University of California
Berkeley

College of Engineering
Department of Electrical Engineering
and Computer Sciences

Professors: N. Morgan / B. Gold

EE225D

LPC Analysis

Lecture 22
Hearing and Speech Engineering

• Focus on power spectrum (not phase)
• Spectral envelope for phonetic discrimination
• Less accuracy required at high frequencies
• Emphasis on spectral peaks
Spectral Envelope Estimation

• Filter banks
• Cepstral Analysis
• Linear Predictive Coding (LPC)
Incorporate Production

• Assume simple excitation /vocal tract model
• Assume vocal tract like series resonators
• Find best spectrum based on resonators
Pole-only resonator

\[H_i(z) = \frac{1}{1 - b_i z^{-1} - c_i z^{-2}} \]

For complex pole pair,

\[b_i = 2r \cos \Theta, \quad c_i = r^2 \]

where \(r \) is pole magnitude and \(\Theta \) is pole angle.
\[x(n) \rightarrow + \rightarrow y(n) \]

\[a_1 \]

\[a_2 \]

\[z^{-1} \]

\[y(n-1) \]

\[y(n-2) \]
\[x(n) \rightarrow + \rightarrow y(n) \]

\[a_1 \rightarrow z^{-1} \rightarrow y(n-1) \]

\[a_2 \rightarrow z^{-1} \rightarrow y(n-2) \]

\[a_N \rightarrow z^{-1} \rightarrow y(n-P) \]
\[x(n) \]

\[y(n) \]

\[\tilde{y}(n) \]

\[a_1 \]

\[a_2 \]

\[a_N \]

\[\tilde{z}^{-1} \]

\[\tilde{z}^{-1} \]

\[\tilde{z}^{-1} \]

\[\tilde{z}^{-1} \]

\[y(n-1) \]

\[y(n-2) \]

\[\ldots \]

\[\ldots \]

\[y(n-P) \]

Observed
Error Signal

\[e(n) = y(n) - \tilde{y}(n) = y(n) - \sum_{j=1}^{P} a_j y(n-j) \]

\[E(z) = Y(Z) - Y(z) = Y(z) - \sum_{j=1}^{P} a_j z^{-j} Y(z) \]

\[= Y(z) \left(1 - \sum_{j=1}^{P} a_j z^{-j} \right) \frac{1}{H(z)} \]

or

\[E(z) = \frac{Y(Z)}{H(z)} \]
Figure 21.3: Residual error waveforms for several vowels.
Some LPC Issues

• Error criterion for minimization
• Model order
Error Criterion

\[D = \sum_{n=0}^{N-1} e^2(n) = \int_{-\pi}^{\pi} |E(\omega)|^2 \frac{d\omega}{2\pi} \]

SO

\[D = \int_{-\pi}^{\pi} \frac{|Y(\omega)|^2}{|H(\omega)|^2} \frac{d\omega}{2\pi} \]
LPC peak modeling

• Total error constrained to be (at best) gain factor squared

• Error where model spectrum is larger contributes less

• Tends to “hug” peaks
Figure 3.32: Typical signals and spectra for LPC autocorrelation method for a segment of speech spoken by a male speaker (after Rabiner et al.)
More Effects of Error Criterion

• Globally tracks, but worse match in log spectrum for low values
• “Attempts” to model anti-aliasing filter
• Ill conditioned for wide range of values
Other LPC properties

• Behavior in noise
• Sharpness of peaks
• Speaker dependence
Model Order

• Too few, can’t represent formants
• Too many, model detail, e.g., harmonics
• Too many, low error, ill-conditioned matrices
Figure 3.36: Spectra for a vowel sound for several values of predictor order, p.
Figure 21.6: RMS prediction error for different model orders.
Optimal Model Order

- Akaike Information Criterion (AR time series)
- Cross-validation (trial and error)
Coefficient Estimation

• Minimize squared error - set derivatives to zero
• Compute in blocks or on-line
• For blocks, use autocorrelation or covariance methods (windowing)
Minimizing the error

\[D = \sum_{n=0}^{N-1} e^2(n) = \sum_{n=0}^{N-1} \left(y(n) - \sum_{j=1}^{P} a_j y(n-j) \right)^2 \]

If we take partial derivatives with respect to each \(a \), we get \(P \) equations of the form.

\[\sum_{j=1}^{P} a_j \phi(i,j) = \phi(i,0) \text{ for } i = 1, 2, \ldots, P \]

Where \(\phi(i,j) \) is a correlation sum between varions of the speech signal delayed by \(i \) and \(j \) points.
Solving the equations

- Autocorrelation method: Levinson or Durbin recursions \(O(P^2)\) operations; uses Toeplitz property, guaranteed stable

- Covariance method: Cholesky decomposition \(O(P^3)\) operations - just uses symmetric property
LPC-based representations

• Predictor Polynomial
• Root pairs
• Reflection coefficients
• Log area ratios
• Cepstrum
Figure 3.37: Block diagram of LPC processor for speech recognition.
Table 1: Basic methods for spectral envelope estimation in speech.

<table>
<thead>
<tr>
<th></th>
<th>Filter Banks</th>
<th>Cepstral Analysis</th>
<th>LPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced pitch effects</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Excitation estimate</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Direct access to spectra</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less resolution at HF</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthogonal outputs</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Peak-hugging property</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Reduced computation</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>