

In this paper, we present a novel speaker segmentation ami]dentify which portions of the recording belong to which
Papet, P P 9 Speakers — the “speaker clustering” problem. Additonally,

clustering algorithm. The algorithm automatically penfar ) :
. . ; . _the speaker clustering problem requires that we correctly
both speaker segmentation and clustering without any prior.

knowledge of the identities or the number of speakers. OurIdentlfy how many unique speakers occur in the recording.
algorithm uses “standard” speech processing components Speech researchers have proposed many techniques for
and techniques such as HMMs, agglomerative clustering,solving the “Who spoke when?” problem. Most of these
and the Bayesian Information Criterion. However, we have methods £rst segment and then cluster the data. The seg-
combined and modifed these so as to produce an algorithninentation is either assumed to be knaaypriori [1, 2, 3] or

with the following advantages: is performed automatically prior to clustering [4, 5]. How-
ever, approaches such as these, in which the segmentation
¢ No threshold adjustment requirements and clustering are performed sequentially, have limitetio
In the former case, the correct segmentation is rarely known
» No need for training/development data a priori for practical applications. In the latter case, the

errors made in the segmentation step can degrade the per-

e Robustness to different data conditions .
formance of the subsequent clustering step.

This paper also reports the performance of this algo- Sequential systems such as those mentioned above can
rithm on different datasets released by the U.S. Nationral In be improved by iterating the segmentation and clustering
stitute of Standards and Technology (NIST) with different steps. However, they still require some means of guessing
initial conditions and parameter settings. The consiktent the appropriate number of clusters, or a threshold to decide
low speaker-diarization error rate clearly indicates thre r when the appropriate number of clusters has been attained.
bustness and utility of the algorithm. The approach we are proposing also iterates the segmenta-

tion and clustering steps. However, we have developed a

fully automatic stopping criterion that produces the otiim

number of clusters and the optimal segmentation without
athe use of thresholds.

1. INTRODUCTION

The goal of a speaker segmentation system is to divide
speech signal into a sequence of speaker-homogeneous re- The proposed algorithm for speaker segmentation de-
gions. Thus, the output of such a system provides the an-duces the number of clusters automatically while optimiz-
swer to the question, “Who spoke when?” Knowing when ing a likelihood-based objective function. The algorithm
each speaker is speaking is useful as a pre-processingistep runs iteratively, where the likelihood of the data along the
speech-to-text (STT) systems to improve the quality of the best segmentation path (Viterbi score) increases unghit r
output. Such pre-processing may include vocal tract lengthches an optimal point, then begins decreasing. (See Fig. 1.)
normalization (VTLN) and/or speaker adaptation. Auto- We stop the process at the maximum value in the likelihood
matic speaker segmentation may also be useful in informa-function. An important property of this algorithm is that it
tion retrieval and as part of the indexing information of au- does not have a threshold term to adjust, for which a devel-
dio archives. opment test set is generally required. The algorithm isequit

Dividing an audio recording into speaker-homogeneous robust to different initial conditions and choice of acatist
regions presents many challenges. One challenge is to idenfeature vectors. These properties are demonstrated wveth th
tify the locations of the boundaries between speakers — thehelp of several experiments.
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Fig. 1. Segmentation as a function of the number of clusters. The
likelihood function has a maximum at the correct number of clusters,
which in this case is three.

2. SPEAKER CLUSTERING ALGORITHM

As shown in Fig. 2, our algorithm is based on an ergodic

hidden Markov model (HMM) formalism where the num- GMM

ber of states in the HMM is equal to the initial number of

clusters. Each state is composed of a se$ @ub-states.

These sub-states impose a minimum duration on the model.

Thus, each state of the HMM is a cluster and is expected

to represent a single speaker. The probability density-func

tion (PDF) of each state is assumed to be a Gaussian mix-

ture model (GMM) withM Gaussian components, which likelihood of the data, given the parameters of the GMMs.

are shared among all sub-states. This is followed by an M-step where the parameters of the
In the absence of ang priori information about the = GMMs are re-estimated/updated based on this segmenta-

number of speakers (and hence number of clusters), we startion.

by over-clustering the data. “Over-clustering” refershe t The £nal step in the algorithm is cluster merging. A

process of segmenting the data into an initial number of consequence of over-clustering is that data from a single

clustersK, where K is greater than the expected number speaker may be assigned to different clusters. Thus, the

of speakers in the audio £le. A result of over-clustering is algorithm requires a component that identif£es clusters con-

that data from a single speaker is likely to be assigned totaining data from the same speaker and merges them. The

different clusters. Thus, our goal is to identify clustdratt ~ details of cluster merging are explained in Section 2.1 be-

have been assigned data from the same source and mergew.

them. It will be shown later that the algorithm is not sen- Once we have merged a pair of clusters, we return to the

sitive to the exact value ok as long as that value is large segmentation and training step. We repeat the process of

relative to the actual number of speakers. segmentation-training-merging until there are no more-clu
The £rst step in the algorithm is to initialize the param- ters to be merged.

eters of the HMM. We perform this initialization using a

uniform segmentation of the data in termsioclustersand 21, Cluster Merging

estimating the parameters of the cluster GMMs over these

segments. We also tested the K-means algorithm for initial- WWe begin with a high-level description of the overall prob-

ization. The results were not signifcantly different, proba lem: If X = {z;, s, ....., 2y }" is the audio data to be seg-

bly because of the large minimum duration that we impose mented, we want to £nd the optimal number of clusters (

in our cluster models. and their acoustic modeld{) that produce the “best” seg-
The next step is to train the initial HMMs using the stan- mentation of the dataX) according to:

dard Expectation-Maximization (EM) algorithm. In the E- 1Generally this is a sequence of acoustic feature vectoraatet! from

step, a segmentation of the data is obtained to maximize thahe audio waveform at a regular time interea. every 10ms.

Fig. 2. HMM Topology Used for Clustering




that closely resembles the test dataset. In general, the alg
o k= arg max p(X, @pest | Ak, k) Q) rithm would be more robust if thresholds suchasould be
Ak eliminated.
whereg,.s; is the Viterbi segmentation path with the highest
likelihood. Thus, we want to £nd the set of clusters and their 5 1 1. New Merging Criterion
acoustic models that maximize the likelihood of the data and
the associated segmentation based on this HMM topology. If we use BIC, but keep the number of parameters constant,
Since we do not want to consider all possible values for we can eliminate the penalty term-§{AKlogN) in (2).
k, we begin by choosing a maximum value=£ K). Then, Thus, when we merge two clusters, we simply model the
through the process of cluster merging, we reduce the valueéPDF of the new cluster using a model containing a number
of k£ until we £nd an optimal number of clusters*j and of parameters equal to the sum of the number of parameters
their acoustic models\(;) according to (1). However, when  of the two merged clusters. As with BIC, the objective func-
two clusters are merged, the total number of parameters intion in (1) increases for correct merging (merging of two
the HMIM decreases. Modeling the same amount of data us-<clusters having data from the same source) and decreases
ing fewer parameters yields a lower likelihood score. Given for incorrect merging. We de£ne our merging criterion as
that the merging process can only result in monotonically follows:
decreasing likelihoods, we will not observe a maximum in
the likelihood function at any point other than the starting e Let M, and M, represent the number of parameters

point. Therefore we need to choose a likelihdbceshold (Gaussian components) iy andd,, respectively.
to tell us when to stop merging. . .

Ideally, we would like to £nd a method of selecting clus- * Letus hyp_othe5|ze a new cluster having déata=
ters for merging such that a correct merge. @ merge in- D, U Dy, with a PDF modeled by a GMM parameter-
volving clusters of data from the same speaker) will produce ized by with M, + My, number of Gaussian compo-
an increase in the objective function (1) and an incorrect nents.

merge will result in a decrease. A common method of se- . . .

lecting between competing models is to use the Bayesian  C1ven these conditions, a pair of clustei3,(and D)
Information Criterion (BIC) [1]. BIC imposes a trade-off becomes a candidate for merging if the following is true:
between model quality and model complexity. Using BIC

as a merging criterion, two clusters would become a candi-
date for merging if the following is true: log p(D|0) = log p(Dalfa) +log p(Dsl0s)  (3)

This is similar to BIC, except that the number of param-
eters inf is equal to the sum of the number of parameters
in 8, and@,. By keeping the number of parameters con-
(2) stant from one iteration to the next, we have eliminated the
need for the penalty term . We have verifed empirically that
selecting candidates for merging using this criterion does
indeed result in an increase in the objective function dssoc
ated with (1).

After every new segmentation-training step, we look for
e D is the data fromD, U D, and6 represents the pa- the best pair satisfying (3). In the case of many such candi-

1
log p(D|0) — §AK|09N > log p(Dql04) + log p(Dy|0s)

where:

e D, and D, represent the data in two clusters ahd
andd, represent the parameters of the PDFs of these
two clusters respectively.

rameters of PDF ob. date pairs, we choose the pair that maximizes the difference
of the terms of left hand side and right hand side of (3). The
e \is a“tweakable” parameter thatideally set to1.0 merging is stopped when there are no suitable candidates

satisfying (3).
This method provides a fully automatic stopping crite-
e K is the difference in the number of parameters be- rion that does not require the use of any tunable parameters.
tweend, andd, However, there are a few “hyper-parameters” in this algo-
rithm, namely the initial number of cluster&’, the initial
BIC provides a simple way to decide when to stop merg- number of Gaussian components in each clusié), (the
ing. However, we found in our experiments that we had to type of initialization used to create the clusters, and #te s
tune )\ to get the best results. Moreover, the optimal value of acoustic features used to represent the signal. In Sec-
of A changes depending on the data conditions and £ndingtion 3 we present the results of several experiments in which
the optimal value requires the use of a development datasetve explore the effects of varying the hyper-parameters.

e N is the number of data points §iD}



3. EXPERIMENTSAND RESULTS Initialization Uniform
Initial number of Gaussians{) 5

3.1. Evaluation Criterion Initial number of clustersK) 15(dryrun),
Evaluation of the algorithm was done using NIST's RT-03S 38(?33322)

scoring script §pkr SegEval - v21. pl ). This calculates

a time-based score (error) that is the percentage of speaker Minimum duration @) 2 seconds

. ) Feature type LPC Cepstrum
time not attributed correctly to a reference speaker. Taus, (LPCC)

score 0f0.0 would represent a perfect segmentation. Also, it Feature vector frequency 100 Hz

is possible to have an errpr 100.0 because of the inclusion

of false alarms. The error is:
Table 1. Default values for the “hyper-parameters”

S Dataset  Error
S;I{dur(s) # (maz(Nreg(s), Noys(5)) — Neorreet (5)) } dryrun 28.85%
5 devdata 26.11%
> {dur(s) * Nrep(s)} evaldata 21.40%
s=1
(4)
where the speech data is divided into contiguous segments Table 2. Baseline results for the three datasets.

whose boundaries are defned by all speaker change points
(including both reference and hypothesized speakers) anckT.03 evaluation and the performance of the system was

where, for each segment highly competitive compared to other submitted systems.
dur(s) = the duration of o However, as seen in Table 1, there are a number of hyper-
Nrey(s) = the # of reference speakers speaking in parameters, which can be seen as “tunable” parameters. We
Nays(s) = the # of system speakers speaking in verifed with the help of a series of experiments that the

Neorrect(seg) = the # of reference speakers speaking  gigorithm is not highly sensitive to any of these parame-
in s for whom their matching (mapped) system speak- (o1, This together with experiments on different datasets
ers are also speaking in demonstrates the robustness of the algorithm. These exper-
iments are summarized in next subsections.
3.2. Data

The algorithm was tested on three different datasets rsdeas 3.4. Initialization
by NIST, namelydryrun data (data used for preliminary ex-
periments),devdata (data used as development data) and
evaldata (data used in the £nal RT-03S evaluatiénY-he
dryrun data consists of six 10-minute excerpts from English
broaqlcast news shows, while tﬂe@ata andevaldata each _ Initialization  Error
consisted of three half-hour English broadcast news audio .

ts. In thevaldata alone, th 47 Male and 12 Uniform 28.85%
segments. In thevaldata alone, there are ale an K-means 29.56%
Female speakers.

As mentioned earlier, two different initializations wererp
formed on thedryrun dataset. Table 3 presents the results
for this experiment:

. Table 3. Results for two different initialization schemes on dryrun
3.3. Basdline System dataset Y

We used default values shown in Table 1 for all the hyper- s
parameters in each of the experiments listed below, unless We observed that the type of initialization does not have

otherwise noted. The performance of the baseline system i §|gnl£cant Impact on the £nal _results. We. speculate that

shown in Table 2. this |s_due to the minimum duration constraint and the use

The results orevaldata were submittetias part of the of an iterative EM algonthm'. Thu; ’ f'or.the' subsequent ex-
periments, we used only uniform initialization.

2Not all the experiments were carried out on all three data¥eétsex-
perimented with different hyper-parameters at differergeseaon different
datasets. Also, all results are shown for complete datasbt§rather than 3.5. Experimentswith different acoustic features
individual £les) to avoid presenting too many numbers.

3The results submitted to NIST also involved another posgssiag Table 4 presents the results of using different acoustic fea
stage of speech/non-speech discrimination. Since this radglobt a focus tures in the segmentation. In addition to the default 12-
of this paper, the results shown here are without any speectgpeech
discrimination, i.e. only based on speaker clustering. “http://www.nist.gov/speech/tests/rt/rt2003/spring




LPCC features, we tried 19-Mel-frequency cepstral coef- dataset K  Error

cients (MFCC). dryrun 15 28.85%
dryrun 30 28.35%
Dataset FeatureType  Error devdata 30 29.28%
dryrun LPCC 28.85% devdata 40 26.11%
dryrun MFCC 29.22% devdata 50 25.80%
devdata LPCC 26.11%
devdata MFCC 25.13% Table 6. Results obtained by varying the number of initial clusters.
evaldata LPCC 21.40%
evaldata MFCC 20.79%

3.8. Experimentswith the number of initial Gaussians

Table 4. Results obtained with alternate features. Table 7 presents the results of experiments ondtveata
in which we varied the number of Gaussian components in
As expected, the performance of LPCC and MFCC fea- gach initial cluster§7). Note that we use a small number of
tures in all the cases are comparable. However, while anazassians relative to those used in the speaker recognition
lyzing the performance on individual £les of each dataset, framework. In the speaker recognition framework, the goal
we noticed that MFCCs worked better in noisy conditions, is 1o make a robust model for each speaker, and hence thou-

while LPCCs worked better during clean speech. sands of Gaussians per speaker are employed. However, the
goal here is to make discriminative models for the speakers
3.6. Experimentswith minimum duration in a single audio stream. Thus, we need far fewer Gaussian

. . .. components to estimate the PDFs of each cluster.
Table 5 presents the results obtained by varying the mini- P

mum duration of each cluster. These experiments were also M Error
carried out ordevdata. 5 2611%
Minimum Duration (secs)  Error 10 27.44%
2 26.11%
3 26.55% Table 7. Results obtained for different number of Gaussians (M) for
4 26.18% devdata

In the majority of our experiments (including those sub-
mitted to NIST), we used £ve gaussians per initial cluster
i i i (M = 5). We determined that the performance of the al-
Results in Table 5 show that the algorithm is not sen- ¢, thm does not vary signi£cantly depending on the choice

sitive to the minimum duration that we impose. HOWeVer, ot 1/ i fact, the performance degrades slightly for larger
the sensitivity also depends on the average duration of thevalues as can be seen in Table 7.

speaker segments. If there are many short segments, a large

minimum duration may result in a higher error rate. Thus,

if we have anya priori information about average speaker 4. CONCLUSION
durations, it can be used in the algorithm.

Table 5. Results obtained with different minimum durations

In this paper, we have presented a novel speaker clustering
algorithm and demonstrated its robustness to differerst dat
conditions. The algorithm uses an iterative, agglomegativ
Table 6 presents results for varying the number of initial clustering technique based on an HMM framework. Pairs
clusters K). These results show that the performance of the of clusters are merged in successive iterations and merging
algorithm improves as we increase the valu&ofSince the  stops automatically when the optimal number of clusters has
algorithm is based on agglomerative clusterifig should been determined. We de£ned a BIC-like merging criterion
be larger than the expected number of speakers. We havehat we use to choose which clusters to merge and when to
found that a good “rule of thumb” (for English broadcast stop merging. This merging criterion produces an increase
news) is to choos& equal to or greater than the number of in a likelihood-based objective function for correct merge
minutes of audio data. However, it should be noted that asand a decrease for incorrect merges. An important property
the value ofK increases, so does the computational com- of our merging criterion is that it does not use an adjustable
plexity of the algorithm. This is due to the number of pair- threshold. The absence of such “tweakable” parameters not
wise cluster comparisons that must be made during merg-only inproves the algorithm'’s robustness but also elinggat
ing. the need for a development dataset.

3.7. Experimentswith the number of initial clusters
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