University of California
Berkeley

College of Engineering
Department of Electrical Engineering
and Computer Sciences

Professors: N. Morgan / B. Gold
EE225D

Pitch Detection & Vocoders

Lecture 24
Major Question

How to make a “Perfect” Vocoder? (Can it be done?)

What limitations are encountered for low bit rate representation?

Today’s Topic

Traditional 2400bps systems [or at least in that range] and

Pitch & Voicing detection.

NEXT

Very low rate systems [600bps]

NEXT

Higher quality more robust systems at 5-30Kbps
Difficulties Encountered in Pitch Detection

* Purpose of pitch detection is to automatically obtain a result that is in agreement with a psychoacoustic result for the same stimulus. And also to make a vocoder sound natural.

* Early researchers preferred to use the term “fundamental frequency estimator” but we saw in Chapter 16 that pitch would be “perceived” even if the stimulus was a harmonic for that frequency. (example - shift of virtual pitch)

* What we’re really after is the NATURE and quantitative description of the excitation function.
* **This means:**

1. Detection of the time when the vocal cords are vibrating in a [perhaps rapidly varying] quasi-periodic way and tracking the period.
2. Representation of the friction noise caused by a vocal tract constriction.
3. Representation of the transient excitation during plosive.
4. Representation of the noise for a whispered vowel.
5. Representations of various combinations of all the above.

Examples of speech waveforms that makes the above analysis difficult.

* Dynamic range of quasi-periodic vocal cord vibrations as low as 50Hz for some adults as high as 800Hz for children —16:1 range

* Rapid variation in glottal period
* Sudden change in vocal tract shape [e.g. nasal]
* Transition from unvoiced to voiced.
* Environmental transmission problems.
With linear assumptions, the speech wave can be represented as the convolution of an excitation function with a vocal tract filter function.

In spectral terms: \(S(\omega) = E(\omega)H(\omega) \)

* In a channel vocoder analyzer, measurements \(S(\omega) \), \(H(\omega) \) and \(E(\omega) \) are NOT computed separately.

* In the channel vocoder synthesizer, the spectrum is obtained as follows.
 \[S(\omega) = E(\omega)H(\omega) \]

* If \(\hat{E}(\omega) \) is a FLAT SPECTRUM, \(\hat{S}(\omega) \equiv S(\omega) \), although the phases may be different.

* The situation is complicated by the fact that \(E(\omega) \) and \(H(\omega) \) are time-varying.
In LPC, we start off with \[S(n) = Ex(\omega) \cdot H(\omega) \]
\[s(\omega) = ex(n) \cdot h(n) \]

change of nomenclature \(ex(n) \) is the model of the speech excitation signal.

LPC derives an all-pole model \(\hat{H}(\omega) \rightarrow \hat{h}(n) \)

It would be nice if \(\hat{H}(\omega) \) was really a good representation of \(H(\omega) \), the real vocal tract function.

Speech can be perfectly reconstructed by convolving \(\hat{h}(n) \) with the error signal \(e(n) \).

\[s(n) = e(n) \times \hat{h}(n) \]

\[S(\omega) = E(\omega) \cdot \hat{H}(\omega) = Ex(\omega) \cdot H(\omega) \]

if \(\hat{H}(\omega) \) differs greatly from \(H(\omega) \), \(E(\omega) \) will compensate by being correspondingly different than \(Ex(\omega) \).
Homomorphic analysis has the hypothesis that source-filter separation is manifested as spectrum envelope-spectral fine structure separation. The model also assumes that these are multiplied in the spectral domain, so that taking the log turns the product into a sum. Finally, the model assumes that the two are separable with liftering. Given this separation, the excitation function and the vocal tract filter function can be represented and then convolved to give the synthesized speech.

* Many LPC systems [multi pulse, celp, etc.] derive their power by searching for an error signal that compensates for $\hat{H}(\omega)$.
In order to achieve low transmission rates (e.g. 2400bps), all systems relay on the excitation model consisting of a noise source and a variable period pulse source.

- Both sources are reasonable approximations to flat spectra and take few bits to transmit.

 buzz-hiss switch - 1bit every 10msec. \(\rightarrow\) 100bps
 pitch tracker - 6bits every 10msec. \(\rightarrow\) 600bps
Major Motivation for Dorry Research on Vocoders: Past, Present, Future.

Past - Secrecy - WWII - Data rates were limited. 2400bps became a standard.

Nearly all funding came from DOD to try to improve quality at 2400 bps.

Present - Modems are much better. As cellular phones proliferate,

date rate limitations still apply but 2400bps is no longer the sole criterion.

Main direction is still quality (robustness) - bit rate tradeoff.

Future - Greater robustness - efficient storage of

speech (and music) - coding - recognition tie-in.

Two Sides of the Coin

1. Basic Models for Analysis & Synthesis
 - channel
 - LPC
 - Homomorphic

2. Waveform methods
 - PCM, APCM, ADPCM
 - Some predictive ability
Complete Channel Vocoder

Remember basic assumption for all vocoders.

* Synthetic speech is the convolution of an excitation function and a vocal tract filter function.

* Assumption: Synthesizer is a Time variable Linear System

If this assumption was wrong and excitation and Vocal Tract Interacted in some Non-Linear Way, problem of implementing a “transparent” system probably becomes intractable.

Working Hypothesis for 2400bps (and lower) systems. Excitation is either buzz [variable pulse generator] or hiss [white noise generator]
Consider the spectrum of a jittered pulse train.

Most of the time, pitch does NOT behave this badly.

Now, assume that you have built a great pitch detector that tracks perfectly and records $T_1, T_2, T_3, \text{ etc.}$.

Now, this information is transmitted and the buzz generator at the synthesizer is forced to produce pulses based on the above measurements.
In real life, let's assume that analysis takes place every 20msec. Analyzer generates a single pitch number, so at synthesizer, for a period of 20msec.

\[S(\omega) \text{ is the product of the above } E(\omega) \text{ and } H(\omega). \]

\[S(\omega) = E(\omega) \cdot H(\omega) \]

Spectral distortion introduced by pitch jitter.

Actual excitation during voicing. ~ not as bad as
Spectral Flattening

Turn the excitation signal into a white signal or white noise.

Model of \(S(\omega) = E(\omega) \cdot H(\omega) \)

![Diagram](image_url)
Major Question

Does all-pole synthesizer model the Vocal tract envelope function or the complete speech envelope function?

- if the former is true, excitation should NOT be spectrally flattered.
- if the latter is true, spectral flattering may help.

* Joe Tierrey and I did an informal experiment to determine perceived quality. The result was ambiguous.

* In general, existing LPC systems (low rate) do NOT use spectral flattering.

It may depend on the ORDER of the predictor & synthesizer. a 10th order predictor corresponds to five “formants”.
Homomorphic Vocoder

* Excitation is modelled in the same way as for channel vocoders & LPC.

Spectral flattering of the excitation signal has never [I think] been tried but it should work (in the same ballpark as channel & LPC).

Point C is Cepstrum.

Note - if excitation and envelope could be completely separated, synthesis ought to be perfect.
Figure 20.1: Cepstral analysis.

(a) 512-Point FFT
(b) Log Magnitude
(c) 512-Point FFT
(d) Separation in Time

Excitation Pattern Recognition for Pitch
Spectral Function

(a) Windowed Speech Wave
(b) Magnitude
 Spectrum
(c) Log Magnitude
 Log Spectrum
(d) Cepstrum of Spectral Envelope
 Cepstrum of Excitation

\(n \)
Figure 30.8: Autocorrelation Function of Spectrally Flattened Speech. Successive 30ms sections with 15ms overlap.
Figure 30.7: Spectral Flattening and its Effect on the Speech Signal.

\[C_1 = \frac{S_1}{A_1} \]
\[C_n = \frac{S_n}{A_n} \]
Figure 30.3 Extraction of the Period

Variable Blanking Time

Variable Exponential Decay (Rundown Time)

Firings
Figure 30.6 : Low-Pass filtered speech signal.
Figure 30.4: Six Examples of Difficulties in Pitch Detection.

- Dynamic Range of Pitch
- Pitch Variations in Time
- Vocal Tract Variations in Time
- Voiced-Unvoiced Transition
- Telephone Speech
- Acoustic Noise Background
Figure 30.10: Cepstral Analysis for Pitch Detection.
Figure 16.9: Block Diagram of the Periodicity Model.

Figure 16.10: Block Diagram of the Place Model.
Figure 30.13:

Armonic Pitch Detection Algorithm

Spectral Magnitude

\[
\begin{array}{cccc}
p_3 & & & p_6 \\
p_3 & & & \\
p_3 & p_3 & & p_5 \\
p_1 & p_2 & p_3 & p_5 \\
p_1 & p_2 & p_3 & p_2 & p_4 \\
p_1 & p_2 & p_3 & p_2 & p_1 & p_3 \\
\end{array}
\]

Frequency

1050Hz

\[p(n)\]

Winner

Quanta
Figure 30.14: Goldstein-Duifhuis Optimum Processor Algorithm
Figure 31.2: Channel Vocoder Analyzer and Synthesizer
Figure 31.2: Channel Vocoder Analyzer and Synthesizer
Figure 31.3: Example of Energy Measurement With a Half-Wave Rectifier.

Figure 31.4: Effect of Pitch Ripple in a Spectral Estimate.
Figure 31.11: Block Diagram of the LPC Algorithm
Figure 31.12: Lattice Synthesizer for LPC
Schematic of the Homomorphic Vocoder.

Input Speech Samples

Fourier Transform

Log Magnitude

Inverse Fourier Transform

Time

C

Multiplier

Fourier Transform

Exponential

Inverse Fourier Transform

Convolve

Synthetic Speech

Excitation Parameters

Excitation Generator

Analyzer

Synthesizer

Schematic of the Homomorphic Vocoder.
Figure 31.13: Cepstral Vocoder Analysis

- $s(nT)$
- Fourier Transform
- Log Magnitude
- $\hat{S}(\omega)$
- Inverse Fourier Transform
- $\hat{s}(nT)$
- Multiplier
- $c(nT)$

$h(nT)$

Time

Frequency

Time
\[c(nT) \xrightarrow{\text{Fourier Transform}} \text{Exponential} \xrightarrow{\text{Inverse Fourier Transform}} v(nT) \]

\[e(nT) \xrightarrow{\text{Excitation Generator}} \]

\[\text{Excitation Parameters} \]

\[\text{Convolve} \rightarrow \text{scan in} \]

Figure 31.14: Cepstral Vocoder Synthesizer